Stereoselective Total Synthesis of Natural Decanolides Bellidisin C and Pinolidoxin
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Experimental Procedures
3.2.1. Synthesis of Compound 11
3.2.2. Synthesis of Compound 8
3.2.3. Synthesis of Compound 7a
3.2.4. Synthesis of Compound 7b
3.2.5. Synthesis of Compounds 13a and 13b
3.2.6. Synthesis of Compound 14
3.2.7. Synthesis of Pinolidoxin (1) and 14a (Z Isomer) from Compound 14
3.2.8. Synthesis of Compound 6a
3.2.9. Synthesis of Compound 15
3.2.10. Synthesis of Pinolidoxin (1) from Compound 15
3.2.11. Synthesis of Compound 6b
3.2.12. Synthesis of Compound 16
3.2.13. Synthesis of Bellidisin C (2)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dubovik, V.; Dalinova, A.; Berestetskiy, A. Natural Ten-Membered Lactones: Sources, Structural Diversity, Biological Activity, and Intriguing Future. Nat. Prod. Rep. 2024, 41, 85–112. [Google Scholar] [CrossRef]
- Dräger, G.; Kirschning, A.; Thiericke, R.; Zerlin, M. Decanolides, 10-Membered Lactones of Natural Origin. Nat. Prod. Rep. 1996, 13, 365–375. [Google Scholar] [CrossRef]
- Driggers, E.M.; Hale, S.P.; Lee, J.; Terrett, N.K. The Exploration of Macrocycles for Drug Discovery-an Underexploited Structural Class. Nat. Rev. Drug. Discov. 2008, 7, 608–624. [Google Scholar] [CrossRef]
- Rivero-Cruz, J.F.; García-Aguirre, G.; Cerda-García-Rojas, C.M.; Mata, R. Conformational Behavior and Absolute Stereostructure of Two Phytotoxic Nonenolides from the Fungus Phoma Herbarum. Tetrahedron 2000, 56, 5337–5344. [Google Scholar] [CrossRef]
- Ratnayake, A.S.; Yoshida, W.Y.; Mooberry, S.L.; Hemscheidt, T. The Structure of Microcarpalide, a Microfilament Disrupting Agent from an Endophytic Fungus. Org. Lett. 2001, 3, 3479–3481. [Google Scholar] [CrossRef]
- Yuzikhin, O.; Mitina, G.; Berestetskiy, A. Herbicidal Potential of Stagonolide, a New Phytotoxic Nonenolide from Stagonospora cirsii. J. Agric. Food Chem. 2007, 55, 7707–7711. [Google Scholar] [CrossRef]
- Rousseau, G. Medium Ring Lactones. Tetrahedron 1995, 51, 2777–2849. [Google Scholar] [CrossRef]
- Ferraz, H.; Bombonato, F.; Longo, L., Jr. Synthetic Approaches to Naturally Occurring Ten-Membered-Ring Lactones. Synthesis 2007, 2007, 3261–3285. [Google Scholar] [CrossRef]
- Sun, P.; Lu, S.; VRee, T.; Krohn, K.; Li, L.; Zhang, W. Nonanolides of Natural Origin: Structure, Synthesis, and Biological Activity. Curr. Med. Chem. 2012, 19, 3417–3455. [Google Scholar] [CrossRef]
- López-Valdez, L.G.; Zuleta-Prada, H.; Reyes-Trejo, B.; Cuevas-Yañez, E. Synthesis of 10-Membered and Larger Rings via Free Radical Methods. Tetrahedron 2018, 74, 1581–1612. [Google Scholar] [CrossRef]
- Wang, W.-X.; Zheng, M.-J.; Li, J.; Feng, T.; Li, Z.-H.; Huang, R.; Zheng, Y.-S.; Sun, H.; Ai, H.-L.; Liu, J.-K. Cytotoxic Polyketides from Endophytic Fungus Phoma bellidis Harbored in Ttricyrtis maculate. Phytochem. Lett. 2019, 29, 41–46. [Google Scholar] [CrossRef]
- Evidente, A.; Lanzetta, R.; Capasso, R.; Vurro, M.; Botralico, A. Pinolidoxin, a Phytotoxic Nonenolide from Ascochyta pinodes. Phytochemistry 1993, 34, 999–1003. [Google Scholar] [CrossRef]
- Cimmino, A.; Andolfi, A.; Fondevilla, S.; Abouzeid, M.A.; Rubiales, D.; Evidente, A. Pinolide, a New Nonenolide Produced by Didymella pinodes, the Causal Agent of Ascochyta Blight on Pisum sativum. J. Agric. Food Chem. 2012, 60, 5273–5278. [Google Scholar] [CrossRef]
- De Napoli, L.; Messere, A.; Palomba, D.; Piccialli, V.; Evidente, A.; Piccialli, G. Studies toward the Synthesis of Pinolidoxin, a Phytotoxic Nonenolide from the Fungus Ascochyta pinodes. Determination of the Configuration at the C-7, C-8, and C-9 Chiral Centers and Stereoselective Synthesis of the C6−C18 Fragment. J. Org. Chem. 2000, 65, 3432–3442. [Google Scholar] [CrossRef]
- Arnone, A.; Assante, G.; Montorsi, M.; Nasini, G.; Ragg, E. Secondary Mould Metabolites. XLIII. Isolation and Structure Determination of Lethaloxin, a Fungal Macrolide from Mycosphaerella lethalis. Gazz. Chim. Ital. 1993, 123, 71–73. [Google Scholar]
- Hitora, Y.; Hokaguchi, M.; Sadahiro, Y.; Higaki, T.; Tsukamoto, S. Machine Learning Accelerates Screening of Osteoclast Differentiation Inhibitors from Natural Products. J. Nat. Prod. 2024, 87, 2393–2397. [Google Scholar] [CrossRef]
- Seo, C.; Oh, H.; Lee, B.H.; Kim, K.J.; Kong, S.I.; Ahn, C.S. Hexaketides from Phytopathogenic Fungus Paraphaeosphaeria recurvifoliae. Bull. Korean Chem. Soc. 2007, 28, 1803–1806. [Google Scholar]
- Fürstner, A.; Radkowski, K.; Wirtz, C.; Goddard, R.; Lehmann, C.W.; Mynott, R. Total Syntheses of the Phytotoxic Lactones Herbarumin I and II and a Synthesis-Based Solution of the Pinolidoxin Puzzle. J. Am. Chem. Soc. 2002, 124, 7061–7069. [Google Scholar] [CrossRef]
- Liu, D.; Kozmin, S.A. Synthesis of (−)-Pinolidoxin: Divergent Synthetic Strategy Exploiting a Common Silacyclic Precursor. Org. Lett. 2002, 4, 3005–3007. [Google Scholar] [CrossRef]
- Garcia-Fortanet, J.; Murga, J.; Falomier, E.; Carda, M.; Marco, J.A. Stereoselective Total Synthesis and Absolute Configuration of the Natural Decanolides (−)-Microcarpalide and (+)-Lethaloxin. Identity of (+)-Lethaloxin and (+)-Pinolidoxin. J. Org. Chem. 2005, 70, 9822–9827. [Google Scholar] [CrossRef]
- Liang, C.; Hu, C.; Nie, P.; Liu, Y.; Liu, J.; Du, Y. Bioinspired Synthesis and Biological Evaluation of ent-Protulactones A and B. Org. Biomol. Chem. 2024, 22, 175–183. [Google Scholar] [CrossRef]
- Zhao, Z.; Lv, Q.; Geng, J.; Liu, Y.; Hu, C.; Du, Y.; Liu, J. Stereoselective Total Synthesis of (+)-Brevipolide H from D-Galactal. Synthesis 2023, 55, 341–346. [Google Scholar]
- Nie, P.; Zhao, C.; Yu, S.; Liu, J.; Du, Y. Total Synthesis of Spiroalkaloids Lycibarbarines A–C. Eur. J. Org. Chem. 2023, 26, e202300518. [Google Scholar] [CrossRef]
- Li, Y.; Cui, Y.; Jing, Y.; Liu, J.; Du, Y. Stereoselective Total Syntheses of Varioxiranol B and Varioxiranol C. Tetrahedron 2023, 145, 133621. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Zhao, C.; Du, Y. Stereoselective Total Synthesis of Siladenoserinols A and D. Org. Lett. 2021, 23, 3264–3268. [Google Scholar] [CrossRef]
- Zhao, Z.; Pan, R.; Lv, Q.; Xie, X.; Liu, J.; Du, Y. Divergent Synthesis and Biological Evaluation of 2,6-Disubstituted Tetrahydropyran-Containing Natural Products: Parvistone E, Goniothalesdiol A, 6-epi-Goniothalesdiol A, and 8-epi-9-Deoxygoniopypyrone. Synthesis 2023, 55, 3961–3968. [Google Scholar]
- Cui, Y.; Liang, C.; Chen, M.; Li, Y.; Du, Y.; Feng, F.; Liu, J. Divergent Total Syntheses of 2,6-Dioxabicyclo[3.3.1]nonan-3-one Styryllactones: (−)-Goniopypyrone, (+)-Goniochelienlactone and (+)-7-Acetylgoniochelienlactone. Eur. J. Org. Chem. 2023, 26, e202300749. [Google Scholar] [CrossRef]
- Dutton, F.E.; Lee, B.H.; Johnson, S.S.; Coscarelli, E.M.; Lee, P.H. Restricted Conformation Analogues of an Anthelmintic Cyclodepsipeptide. J. Med. Chem. 2003, 46, 2057–2073. [Google Scholar] [CrossRef]
- Millar, J.G.; Underhill, E.W. Synthesis of Chiral Bis-Homoallylic Epoxides. A New Class of Lepidopteran Sex Attractants. J. Org. Chem. 1986, 51, 4726–4728. [Google Scholar] [CrossRef]
- Chang, C.; Geng, J.; Liu, Y.; Du, Y.; Liu, J.; Dong, Z.-B. Stereoselective Total Synthesis of Arundinolides A and B. Synthesis 2020, 52, 1576–1584. [Google Scholar]
- Bhattacharjee, A.; De Brabander, J.K. Synthesis of Side Chain Truncated Apicularen A. Tetrahedron Lett. 2000, 41, 8069–8073. [Google Scholar] [CrossRef]
- Rountree, J.S.S.; Murphy, P.V. Synthesis of a Novel Polyhydroxylated Salicylic Acid Lactone Framework. Org. Lett. 2009, 11, 871–874. [Google Scholar] [CrossRef]
- Martinez-Solorio, D.; Belmore, K.A.; Jennings, M.P. Synthesis of the Purported ent -Pochonin J Structure Featuring a Stereoselective Oxocarbenium Allylation. J. Org. Chem. 2011, 76, 3898–3908. [Google Scholar] [CrossRef]
- Wang, L.; Gao, Y.; Liu, J.; Cai, C.; Du, Y. Stereoselective Total Synthesis of Cochliomycin A. Tetrahedron 2014, 70, 2616–2620. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, J.; Wang, L.; Xiao, M.; Du, Y. Total Syntheses of Cochliomycin B and Zeaenol. Eur. J. Org. Chem. 2014, 2014, 2092–2098. [Google Scholar] [CrossRef]
- Kang, S.H.; Kang, S.Y.; Kim, C.M.; Choi, H.; Jun, H.; Lee, B.M.; Park, C.M.; Jeong, J.W. Total Synthesis of Natural (+)-Lasonolide A. Angew. Chem. Int. Ed. 2003, 42, 4779–4782. [Google Scholar] [CrossRef]
- Song, H.Y.; Joo, J.M.; Kang, J.W.; Kim, D.-S.; Jung, C.-K.; Kwak, H.S.; Park, J.H.; Lee, E.; Hong, C.Y.; Jeong, S.; et al. Lasonolide A: Structural Revision and Total Synthesis. J. Org. Chem. 2003, 68, 8080–8087. [Google Scholar] [CrossRef]
- Boden, E.P.; Keck, G.E. Proton-Transfer Steps in Steglich Esterification: A Very Practical New Method for Macrolactonization. J. Org. Chem. 1985, 50, 2394–2395. [Google Scholar] [CrossRef]
- Chatterjee, A.K.; Choi, T.-L.; Sanders, D.P.; Grubbs, R.H. A General Model for Selectivity in Olefin Cross Metathesis. J. Am. Chem. Soc. 2003, 125, 11360–11370. [Google Scholar] [CrossRef]
- Sworen, J.C.; Pawlow, J.H.; Case, W.; Lever, J.; Wagener, K.B. Competing Ruthenium Catalyzed Metathesis Condensation and Isomerization of Allylic Olefins. J. Mol. Catal. A Chem. 2003, 194, 69–78. [Google Scholar] [CrossRef]
- Tori, M.; Nakashima, K.; Ito, R.; Sono, M. Olefin Metathesis Reactions of Some Aromatic Dienes with Ortho- and Meta- Disubstitution. Formation of 10-, 12-, 14-, and 17-Membered Cyclic Compounds and Isomerization of an Allylic Alcohol. Heterocycles 2000, 53, 301–314. [Google Scholar] [CrossRef]
- Lu, S.; Kurtán, T.; Yang, G.; Sun, P.; Mándi, A.; Krohn, K.; Draeger, S.; Schulz, B.; Yi, Y.; Li, L.; et al. Cytospolides A-E, New Nonanolides from an Endophytic Fungus, Cytospora sp. Eur. J. Org. Chem. 2011, 2011, 5452–5459. [Google Scholar] [CrossRef]
- Vadhadiya, P.M.; Puranik, V.G.; Ramana, C.V. The Total Synthesis and Structural Revision of Stagonolide D. J. Org. Chem. 2012, 77, 2169–2175. [Google Scholar] [CrossRef] [PubMed]
Entry | Reagents and Conditions a | Temperature | Solvent | Yieid of 13b (%) b |
---|---|---|---|---|
1 | NaH (1.5–6.0 eq) | −78 °C | THF | NR c |
2 | NaH (2.0 eq) | 0 °C | THF | Decomposition c,d |
3 | NaH (2.0 eq) | 0 °C to rt | THF | Decomposition c,d |
4 | NaH (2.0 eq) | 0° to rt | DMF | Decomposition d |
5 | PTSA (0.1 eq) | rt to reflux | Toluene | Decomposition d,e |
6 | NaHMDS (1.5 eq) | 0 °C | THF | 20% |
7 | NaHMDS (2.0 eq) | rt | THF | 66% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bi, J.; Chen, M.; Nie, P.; Liu, Y.; Liu, J.; Du, Y. Stereoselective Total Synthesis of Natural Decanolides Bellidisin C and Pinolidoxin. Molecules 2024, 29, 5500. https://doi.org/10.3390/molecules29235500
Bi J, Chen M, Nie P, Liu Y, Liu J, Du Y. Stereoselective Total Synthesis of Natural Decanolides Bellidisin C and Pinolidoxin. Molecules. 2024; 29(23):5500. https://doi.org/10.3390/molecules29235500
Chicago/Turabian StyleBi, Jingjing, Minhao Chen, Pengpeng Nie, Yuanfang Liu, Jun Liu, and Yuguo Du. 2024. "Stereoselective Total Synthesis of Natural Decanolides Bellidisin C and Pinolidoxin" Molecules 29, no. 23: 5500. https://doi.org/10.3390/molecules29235500
APA StyleBi, J., Chen, M., Nie, P., Liu, Y., Liu, J., & Du, Y. (2024). Stereoselective Total Synthesis of Natural Decanolides Bellidisin C and Pinolidoxin. Molecules, 29(23), 5500. https://doi.org/10.3390/molecules29235500