Recovery of an Antioxidant Derived from a Phenolic Diphosphite from Wastewater during the Production of a Polypropylene Compound: A Step towards Sustainable Management
Abstract
:1. Introduction
2. Results and Discussion
2.1. Improved HPLC Separation
2.2. Optimization of Sample Preparation Procedure
2.3. Validation of Analytical Methodology
2.3.1. Repeatability and Reproducibility of the Calibration Curve
2.3.2. Repeatability and Reproducibility of SPE
2.3.3. LOD, LOQ, Linearity, and Range
2.4. Characterization and Comparison of Pure and Recovered Bis(2,4-Dicumylphenyl) Pentaerythritol Diphosphite
2.4.1. Thermal Stability Characterization of Polymer with Pure and Recovered Bis(2,4-Dicumylphenyl) Pentaerythritol Diphosphite
2.4.2. Analysis of Pure BDPD and Recovered BDPD by UV–Vis Spectrophotometry
2.4.3. Infrared Spectrum Analysis for Pure and Recovered Additive
2.4.4. Mass Spectrometry for Pure and Recovered Bis(2,4-Dicumylphenyl) Pentaerythritol Diphosphite
2.4.5. Industrial Application of Recovered Bis(2,4-Dicumylphenyl) Pentaerythritol Diphosphite
2.4.6. Oxidation Induction Time for Recovered Solid Compared to BDPD Standard
2.5. MFI
2.6. Environmental Impact Estimation
3. Materials and Methods
3.1. Reagents
3.2. Collection of Wastewater Samples
3.3. Description of the Analyte of Interest Extraction Method
3.4. Doverphos Separation, Quantification, and Fragmentation System by HPLC-DAD/MS/MS/MS
3.5. Fourier Transform Infrared (FTIR)
3.6. Ultraviolet–Visible Spectroscopy (UV–Vis)
3.7. Thermogravimetric Analysis (TGA)
3.8. Oxidation Induction Time (OIT)
3.9. Mixing of the Recovered Bis(2,4-Dicumylphenyl) Pentaerythritol Diphosphite and PP Resin
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vila-Costa, M.; Martinez-Varela, A.; Rivas, D.; Martinez, P.; Pérez-López, C.; Zonja, B.; Montemurro, N.; Tauler, R.; Barceló, D.; Ginebreda, A. Advanced analytical, chemometric, and genomic tools to identify polymer degradation products and potential microbial consumers in wastewater environments. Chem. Eng. J. 2022, 442, 136175. [Google Scholar] [CrossRef]
- Ardusso, M.; Forero-López, A.; Buzzi, N.; Spetter, C.; Severini, F. COVID-19 pandemic repercussions on plastic and antiviral polymeric textile causing pollution on beaches and coasts of South America. Sci. Total Environ. 2021, 763, 144365. [Google Scholar] [CrossRef] [PubMed]
- Plastics–The Facts 2018; PlasticsEurope: Brussels, Belgium, 2018.
- Zhao, X.; Korey, M.; Li, K.; Copenhaver, K.; Tekinalp, H.; Celik, S.; Kalaitzidou, K.; Ruan, R.; Ragauskas, A.J.; Ozcan, S. Plastic waste upcycling toward a circular economy. Chem. Eng. J. 2022, 428, 131928. [Google Scholar] [CrossRef]
- Plastics Europe. Market data Archives. Available online: https://plasticseurope.org/resources/market-data/ (accessed on 21 February 2023).
- Carney Almroth, B.; Eggert, H. Marine Plastic Pollution: Sources, Impacts, and Policy Issues. Rev. Environ. Econ. Policy 2019, 13, 317–326. [Google Scholar] [CrossRef]
- Eriksen, M.; Lebreton, L.C.M.; Carson, H.S.; Thiel, M.; Moore, C.J.; Borerro, J.C.; Galgani, F.; Ryan, P.G.; Reisser, J. Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS ONE 2014, 9, e111913. [Google Scholar] [CrossRef] [PubMed]
- Thushari, G.G.N.; Senevirathna, J.D.M. Plastic pollution in the marine environment. Heliyon 2020, 6, e04709. [Google Scholar] [CrossRef] [PubMed]
- Gensler, R.; Plummer, C.J.G.; Kausch, H.H.; Kramer, E.; Pauquet, J.R.; Zweifel, H. Thermo-oxidative degradation of isotactic polypropylene at high temperatures: Phenolic antioxidants versus HAS. Polym. Degrad. Stab. 2000, 67, 195. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, J.; Fu, H.; Wang, W.; Wang, Q. Effect of an antioxidant on the life cycle of wood flour/polypropylene composites. J. For. Res. 2019, 31, 1435–1443. [Google Scholar] [CrossRef]
- Abbas-Abadi, M.S.; Haghighi, M.N.; Yeganeh, H. The effect of temperature, catalyst, different carrier gases and stirrer on the produced transportation hydrocarbons of LLDPE degradation in a stirred reactor. J. Anal. Appl. Pyrolysis 2012, 95, 198–204. [Google Scholar] [CrossRef]
- Abbas-Abadi, M.S.; Haghighi, M.N.; Yeganeh, H. Evaluation of pyrolysis product of virgin high density polyethylene degradation using different process parameters in a stirred reactor. Fuel Process. Technol. 2012, 109, 90–95. [Google Scholar] [CrossRef]
- Sakata, Y.; Uddin, M.A.; Muto, A. Degradation of polyethylene and polypropylene into fuel oil by using solid acid and non-acid catalysts. J. Anal. Appl. Pyrolysis 1999, 51, 135–155. [Google Scholar] [CrossRef]
- Chien, J.; Boss, C. Polymer reactions. V. Kinetics of autoxidation of polypropylene. J. Polym. Sci. Part A Polym. Chem. 1967, 5, 3091–3101. [Google Scholar] [CrossRef]
- Overdahl, K.E.; Sutton, R.; Sun, J.; Destefano, N.J.; Getzinger, G.J.; Ferguson, P.L. Assessment of emerging polar organic pollutants linked to contaminant pathways within an urban estuary using non-targeted analysis. Environ. Sci. Process. Impacts 2021, 23, 429–445. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Sang, W.; Lu, W.; Zhang, W.; Zhan, C.; Jia, D. Recent Advances of Emerging Organic Pollutants Degradation in Environment by Non-Thermal Plasma Technology: A Review. Water 2022, 14, 1351. [Google Scholar] [CrossRef]
- Núñez-Delgado, A.; Zhang, Z.; Bontempi, E.; Coccia, M.; Race, M.; Zhou, Y. Editorial on the Topic “New Research on Detection and Removal of Emerging Pollutants”. Materials 2023, 16, 725. [Google Scholar] [CrossRef] [PubMed]
- Arman, N.Z.; Salmiati, S.; Aris, A.; Salim, M.R.; Nazifa, T.H.; Muhamad, M.S.; Marpongahtun, M. A Review on Emerging Pollutants in the Water Environment: Existences, Health Effects, and Treatment Processes. Water 2021, 13, 3258. [Google Scholar] [CrossRef]
- Stefanakis, A.I.; Becker, J.A. A review of emerging contaminants in water: Classification, sources, and potential risks. In Impact of Water Pollution on Human Health and Environmental Sustainability; IGI Global: Harrisburg, PA, USA, 2015; pp. 55–80. [Google Scholar] [CrossRef]
- Kumar, R.; Qureshi, M.; Vishwakarma, D.K.; Al-Ansari, N.; Kuriqi, A.; Elbeltagi, A.; Saraswat, A. A review on emerging water contaminants and the application of sustainable removal technologies. Case Stud. Chem. Environ. Eng. 2022, 6, 100219. [Google Scholar] [CrossRef]
- Liu, R.; Song, S.; Lin, Y.; Ruan, T.; Jiang, G. Occurrence of synthetic phenolic antioxidants and major metabolites in municipal sewage sludge in China. Environ. Sci. Technol. 2015, 49, 2073–2080. [Google Scholar] [CrossRef]
- Liu, R.; Ruan, T.; Song, S.; Lin, Y.; Jiang, G. Determination of synthetic phenolic antioxidants and relative metabolites in the sewage treatment plant and recipient river by high-performance liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. A 2015, 1381, 13–21. [Google Scholar] [CrossRef]
- Shin, C.; Kim, D.G.; Kim, J.H.; Kim, J.H.; Song, M.K.; Oh, K.S. Migration of substances from food contact plastic materials into foodstuff and their implications for human exposure. Food Chem. Toxicol. 2021, 154, 112373. [Google Scholar] [CrossRef]
- O’Brien, A.P. Pira International-Report for the Food Standards Agency 07A11J0587 Investigation into the Effect of Additives on Migration of Substances Originating from Colorants Used in Food Contact Plastics A03066 Final Report; Food Standards Agency: London, UK, 2010. [Google Scholar]
- Liu, B.; Rocca, D.; Yan, H.; Pan, D. Beyond Conformational Control: Effects of Noncovalent Interactions on Molecular Electronic Properties of Conjugated Polymers. J. Am. Chem. Soc. 2021, 1, 2182–2187. [Google Scholar] [CrossRef]
- Hernández-Fernandez, J.; Rodríguez, E. Determination of phenolic antioxidants additives in industrial wastewater from polypropylene production using solid phase extraction with high-performance liquid chromatography. J. Chromatogr. A 2019, 1607, 460442. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Mabury, S.A. Synthetic Phenolic Antioxidants: A Review of Environmental Occurrence, Fate, Human Exposure, and Toxicity. Environ. Sci. Technol. 2020, 54, 11706–11719. [Google Scholar] [CrossRef] [PubMed]
- Dương, T.-B.; Dwivedi, R.; Bain, L.J. 2,4-di-tert-butylphenol exposure impairs osteogenic differentiation. Toxicol. Appl. Pharmacol. 2023, 461, 116386. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, Q.; Zhang, Q.; Zuo, C.; Shi, H. An Overview of Chemical Additives on (Micro)Plastic Fibers: Occurrence, Release, and Health Risks. Rev. Environ. Contam. Toxicol. 2022, 260, 22. [Google Scholar] [CrossRef]
- Xu, Q.; Guan, B.; Guo, W.; Liu, X. Effect of Antioxidants on Thermo-Oxidative Stability and Aging of Bio-Based PA56T and Fast Characterization of Anti-Oxidation Performance. Polymers 2022, 14, 1280. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Fernández, J.; Cano, H.; Aldas, M. Impact of Traces of Hydrogen Sulfide on the Efficiency of Ziegler–Natta Catalyst on the Final Properties of Polypropylene. Polymers 2022, 14, 3910. [Google Scholar] [CrossRef]
- Sanchez, I.C.; Chang, S.S.; McCrackin, F.L.; Smith, L.E. An Evaluation of Existing Models Describing the Migration of Additives in Polymers Prepared for Bureau of Foods Food and Drug Administration; MBS Publications: Columbia, MO, USA, 1978. [Google Scholar]
- Kida, M.; Koszelnik, P. Investigation of the Presence and Possible Migration from Microplastics of Phthalic Acid Esters and Polycyclic Aromatic Hydrocarbons. J. Polym. Environ. 2021, 29, 599–611. [Google Scholar] [CrossRef]
- Hu, W.; Gao, P.; Wang, L.; Hu, J. Endocrine disrupting toxicity of aryl organophosphate esters and mode of action. Crit. Rev. Environ. Sci. Technol. 2022, 53, 1–18. [Google Scholar] [CrossRef]
- Doherty, B.T.; Hammel, S.C.; Daniels, J.L.; Stapleton, H.M.; Hoffman, K. Organophosphate Esters: Are These Flame Retardants & Plasticizers affecting Children’s Health? Curr. Environ. Health Rep. 2019, 6, 201–213. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal, and recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, D.J.; Krzymien, M.E.; Deschênes, L.; Mercier, M.; Vachon, C. Phosphite additives and their transformation products in polyethylene packaging for γ-irradiation. Food Addit. Contam. 2001, 18, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Fernández, J.; Guerra, Y.; Espinosa, E. Development and Application of a Principal Component Analysis Model to Quantify the Green Ethylene Content in Virgin Impact Copolymer Resins During Their Synthesis on an Industrial Scale. J. Polym. Environ. 2022, 30, 4800–4808. [Google Scholar] [CrossRef]
- Majoni, S.; Chaparadza, A. Thermal degradation kinetic study of polystyrene/organophosphate composite. Thermochim Acta 2018, 662, 8–15. [Google Scholar] [CrossRef]
- Majoni, S. Thermal and flammability study of polystyrene composites containing magnesium-aluminum layered double hydroxide (MgAl-C16 LDH), and an organophosphate. J. Therm. Anal. Calorim. 2015, 120, 1435–1443. [Google Scholar] [CrossRef]
- Scopus—Document Details—Additives Annual: Additives Producers Invest & Expand. Available online: https://scopus.unicartagenaproxy.elogim.com/record/display.uri?eid=2-s2.0-84858973958&origin=resultslist&sort=plf-f&src=s&sid=c72efb230531e5c91db2f8012cc64b5b&sot=b&sdt=b&s=TITLE-ABS-KEY%28doverphos%29&sl=24&sessionSearchId=c72efb230531e5c91db2f8012cc64b5b (accessed on 22 February 2023).
- Chaco, H.; Cano, H.; Hernandez-Fernandez, J.; Guerra, Y.; Puello-Polo, E.; Rios-Rojas, J.; Ruiz, Y. Effect of Addition of Polyurea as an Aggregate in Mortars: Analysis of Microstructure and Strength. Polymers 2022, 14, 1753. [Google Scholar] [CrossRef]
- Bekele, T.G.; Zhao, H.; Yang, J.; Chegen, R.G.; Chen, J.; Mekonen, S.; Qadeer, A. A review of environmental occurrence, analysis, bioaccumulation, and toxicity of organophosphate esters. Environ. Sci. Pollut. Res. 2021, 28, 49507–49528. [Google Scholar] [CrossRef]
- Alsabri, A.; Tahir, F.; Al-Ghamdi, S.G. Environmental impacts of polypropylene (PP) production and prospects of its recycling in the GCC region. Mater. Today Proc. 2022, 56, 2245–2251. [Google Scholar] [CrossRef]
- Paidi, M.K.; Satapute, P.; Haider, M.S.; Udikeri, S.S.; Ramachandra, Y.L.; Vo, D.-V.N.; Govarthanan, M.; Jogaiah, S. Mitigation of organophosphorus insecticides from the environment: Residual detoxification by bioweapon catalytic scavengers. Environ. Res. 2021, 200, 111368. [Google Scholar] [CrossRef]
- Bauer, K.N.; Tee, H.T.; Velencoso, M.M.; Wurm, F.R. Main-chain poly(phosphoester)s: History, syntheses, degradation, bio-and flame-retardant applications. Prog. Polym. Sci. 2017, 73, 61–122. [Google Scholar] [CrossRef]
- Sahin, C.; Karpuzcu, M.E. Mitigation of organophosphate pesticide pollution in agricultural watersheds. Sci. Total Environ. 2020, 710, 136261. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Fernández, J.; Ortega-Toro, R.; López-Martinez, J. A New Route of Valorization of Petrochemical Wastewater: Recovery of 1,3,5-Tris (4-tert-butyl-3-hydroxy-2,6-dimethyl benzyl)–1,3,5-triazine-2,4,6-(1H,3H,5H)-trione (Cyanox 1790) and Its Subsequent Application in a PP Matrix to Improve Its Thermal Stability. Molecules 2023, 28, 2003. [Google Scholar] [CrossRef] [PubMed]
- Kahraman, G.; Wang, D.Y.; von Irmer, J.; Gallei, M.; Hey-Hawkins, E.; Eren, T. Synthesis and characterization of phosphorus and carborane-containing polyoxanorbornene block copolymers. Polymers 2019, 11, 613. [Google Scholar] [CrossRef] [PubMed]
- Hasan, N.; Busse, K.; Haider, T.; Wurm, F.R.; Kressler, J. Crystallization of poly(Ethylene)s with regular phosphoester defects studied at the air-water interface. Polymers 2020, 12, 2408. [Google Scholar] [CrossRef] [PubMed]
- Steinbach, T.; Schröder, R.; Ritz, S.; Wurm, F.R. Microstructure analysis of biocompatible phosphoester copolymers. Polym. Chem. 2013, 4, 4469–4479. [Google Scholar] [CrossRef]
- Yamakita, Y.; Takeuchi, I.; Makino, K.; Terada, H.; Kikuchi, A.; Troev, K. Thermoresponsive Polyphosphoester via Polycondensation Reactions: Synthesis, Characterization, and Self-Assembly. Molecules 2022, 27, 6006. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.H.; Cano, H.; Guerra, Y.; Polo, E.P.; Ríos-Rojas, J.F.; Vivas-Reyes, R.; Oviedo, J. Identification and Quantification of Microplastics in Effluents of Wastewater Treatment Plant by Differential Scanning Calorimetry (DSC). Sustainability 2022, 14, 4920. [Google Scholar] [CrossRef]
- Gonçalves-Filho, D.; de Souza, D. Detection of Synthetic Antioxidants: What Factors Affect the Efficiency in the Chromatographic Analysis and in the Electrochemical Analysis? Molecules 2022, 27, 7137. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Fernández, J.; Lopez-Martinez, J.; Barceló, D. Development and validation of a methodology for quantifying parts-per-billion levels of arsine and phosphine in nitrogen, hydrogen, and liquefied petroleum gas using a variable pressure sampler coupled to gas chromatography-mass spectrometry. J. Chromatogr. A 2021, 1637, 461833. [Google Scholar] [CrossRef]
- Hernández-Fernández, J.; Castro-Suarez, J.R.; Toloza, C.A.T. Iron Oxide Powder as Responsible for the Generation of Industrial Polypropylene Waste and as a Co-Catalyst for the Pyrolysis of Non-Additive Resins. Int. J. Mol. Sci. 2022, 23, 11708. [Google Scholar] [CrossRef]
- Rawa-Adkonis, M.; Wolska, L.; Namieśnik, J. Analytical procedures for PAH and PCB determination in water samples—Error sources. Crit. Rev. Anal. Chem. 2006, 36, 63–72. [Google Scholar] [CrossRef]
- Badawy, M.E.I.; El-Nouby, M.A.M.; Kimani, P.K.; Lim, L.W.; Rabea, E.I. A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. Anal. Sci. 2022, 38, 1457–1487. [Google Scholar] [CrossRef]
- Schieber, A.; Stintzing, F.C.; Carle, R. By-products of plant food processing as a source of functional compounds—Recent developments. Trends Food Sci. Technol. 2001, 12, 401–413. [Google Scholar] [CrossRef]
- Banwo, K.; Olojede, A.O.; Adesulu-Dahunsi, A.T.; Verma, D.K.; Thakur, M.; Tripathy, S.; Singh, S.; Patel, A.R.; Gupta, A.K.; Aguilar, C.N.; et al. Functional importance of bioactive compounds of foods with Potential Health Benefits: A review on recent trends. Food Biosci. 2021, 43, 101320. [Google Scholar] [CrossRef]
- Papanastasiou, M.; McMahon, A.W.; Allen, N.S.; Doyle, A.M.; Johnson, B.J.; Keck-Antoine, K. The hydrolysis mechanism of bis(2,4-di-tert-butyl)pentaerythritol diphosphite (Alkanox P24): An atmospheric pressure photoionization mass spectrometric study. Polym. Degrad. Stab. 2006, 91, 2675–2682. [Google Scholar] [CrossRef]
- Aoyagi, Y.; Chung, D.D.L. Effects of antioxidants and the solid component on the thermal stability of polyol-ester-based thermal pastes. J. Mater. Sci. 2007, 42, 2358–2375. [Google Scholar] [CrossRef]
- Auras, R.; Harte, B.; Selke, S. An overview of polylactides as packaging materials. Macromol. Biosci. 2004, 4, 835. [Google Scholar] [CrossRef]
- Jusoh, N.; Rosly, M.B.; Othman, N.; Rahman, H.A.; Noah, N.F.M.; Sulaiman, R.N.R. Selective extraction and recovery of polyphenols from palm oil mill sterilization condensate using emulsion liquid membrane process. Environ. Sci. Pollut. Res. 2020, 27, 23246–23257. [Google Scholar] [CrossRef]
- Stein, D.; Stevenson, D. High-performance phosphite stabilizer. J. Vinyl Addit. Technol. 2000, 6, 129–137. [Google Scholar] [CrossRef]
- Stein, D.; Stevenson, D. Benefits of a High-Performance Phosphite in the Gamma Irradiation of Polyolefins. J. Vinyl Addit. Technol. 2001, 7, 21–23. [Google Scholar] [CrossRef]
- Papanastasiou, M.; McMahon, A.; Allen, N.; Johnson, B.; Keck-Antoine, K.; Santos, L.; Neumann, M. Atmospheric pressure photoionization mass spectrometry as a tool for the investigation of the hydrolysis reaction mechanisms of phosphite antioxidants. Int. J. Mass. Spectrom. 2008, 275, 45–54. [Google Scholar] [CrossRef]
- Seo, J.S.; Shin, S.Y. A Study on the Physical Properties of Polycarbonate/Acrylonitrile-Butadiene-Styrene Blends with Various Thermal Stabilizers to Secure the Safety of Automobile Passengers. J. Macromol. Sci. Part B Phys. 2021, 60, 402–415. [Google Scholar] [CrossRef]
- Polidar, M.; Metzsch-Zilligen, E.; Pfaendner, R. Controlled and Accelerated Hydrolysis of Polylactide (PLA) through Pentaerythritol Phosphites with Acid Scavengers. Polymers 2022, 14, 4237. [Google Scholar] [CrossRef] [PubMed]
- GHS Classification Summary. PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/ghs/#_precSupplementaryMaterial (accessed on 1 February 2024).
- 3,9-Bis(2,4-dicumylphenoxy)-2,4,8,10-tetraoxa-3,9-diphosphaspiro[5.5]undecane. PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/164499#datasheet=LCSS§ion=GHS-Classification (accessed on 1 February 2024).
- Radelyuk, I.; Tussupova, K.; Klemeš, J.J.; Persson, K.M. Oil refinery and water pollution in the context of sustainable development: Developing and developed countries. J. Clean. Prod. 2021, 302, 126987. [Google Scholar] [CrossRef]
- Hernandez-Fernandez, J.; Cano, H.; Guerra, Y. Detection of Bisphenol A and Four Analogues in Atmospheric Emissions in Petrochemical Complexes Producing Polypropylene in South America. Molecules 2022, 27, 4832. [Google Scholar] [CrossRef] [PubMed]
- Aoyagi, Y.; Chung, D.D.L. Antioxidant-based phase-change thermal interface materials with high thermal stability. J. Electron. Mater. 2008, 37, 448–461. [Google Scholar] [CrossRef]
- Ma, J.; Xiao, R.; Li, J.; Yu, J.; Zhang, Y.; Chen, L. Determination of 16 polycyclic aromatic hydrocarbons in environmental water samples by solid-phase extraction using multi-walled carbon nanotubes as adsorbent coupled with gas chromatography-mass spectrometry. J. Chromatogr. A 2010, 1217, 5462–5469. [Google Scholar] [CrossRef]
Parameter | Interval | Unit |
---|---|---|
Temperature | 35.1–38.9 | °C |
pH | 6.77–8.31 | |
Chemical oxygen demand (COD) | 23.4–35.8 | mg/L O2 |
Biochemical oxygen demand (BOD5) | 5.2–8.3 | mg/L O2 |
Total Suspended Solids (TSS) | 12.3–35.9 | mg/L |
Sedimentable Solids | 1.1–1.6 | mg/L |
Aluminium (Al) | 0.0001–0.0003 | mg/L |
Cadmium (Cd) | Not detected | mg/L |
Zinc (Zn) | Not detected | mg/L |
Copper (Cu) | 0.1–0.3 | µg/L |
Chrome (Cr) | Not detected | mg/L |
Iron (Fe) | 0.015–0.024 | mg/L |
Mercury (Hg) | Not detected | mg/L |
Nickel (Ni) | Not detected | mg/L |
Silver (Ag) | 0.001–0.004 | µg/L |
Lead (Pb) | Not detected | mg/L |
Chloride (Cl−) | 0.015–0.023 | mg/L |
Sulfates (SO42−) | 0.0014–0.0037 | mg/L |
Phosphates (PO43−) | 0.0027–0.0045 | mg/L |
Sulfides (S2−) | 0.0011–0.0021 | mg/L |
Nitrites (NO2−) | 0.046–0.0089 | mg/L |
Nitrates (NO3−) | 0.068–0.0335 | mg/L |
Inter-Day | Intra-Day | ||||||
---|---|---|---|---|---|---|---|
Abstract (mg/L) | Experimental ± s (mg/L) | RSD (%) | Er (%) | Abstract (mg/L) | Experimental ± s (mg/L) | RSD (%) | Er (%) |
1000 | 985.0 ± 21.5 | 2.2 | 1.5 | 1000 | 966.0 ± 20.4 | 2.1 | 3.4 |
1500 | 1492.2 ± 14.6 | 1.0 | 0.5 | 1500 | 1487.8 ± 15.7 | 1.1 | 0.8 |
2000 | 1954.6 ± 51.7 | 2.6 | 2.3 | 2000 | 1973.2 ± 12.2 | 0.6 | 1.3 |
3000 | 2926.2 ± 53.7 | 1.8 | 2.5 | 3000 | 2947.6 ± 49.1 | 1.7 | 1.7 |
5000 | 4981.0 ± 9.3 | 0.2 | 0.4 | 5000 | 4965.2 ± 20.0 | 0.4 | 0.7 |
Inter-Day | Intra-Day | ||||||||
---|---|---|---|---|---|---|---|---|---|
Abstract (mg/L) | Experimental ± s (mg/L) | RSD (%) | Er (%) | Recovery (%) | Abstract (mg/L) | Experimental ± s (mg/L) | RSD (%) | Er (%) | Recovery (%) |
1000 | 958.6 ± 19.4 | 2.0 | 4.1 | 96 | 1000 | 966.0 ± 20.4 | 2.1 | 3.4 | 97 |
1500 | 1462.8 ± 33.3 | 2.3 | 2.5 | 98 | 1500 | 1487.8 ± 15.7 | 1.1 | 0.8 | 96 |
2000 | 1913.2 ± 44.6 | 2.3 | 4.3 | 96 | 2000 | 1973.2 ± 12.2 | 0.6 | 1.3 | 97 |
3000 | 2934.2 ± 69.3 | 2.4 | 2.2 | 98 | 3000 | 2947.6 ± 49.1 | 1.7 | 1.7 | 97 |
5000 | 4897.0 ± 78.7 | 1.6 | 2.1 | 98 | 5000 | 4965.2 ± 20.0 | 0.4 | 0.7 | 97 |
Values and Parameters for R2 and r for Doverphos S-9228 | ||||
---|---|---|---|---|
Equation | ||||
Plot | Calibration Curve Repeatability | Calibration Curve Reproducibility | SPE Repeatability | SPE Reproducibility |
Intercept | −13.34247 ± 19.00663 | −12.54247 ± 10.63192 | −16.39178 ± 13.19924 | −8.61096 ± 8.4511 |
Slope | 0.99352 ± 0.00725 | 0.9932 ± 0.00405 | 0.98113 ± 0.00503 | 0.9738 ± 0.00322 |
Residual Sum of Squares | 3196.53304 | 1000.21304 | 1541.58312 | 631.96822 |
Pearson’s r | 0.99989 | 0.99997 | 0.99995 | 0.99998 |
R-Square (COD) | 0.99979 | 0.99993 | 0.99989 | 0.99996 |
Adj. R-Square | 0.99973 | 0.99992 | 0.99987 | 0.99995 |
Potential Risks and Benefits of BDPD | Damage Classifications | Source |
---|---|---|
Affectation of the endocrine system, with hormonal changes. Dysfunction in the body’s metabolic system, modifying molecular mechanisms. Damage and dysfunction of the cardiovascular system and liver tissue. Symptoms such as headaches, anxiety, confusion, and alterations in consciousness. Possible adverse effects on neurological development in children. Presence of OPE in the placenta of pregnant women, with potential adverse effects on fetal development. | Human health | [34,35] |
Could have detrimental long-term consequences on aquatic life. | Environments | [35,45,46,47] |
Reduction in production costs (millions of dollars). | Resources | Not Applicable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Fernández, J.; Bello-Leon, E.; Carrascal, J. Recovery of an Antioxidant Derived from a Phenolic Diphosphite from Wastewater during the Production of a Polypropylene Compound: A Step towards Sustainable Management. Molecules 2024, 29, 2780. https://doi.org/10.3390/molecules29122780
Hernández-Fernández J, Bello-Leon E, Carrascal J. Recovery of an Antioxidant Derived from a Phenolic Diphosphite from Wastewater during the Production of a Polypropylene Compound: A Step towards Sustainable Management. Molecules. 2024; 29(12):2780. https://doi.org/10.3390/molecules29122780
Chicago/Turabian StyleHernández-Fernández, Joaquín, Elias Bello-Leon, and Juan Carrascal. 2024. "Recovery of an Antioxidant Derived from a Phenolic Diphosphite from Wastewater during the Production of a Polypropylene Compound: A Step towards Sustainable Management" Molecules 29, no. 12: 2780. https://doi.org/10.3390/molecules29122780
APA StyleHernández-Fernández, J., Bello-Leon, E., & Carrascal, J. (2024). Recovery of an Antioxidant Derived from a Phenolic Diphosphite from Wastewater during the Production of a Polypropylene Compound: A Step towards Sustainable Management. Molecules, 29(12), 2780. https://doi.org/10.3390/molecules29122780