Design, Synthesis, and Antitumor Activity of Isoliquiritigenin Amino Acid Ester Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Toxicity of Compounds on Different Human Tumor Cell Lines
2.3. Compound 9 Inhibits Hela Cell Migration
2.4. Compound 9 Inhibits Hela Cell Proliferation
2.5. Compound 9 Affects Hela Cell Morphology
2.6. Compound 9 Affects Hela Cell Apoptosis
2.7. Anti-Tumor PI3K/AKT/mTOR Pathway Analysis of Compound 9 Based on Molecular Docking Technology
2.8. Real-Time Fluorescence Quantitative PCR Was Used to Detect PI3K/AKT/mTOR Pathway-Related Gene Expression
3. Materials and Methods
3.1. Chemistry
3.2. Preparation of Isoliquiritigenin Derivatives
3.3. Cytotoxic Activity Assay
3.4. Cell Scratch Assay
3.5. Cell Clonal Formation Assay
3.6. Cell DAPI Staining Assay
3.7. Cell Apoptosis Assay
3.8. Molecular Docking
3.9. RT-qPCR
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.; Torre, L.A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Kaur, R.; Bhardwaj, A.; Gupta, S. Cancer treatment therapies: Traditional to modern approaches to combat cancers. Mol. Biol. Rep. 2023, 50, 9663–9676. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.J.; Lei, K.F.; Han, F. Tumor microenvironment: Recent advances in various cancer treatments. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 3855–3864. [Google Scholar]
- Jeswani, G.; Paul, S.D.; Jha, A.K. Advances in the Delivery of Cancer Therapeutics: A Comprehensive Review. Curr. Drug Deliv. 2018, 15, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Mayer, S.; Keglevich, P.; Keglevich, A.H. Laszlo, New Anticancer Vinca Alkaloids in the Last Decade—A Mini-Review. Curr. Org. Chem. 2021, 25, 1224–1234. [Google Scholar] [CrossRef]
- Bibak, B.; Shakeri, F.; Barreto, G.E.; Keshavarzi, Z.; Sathyapalan, T.; Sahebkar, A. A review of the pharmacological and therapeutic effects of auraptene. Biofactors 2019, 45, 867–879. [Google Scholar] [CrossRef]
- Kiani, B.H.; Kayani, W.K.; Khayam, A.U.; Dilshad, E.; Ismail, H.; Mirza, B. Artemisinin and its derivatives: A promising cancer therapy. Mol. Biol. Rep. 2020, 47, 6321–6336. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Liang, N.; Liu, Y.; Cheng, M.S. Recent progress on betulinic acid and its derivatives as antitumor agents: A mini review. Chin. J. Nat. Med. 2021, 19, 641–647. [Google Scholar] [CrossRef] [PubMed]
- Rauf, A.; Abu-Izneid, T.; Khalil, A.A.; Imran, M.; Shah, Z.A.; Emran, T.B.; Mitra, S.; Khan, Z.; Alhumaydhi, F.A.; Aljohani, A.S.M.; et al. Berberine as a Potential Anticancer Agent: A Comprehensive Review. Molecules 2021, 26, 7368. [Google Scholar] [CrossRef]
- Li, J.; Li, F.; Jin, D. Ginsenosides are Promising Medicine for Tumor and Inflammation: A Review. Am. J. Chin. Med. 2023, 51, 883–908. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Quispe, C.; Herrera-Bravo, J.; Belén, L.H.; Kaur, R.; Kregiel, D.; Uprety, Y.; Beyatli, A.; Yeskaliyeva, B.; Kırkın, C.; et al. Glycyrrhiza Genus: Enlightening Phytochemical Components for Pharmacological and Health-Promoting Abilities. Oxid. Med. Cell. Longev. 2021, 2021, 7571132. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Ding, W.; Yang, X.; Lu, T.; Liu, Y. Isoliquiritigenin, a potential therapeutic agent for treatment of inflammation-associated diseases. J. Ethnopharmacol. 2024, 318 Pt B, 117059. [Google Scholar] [CrossRef]
- Qi, J.; Cui, J.; Mi, B.; Yan, X.; Xu, F. Isoliquiritigenin Inhibits Atherosclerosis by Blocking TRPC5 Channel Expression. Cardiovasc. Ther. 2020, 2020, 1926249. [Google Scholar] [CrossRef] [PubMed]
- Gaur, R.; Gupta, V.K.; Singh, P.; Pal, A.; Darokar, M.P.; Bhakuni, R.S. Drug Resistance Reversal Potential of Isoliquiritigenin and Liquiritigenin Isolated from Glycyrrhiza glabra against Methicillin-Resistant Staphylococcus aureus (MRSA). Phytother. Res. 2016, 30, 1708–1715. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Shi, Y.; Chen, X.; Sun, Z.; Chen, X. Isoliquiritigenin attenuates diabetic cardiomyopathy via inhibition of hyperglycemia-induced inflammatory response and oxidative stress. Phytomedicine 2020, 78, 153319. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.L.; Kuo, P.L.; Lin, L.T.; Lin, C.C. Isoliquiritigenin inhibits cell proliferation and induces apoptosis in human hepatoma cells. Planta Medica 2005, 71, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Peng, F.; Tang, H.; Du, J.; Chen, J.; Peng, C. Isoliquiritigenin Suppresses EMT-Induced Metastasis in Triple-Negative Breast Cancer through miR-200c/C-JUN/[Formula: See text]-Catenin. Am. J. Chin. Med. 2021, 49, 505–523. [Google Scholar] [CrossRef] [PubMed]
- Kwon, G.T.; Cho, H.J.; Chung, W.Y.; Park, K.K.; Moon, A.; Park, J.H.Y. Isoliquiritigenin inhibits migration and invasion of prostate cancer cells: Possible mediation by decreased JNK/AP-1 signaling. J. Nutr. Biochem. 2009, 20, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z. Chlorination Modification of Chalcone Derivative Isoliquiritigenin and Its Anti-Cervical Cancer Activity and Mechanism. Master’s Thesis, Xinjiang Medical University, Ürümqi, China, 2019; pp. 122–123. [Google Scholar]
- Shi, Y.; Li, R.; Chen, X.; Yang, Y.; Guo, Y. Progress of researches in anti-tumor effects and mechanisms of isoliquiritigenin. Pract. Pharm. Clin. Remedies 2020, 23, 371–375. [Google Scholar]
- Xu, Q.; Deng, H.; Li, X.; Quan, Z.S. Application of Amino Acids in the Structural Modification of Natural Products: A Review. Front. Chem. 2021, 9, 650569. [Google Scholar] [CrossRef]
- Cai, E.; Guo, S.; Yang, L.; Han, M.; Xia, J.; Zhao, Y.; Gao, X.; Wang, Y. Synthesis and antitumour activity of arctigenin amino acid ester derivatives against H22 hepatocellular carcinoma. Nat. Prod. Res. 2018, 32, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Yu, W.; Liu, J.; Wang, H.; Du, R.; Yan, Z. Protective effect of α-mangostin derivatives on hypoxia/reoxygenation-induced apoptosis in H9C2 cells and their mechanism. Phytochem. Lett. 2022, 47, 174–179. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, D.; Wei, M.; Du, R.; Yan, Z. The ester derivatives obtained by C-ring modification of podophyllotoxin induce apoptosis and inhibited proliferation in PC-3M cells via down-regulation of PI3K/Akt signaling pathway. Bioorg. Med. Chem. Lett. 2021, 46, 128174. [Google Scholar] [CrossRef]
- Wang, Y. The Chemical Structural Modification of Licorice Chalcone Isoliquiritigenin and Study on the Anticancer Activity in Human Cervircal Carcinoma Cell Lines. Master’s Thesis, Xinjiang Medical University, Urumqi, China, 2015; pp. 68–69. [Google Scholar]
- Huang, S.Y.; Zou, X. Advances and challenges in protein-ligand docking. Int. J. Mol. Sci. 2010, 11, 3016–3034. [Google Scholar] [CrossRef] [PubMed]
- Grinter, S.Z.; Zou, X. Challenges, applications, and recent advances of protein-ligand docking in structure-based drug design. Molecules 2014, 19, 10150–10176. [Google Scholar] [CrossRef] [PubMed]
- Tao, T.; Zhang, P.; Zeng, Z.; Wang, M. Advances in autophagy modulation of natural products in cervical cancer. J. Ethnopharmacol. 2023, 314, 116575. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Li, J.; Yang, K.; Cao, D. An overview of autophagy: Mechanism, regulation and research progress. Bull. Cancer 2021, 108, 304–322. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Sun, M.M.; Zhang, G.G.; Yang, J.; Chen, K.S.; Xu, W.W.; Li, B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target. Ther. 2021, 6, 425. [Google Scholar] [CrossRef]
- Mahata, S.; Bharti, A.C.; Shukla, S.; Tyagi, A.; Husain, S.A.; Das, B.C. Berberine modulates AP-1 activity to suppress HPV transcription and downstream signaling to induce growth arrest and apoptosis in cervical cancer cells. Mol. Cancer 2011, 10, 39–52. [Google Scholar] [CrossRef]
Compound | IC50 (μmoL/L) | ||||
---|---|---|---|---|---|
Bel-7402 | A549 | Hela | MCF-7 | PC-3M | |
ISL | 160 | 122.9 | 126.5 | 133.7 | 141.7 |
5-FU | 40.31 | 53.28 | 33.59 | 80.66 | 15.07 |
1 | >200 | >200 | >200 | >200 | >200 |
2 | >200 | >200 | >200 | >200 | >200 |
3 | >200 | >200 | >200 | >200 | >200 |
4 | >200 | >200 | >200 | >200 | >200 |
5 | >200 | >200 | >200 | >200 | >200 |
6 | >200 | >200 | >200 | >200 | >200 |
7 | 27.91 | 27.39 | 28.7 | 29.8 | 33.2 |
8 | >200 | >200 | >200 | >200 | >200 |
9 | 27.85 | 23.68 | 14.36 | 21.24 | 27.01 |
10 | >200 | >200 | >200 | >200 | >200 |
11 | 87.6 | 100.42 | 99.9 | 159.6 | 121.8 |
12 | >200 | >200 | >200 | >200 | >200 |
13 | 35.3 | 48.9 | 29.2 | 60.5 | 37.4 |
14 | >200 | >200 | >200 | >200 | >200 |
15 | 38.4 | 42.57 | 27.36 | 50.9 | 30.2 |
16 | >200 | >200 | >200 | >200 | >200 |
17 | 33.18 | 40.69 | 30.4 | 60.2 | 38.1 |
18 | >200 | >200 | >200 | >200 | >200 |
19 | 66.9 | 93.8 | 74.9 | 152.9 | 108.4 |
20 | >200 | >200 | >200 | >200 | >200 |
21 | 45.3 | 60.2 | 66.5 | 75.7 | 87.5 |
22 | >200 | >200 | >200 | >200 | >200 |
23 | 63.5 | 80.9 | 72.4 | 130.5 | 83.6 |
The Name of the Gene | Sequence |
---|---|
GAPDH | Forward: 5′-TGACATCAAGAAGGTGGTGAAGCAG-3′ Forward: 5′-GTGTCGCTGTTGAAGTCAGAGGAG-3′ |
PI3K | Forward: 5′-CGGTGACTGTGTGGGACTTATTGAG-3′ Reverse: 5′-TGTAGTGTGTGGCTGTTGAACTGC-3′ |
AKT | Forward: 5′-GCAGGATGTGGACCAACGTGAG-3′ Reverse: 5′-GCAGGCAGCGGATGATGAAGG-3′ |
mTOR | Forward: 5′-GTGTTGCAGAGACTTGATGGAGGAG-3′ Reverse: 5′-CTGTGAAGGCAGAAGGTCGGAATG-3′ |
Beclin1 | Forward: 5′-ACATCTGGCACAGTGGACAGTTTG-3′ Reverse: 5′-AGCATGGAGCAGCAACACAGTC-3′ |
LC3A | Forward: 5′-GCCTTCTTCCTGCTGGTGAACC-3′ Reverse: 5′-TCCTCGTCTTTCTCCTGCTCGTAG-3′ |
Bcl-2 | Forward: 5′-TACGAGTGGGATGCGGGAGATG-3′ Reverse: 5′-CCGGGCTGGGAGGAGAAGATG-3′ |
Bad | Forward: 5′-GCCAACCAGCAGCAGCCATC-3′ Reverse: 5′-CCCCATCCCTTCGTCGTCCTC-3′ |
Caspase-3 | Forward: 5′-GTGGAGGCCGACTTCTTGTATGC-3′ Reverse: 5′-TGGCACAAAGCGACTGGATGAAC-3′ |
P70S6K | Forward: 5′-ACACCTTCTGCGGCACCATTG-3′ Reverse: 5′-CCCAGGCTCCACCAGTCCAC-3′ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Liu, X.; Ma, Q.; Su, F.; Cai, E. Design, Synthesis, and Antitumor Activity of Isoliquiritigenin Amino Acid Ester Derivatives. Molecules 2024, 29, 2641. https://doi.org/10.3390/molecules29112641
Liu C, Liu X, Ma Q, Su F, Cai E. Design, Synthesis, and Antitumor Activity of Isoliquiritigenin Amino Acid Ester Derivatives. Molecules. 2024; 29(11):2641. https://doi.org/10.3390/molecules29112641
Chicago/Turabian StyleLiu, Chi, Xinyue Liu, Qing Ma, Fengyan Su, and Enbo Cai. 2024. "Design, Synthesis, and Antitumor Activity of Isoliquiritigenin Amino Acid Ester Derivatives" Molecules 29, no. 11: 2641. https://doi.org/10.3390/molecules29112641
APA StyleLiu, C., Liu, X., Ma, Q., Su, F., & Cai, E. (2024). Design, Synthesis, and Antitumor Activity of Isoliquiritigenin Amino Acid Ester Derivatives. Molecules, 29(11), 2641. https://doi.org/10.3390/molecules29112641