Use of Adsorption Properties of Resin for Water Sample Preparation in Voltammetric Determination of Se(IV) Using Bismuth Microelectrode
Abstract
:1. Introduction
2. Results and Discussion
2.1. Water Sample Preparation
2.1.1. Mass of Resin
2.1.2. Mixing Time with Resin
2.1.3. Temperature of Mixing with Resin
2.2. Organic Substances as Matrix of Aqueous Environmental Samples
2.2.1. Surface Active Substances
2.2.2. Humic Substances
2.3. Analysis of Environmental Water Samples
3. Materials and Methods
3.1. Reagents
3.2. Equipment
3.3. Procedure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prapooja, S.; Karthik, C.; Hyndavi, Y.; Umesh, R. Selenium dynamics in plants: Uptake, transport, toxicity, and sustainable management strategies. Sci. Total Environ. 2024, 949, 175033. [Google Scholar]
- Xiaoyuam, Z.; Yiqing, L.; Lijun, D.; Lingqing, W.; Guangjin, Z.; Tao, L. Selenium spatial distribution and bioavailability of soil-plant systems in China: A comprehensive review. Environ. Geochem. Health 2024, 46, 341. [Google Scholar]
- Genchi, G.; Lauria, G.; Catalano, A.; Sinicropi, M.S.; Carocci, A. Biological Activity of Selenium and Its Impact on Human Health. Int. J. Mol. Sci. 2023, 24, 2633. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Selenium intake, status, and health: A complex relationship. Hormones 2020, 19, 9. [Google Scholar] [CrossRef]
- Sihlahla, M.; Mpupa, A.; Sojka, M.; Saeid, A.; Nomngongo, P.N. Determination of selenium in cereal and biofortified samples by ICP-OES using an alcohol-based deep eutectic solvent in digestion procedurę. Adv. Sample Prep. 2023, 8, 100092. [Google Scholar] [CrossRef]
- Diplock, A.T. Indexes of selenium status in human populations. Am. J. Cli. Nutr. 1993, 57, 256S. [Google Scholar] [CrossRef]
- Shamberger, R.J. Selenium in the environment. Sci. Total Environ. 1981, 17, 59. [Google Scholar] [CrossRef]
- Mehdi, Y.; Hornick, J.L.; Istasse, L.; Dufrasne, I. Selenium in the Environment, Metabolism and Involvement in Body Functions. Molecules 2013, 18, 3292. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Borhannuddin Bhuyan, M.H.M.; Raza, A.; Hawrylak-Nowak, B.; Matraszek-Gawron, R.; Nahar, K.; Fujita, M. Selenium Toxicity in Plants and Environment: Biogeochemistry and Remediation Possibilities. Plants 2020, 9, 1711. [Google Scholar] [CrossRef]
- Lemly, A.D. Aquatic selenium pollution is a global environmental safety issue. Ecotoxicol. Environ. Saf. 2004, 59, 44. [Google Scholar] [CrossRef]
- Ma, Y.; Guo, F.; Zhu, H.; Wu, Y.; Guo, B.; Yang, J.; Wu, F. Risk assessment and impact prediction of associated heavy metal pollution in selenium-rich farmland. Sci. Total Environ. 2024, 950, 175321. [Google Scholar] [CrossRef] [PubMed]
- Barron, E.; Migeot, V.; Sebe, F.; Rabouan, S. Selenium exposure in subjects living in areas with high selenium concentrated drinking water: Results of a French integrated exposure assessment survey. Environ. Int. 2011, 40, 155. [Google Scholar]
- Alexander, J.; Olsen, A.K. Selenium-a scoping review for Nordic Nutrition Recommendations 2023. Food Nutr. Res. 2023, 67, 10320. [Google Scholar] [CrossRef] [PubMed]
- Okonji, S.O.; Achari, G.; Pernitsky, D. Environmental Impacts of Selenium Contamination: A Review on Current-Issues and Remediation Strategies in an Aqueous System. Water 2021, 13, 1473. [Google Scholar] [CrossRef]
- Camero, R.M.; Sturgeon, R.E. Hydride generation-electrostatic deposition-graphite furnace atomic absorption spectrometric determination of arsenic, selenium and antimony. Spectrochim. Acta B 1999, 54, 753. [Google Scholar] [CrossRef]
- Qiu, P.; Ali, C.; Lin, L.; Wu, J.; Ye, F. Simultaneous determination of selenium and arsenic contents in different extracts of Radix Astragali by enhancement effect of ethanol in hydride generation-inductively coupled plasma-atomic emission spectrometry. Microchem. J. 2007, 87, 1–5. [Google Scholar] [CrossRef]
- Ribeiro, A.S.; Viera, M.A.; Curtius, A.J. Determination of hydride forming elements (As, Sb, Se, Sn) and Hg in environmental reference materials as acid slurries by on-line hydride generation inductively coupled plasma mass spectrometry. Spectrochim. Acta B 2004, 59, 243. [Google Scholar] [CrossRef]
- Santosa, S.J.; Mokudai, H.; Tanaka, S. Automated continuous-flow hydride generation with inductively coupled plasma mass spectrometric detection for the determination of trace amounts of selenium(IV), and total antimony, arsenic and germanium in sea-water. J. Anal. Atom. Spectrom. 1997, 12, 409. [Google Scholar] [CrossRef]
- Pyrzyńska, K. Analysis of selenium species by capillary electrophoresis. Talanta 2001, 55, 657. [Google Scholar] [CrossRef]
- McSheehy, S.; Pohl, P.; Szpunar, J.; Potin-Gautier, M.; Łobiński, R. Analysis for selenium speciation in selenized yeast extracts by two-dimensional liquid chromatography with ICP-MS and electrospray MS-MS detection. J. Anal. Atom. Spectrom. 2001, 16, 68. [Google Scholar] [CrossRef]
- Dernovics, M.; Łobiński, R. Speciation analysis of selenium metabolites in yeast-based food supplements by ICPMS-assisted hydrophilic interaction HPLC-hybrid linear ion trap/orbitrap MSn. Anal. Chem. 2008, 80, 3975. [Google Scholar] [CrossRef] [PubMed]
- Bednar, A.J.; Kirgan, R.A.; Jones, W.T. Comparison of standard and reaction cell inductively coupled plasma mass spectrometry in the determination of chromium and selenium species by HPLC-ICP-MS. Anal. Chim. Acta 2009, 632, 27. [Google Scholar] [CrossRef] [PubMed]
- Tuzen, M.; Saygi, K.O.; Soylak, M. Separation and speciation of selenium in food and water samples by the combination of magnesium hydroxide coprecipitation-graphite furnace atomic absorption spectrometric determination. Talanta 2007, 71, 424. [Google Scholar] [CrossRef]
- Saygi, K.O.; Melek, E.; Tuzen, M.; Soylak, M. Speciation of selenium(IV) and selenium(VI) in environmental samples by the combination of graphite furnace atomic absorption spectrometric determination and solid phase extraction on Diaion HP-2MG. Talanta 2007, 71, 1375. [Google Scholar] [CrossRef]
- Hoyer, B.; Jansen, N. Suppression of surfactant interferences in anodic stripping voltammetry by sodium dodecyl sulfate. Electrochem. Commun. 2003, 5, 759. [Google Scholar] [CrossRef]
- Lange, B.; van den Berg, C.M.G. Determination of selenium by catalytic cathodic stripping voltammetry. Anal. Chim. Acta 2000, 418, 33. [Google Scholar] [CrossRef]
- Louis, Y.; Cmuk, P.; Omanović, D.; Garnier, C.; Lenoble, V.; Mounier, S.; Pižeta, I. Speciation of trace metals in natural waters: The influence of an adsorbed layer of natural organic matter (NOM) on voltammetric behaviour of copper. Anal. Chim. Acta 2008, 606, 37. [Google Scholar] [CrossRef]
- Aldrich, S. Amberlite Xad Polymeric Resin, Product Information; Sigma Aldrich: Burlington, MA, USA, 1991. [Google Scholar]
- Kirgoz, U.A.; Tural, H.; Ertas, F.N. Centri-voltammetric study with amberlite XAD-7 resin as a carrier system. Talanta 2005, 65, 48. [Google Scholar]
- Grabarczyk, M.; Korolczuk, M. Development of a simple and fast voltammetric procedure for determination of trace quantity of Se(IV) in natural lake and river water samples. J. Hazard. Mater. 2010, 175, 1007. [Google Scholar] [CrossRef]
- Papoff, P.; Bocci, F.; Lanza, F. Speciation of selenium in natural waters and snow by DPCSV at the hanging mercury drop electrode. Microchem. J. 1998, 59, 50. [Google Scholar] [CrossRef]
- Quentel, F.; Elleouet, C. Speciation analysis of selenium in seawater by cathodic stripping voltammetry. Electroanalysis 1999, 11, 47. [Google Scholar] [CrossRef]
- Grabarczyk, M.; Kaczmarek, Ł.; Korolczuk, M. Determination of Cr(VI) in the presence of complexing agents and humic substances by catalytic stripping voltammetry. Electroanalysis 2007, 19, 1183. [Google Scholar] [CrossRef]
- Grabarczyk, M.; Koper, A. Selective, sensitive and economical method for the adsorptive voltammetric determination of trace amounts of Mo(VI) in organic matter rich environmental samples. Talanta 2011, 84, 393. [Google Scholar] [CrossRef] [PubMed]
- Koper, A.; Grabarczyk, M. Electrochemical determination of bismuth using a Bi(III)-cupferron complexation system and elimination of interferences connected with the presence of organic substances in natural samples. J. Electroanal. Chem. 2011, 663, 67. [Google Scholar] [CrossRef]
- Grabarczyk, M.; Wardak, C. Effect of Temperature on the Removal of Interferences in the Voltammetric Procedure for the Determination of Cr(VI). Materials 2024, 17, 3050. [Google Scholar] [CrossRef]
- Badmus, S.O.; Amus, H.K.; Oyehan, T.O.; Saleh, T.A. Environmental risks and toxicity of surfactants: Overview of analysis, assessment, and remediation techniques. Environ. Sci. Pollut. Res. Int. 2021, 28, 62085. [Google Scholar] [CrossRef]
- Anielak, A.M.; Kłeczek, A. Humus Acids in the Digested Sludge and Their Properties. Materials 2022, 15, 1475. [Google Scholar] [CrossRef]
- Tiwari, J.; Ramanathan, A.; Bauddh, K.; Korstad, J. Humic substances: Structure, function and benefits for agroecosystems—A review. Pedosphere 2023, 33, 237. [Google Scholar] [CrossRef]
- Grabarczyk, M.; Fialek, M. Microelectrode voltammetric analysis of low concentrations of Se(IV) ions in environmental waters. Molecules 2024, 29, 1583. [Google Scholar] [CrossRef]
Sample | Certified Value ± SD [µg L−1] | Type of Interferent Added | Concentration of Added Interferent [mg L−1] | Se(IV) Determined ± SD [µg L−1] |
---|---|---|---|---|
SPS-SW1 (surface water) | 2.00 ± 0.02 | - | - | 2.12 ± 0.08 |
Triton X-100 | 7 | 1.88 ± 0.12 | ||
SDS | 3 | 1.85 ± 0.14 | ||
HA | 4 | 2.15 ± 0.10 | ||
TM-25.5 (Lake Ontario water) | 29.2 ± 3.5 | - | - | 30.4 ± 2.6 |
CTAB | 8 | 30.5 ± 3.1 | ||
Rhamnolipid | 4 | 28.0 ± 2.5 | ||
FA | 8 | 28.8 ± 3.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grabarczyk, M.; Fialek, M.; Wardak, C. Use of Adsorption Properties of Resin for Water Sample Preparation in Voltammetric Determination of Se(IV) Using Bismuth Microelectrode. Molecules 2024, 29, 5501. https://doi.org/10.3390/molecules29235501
Grabarczyk M, Fialek M, Wardak C. Use of Adsorption Properties of Resin for Water Sample Preparation in Voltammetric Determination of Se(IV) Using Bismuth Microelectrode. Molecules. 2024; 29(23):5501. https://doi.org/10.3390/molecules29235501
Chicago/Turabian StyleGrabarczyk, Malgorzata, Marzena Fialek, and Cecylia Wardak. 2024. "Use of Adsorption Properties of Resin for Water Sample Preparation in Voltammetric Determination of Se(IV) Using Bismuth Microelectrode" Molecules 29, no. 23: 5501. https://doi.org/10.3390/molecules29235501
APA StyleGrabarczyk, M., Fialek, M., & Wardak, C. (2024). Use of Adsorption Properties of Resin for Water Sample Preparation in Voltammetric Determination of Se(IV) Using Bismuth Microelectrode. Molecules, 29(23), 5501. https://doi.org/10.3390/molecules29235501