Microscopic Identification, Phytochemical Analysis, and Study of Antioxidant Properties of Branches, Leaves, and Fruits of Kazakh Medicine Sambucus sibirica
Abstract
:1. Introduction
2. Results
2.1. Microscopic Characterization of S. sibirica
2.1.1. Plant Morphology
2.1.2. Transverse Section
2.1.3. Powder Observation
2.2. Fourier Transform Infrared (FTIR) Spectroscopy
2.3. Thin Layer Chromatography (TLC) Identification
2.4. Determination of Total Flavonoids
2.5. Qualitative and Quantitative Analysis
2.5.1. Qualitative Analysis of Five Analytes in S. sibirica
2.5.2. A Quantitative Analysis of the Five Analytes in S. sibirica
2.6. Antioxidant Results
2.6.1. The Effect of Extracts on the DPPH Scavenging Rate
2.6.2. The Effects of Extracts on the Clearance of ABTS
2.6.3. The Effects of Extracts on the FRAP
2.6.4. The Effects of Extracts on the Scavenging Capacity of Superoxide Anion Free Radicals
3. Materials and Methods
3.1. Plant Material
3.2. Chemicals and Reagents
3.3. Preparation of Sample and Standard Solutions
3.3.1. Preparation of Sample Solutions
3.3.2. Preparation of Standard Solutions
3.4. Microscopic Identification of Transverse Sections
3.5. Microscopic Identification of Powders
3.6. Fourier Transform Infrared Spectroscopy Analysis
3.7. Thin-Layer Chromatography Identification
3.8. Determination of Total Flavonoid Content
3.9. Quantitative Analysis
3.9.1. UPLC-QqQ-MS/MS Analysis Conditions
3.9.2. Method Validation
3.10. Antioxidant Experiment
3.10.1. Preparation of Sample Solution
3.10.2. DPPH Free Radical Scavenging Activity
3.10.3. ABTS Free Radical Scavenging Ability
3.10.4. Ferric Reducing Antioxidant Power
3.10.5. Superoxide Anion Free Radicals
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Waswa, E.N.; Li, J.; Mkala, E.M.; Wanga, V.O.; Mutinda, E.S.; Nanjala, C.; Odago, W.O.; Katumo, D.M.; Gichua, M.K.; Gituru, R.W.; et al. Ethnobotany, phytochemistry, pharmacology, and toxicology of the genus Sambucus L. (Viburnaceae). J. Ethnopharmacol. 2022, 292, 115102. [Google Scholar] [CrossRef] [PubMed]
- Merecz-Sadowska, A.; Sitarek, P.; Zajdel, K.; Sztandera, W.; Zajdel, R. Genus Sambucus: Exploring its potential as a functional food ingredient with neuroprotective properties mediated by antioxidant and anti-inflammatory mechanisms. Int. J. Mol. Sci. 2024, 25, 7843. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.Y.; Li, L.H.; Li, D.S.; Shao, L.D.; Wang, W.; Wang, W.J. Research progress on the chemical components and pharmacological effects of elderberry plants. Chin. Pharm. 2021, 32, 1118–1130. [Google Scholar]
- Natural Resources Conservation Service of USDA Plants Database Home Page. Available online: https://plants.usda.gov/plant-profile/SASI17 (accessed on 17 November 2024).
- Global BiodiversityInformation Facility Home Page. Available online: https://www.gbif.org/species/4930139 (accessed on 17 November 2024).
- Wang, R. Kazakh Pharmacopoeia; Xinjiang Science and Technology Press: Urumqi, China, 2009; pp. 101–103. [Google Scholar]
- Nurhati, S.; Yang, Y.; Hali, H.; Feng, X.; Yelzat, H.; Jingle, G. The osteogenic effect of Sambucus sibirica Nakai bark extract onpromoting femoral fracture healing in rats. J. Clin. Orthop. 2023, 26, 592–597. [Google Scholar]
- Wulan, S.; Ailiqiang, A.; Nurhati, S.; Nurman, Y.; Asihati, N.; Fang, R. Siberian elderberry bark extract promotes fracture healing. Chin. J. Tissue Eng. Res. 2020, 24, 3122–3129. [Google Scholar]
- Peng, M.; Zhou, Y.; Liu, B. Biological properties and potential application of extracts and compounds from different medicinal parts (bark, leaf, staminate flower, and seed) of Eucommia ulmoides: A review. Heliyon 2024, 10, e27870. [Google Scholar] [CrossRef]
- Zhang, X.J.; Wu, X.D.; Wang, Z.; Hu, Y.Y.; Tan, N.H. Resource investigation, classification and identification, development and utilization of Rubia medicinal plants in Western China. J. Tradit. Chin. Med. 2023, 34, 2755–2760. [Google Scholar]
- Zeng, J.; Hu, S.Y.; Bai, S.Y.; Li, M.F.; Niu, L.Q.; Zhang, M.Y.; Xu, Y.; Cai, Q.H. Clinical comprehensive evaluation of Erxieting Granules for treatment of acute pediatric diarrhea (damp-heat diarrhea). Drug Evaluat. Res. 2024, 47, 1611–1618. [Google Scholar]
- Chen, X.Q.; Li, Z.H.; Wang, Z.J.; Liu, L.L.; Sun, T.T.; Ma, J.Z.; Zhang, Y. Ultrasound-assisted extraction of total anthocyanins from Rubia sylvatica Nakai fruit and radical scavenging activity of the extract. Ind. Crop. Prod. 2020, 150, 112420. [Google Scholar] [CrossRef]
- Feng, L.; Shang, R.R.; Wang, X.J.; Li, L.; Li, X.; Gong, Y.X.; Shi, L.Y.; Wang, J.W.; Qian, Z.Y.; Tan, N.H.; et al. The Natural alkaloid (-)-N-hydroxyapiosporamide suppresses colorectal tumor progression as an NF-κB pathway inhibitor by targeting the TAK1-TRAF6 complex. J. Nat. Prod. 2023, 86, 1449–1462. [Google Scholar] [CrossRef]
- Wang, N.; Sun, J.; Zhang, S.; Wang, C.; Tian, L. Microscopic investigations and pharmacognostic techniques for the standardization of the fruits of Rosa laxa Retz. Microsc. Res. Tech. 2022, 85, 1035–1045. [Google Scholar] [CrossRef] [PubMed]
- Aboulwafa, M.M.; Youssef, F.S.; Gad, H.A.; Sarker, S.D.; Nahar, L.; Al-Azizi, M.M.; Ashour, M.L. Authentication and discrimination of green tea samples using UV-vis, FTIR and HPLC techniques coupled with chemometrics analysis. J. Pharm. Biomed. Anal. 2019, 164, 653–658. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.J.; Bi, Q.R.; Wu, X.D.; Wang, Z.; Miao, Y.Y.; Tan, N.H. Systematic characterization and quantification of Rubiaceae-type cyclopeptides in 20 Rubia species by ultra performance liquid chromatography tandem mass spectrometry combined with chemometrics. J. Chromatogr. A 2018, 1581–1582, 43–54. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Ou, Y.; Lu, S.; Liang, Y.; Zhang, Y.; Li, M.; Li, G.; Ma, H.; Wu, Y.; He, Z.; et al. Study of the Structure and bioactivity of polysaccharides from different parts of Stemona tuberosa Lour. Molecules 2024, 29, 1347. [Google Scholar] [CrossRef]
- Editorial Committee of Flora of China, Chinese Academy of Sciences. Flora of China; Science Press: Beijing, China, 1990. [Google Scholar]
- Wang, Y.H.; Huang, X.X.; Ye, D.H.; Liu, Y. Rapid identification of chemical constituents in 3 Cirsium mill medicinal plants based on UHPLC-Q-Exactive-Orbitrap-MS and molecular network technology. Cent. South Pharm. 2023, 21, 1286–1295. [Google Scholar]
- Garran, T.A.; Ji, R.; Chen, J.L.; Xie, D.; Guo, L.; Huang, L.Q.; Lai, C.J.S. Elucidation of metabolite isomers of Leonurus japonicus and Leonurus cardiaca using discriminating metabolite isomerism strategy based on ultra-high performance liquid chromatography tandem quadrupole time-of-flight mass spectrometry. J. Chromatogr. A 2019, 1598, 141–153. [Google Scholar] [CrossRef]
- Viapiana, A.; Wesolowski, M. HPLC fingerprint combined with quantitation of phenolic compounds and chemometrics as an efficient strategy for quality consistency evaluation of Sambucus nigra berries. Nat. Prod. Commun. 2016, 11, 1449–1454. [Google Scholar] [CrossRef]
- Seymenska, D.; Shishkova, K.; Hinkov, A.; Benbassat, N.; Teneva, D.; Denev, P. Comparative study on phytochemical composition, antioxidant, and anti-HSV-2 activities of Sambucus nigra L. and Sambucus ebulus L. extracts. Appl. Sci. 2023, 13, 12593. [Google Scholar] [CrossRef]
- Mudge, E.; Applequist, W.L.; Finley, J.; Lister, P.; Townesmith, A.K.; Walker, K.M.; Brown, P.N. Variation of select flavonols and chlorogenic acid content of elderberry collected throughout the Eastern United States. J. Food Compost. Anal. 2016, 47, 52–59. [Google Scholar] [CrossRef]
- Sun, D.D.; Yao, J.X.; Wang, G.; He, H.X.; Lin, X.C.; Guo, Q.M.; Wu, D.J. Comparative study on content of medicinal materials from three varieties of Sambucus williamsii. Chin. J. Exp. Tradit. Med. Formulae 2019, 25, 124–130. [Google Scholar]
- Hu, Y.W.; Guan, Y.L.; Zhang, L.W.; Wang, Z.H. Content determination of rutin in stems, leaves, and fruits of Sambucus williamsii Hance by HPLC. Herald Med. 2014, 33, 1222–1224. [Google Scholar]
- Li, L.; Wang, T.Y.; Rena, K. HPLC determination of rutin, quercetin in Sambucus sibirica Nakai. J. Xinjiang Med. Univ. 2014, 37, 163–165. [Google Scholar]
- Ma, X.Q.; Zhao, S.H.; Xu, L.S. Simultaneous determination of rutin and quercetin in Sambucus canadensis Aurea by HPLC. Ningxia Med. J. 2012, 34, 1221–1222. [Google Scholar]
- Zhang, T.; Zhu, M.; Chen, X.; Bi, K. Simultaneous analysis of seven bioactive compounds in Sambucus chinensis Lindl by HPLC. Anal. Lett. 2010, 16, 2525–2533. [Google Scholar] [CrossRef]
- Huang, H.S.; Yu, H.S.; Yen, C.H.; Liaw, E.T. HPLC-DAD-ESI-MS analysis for simultaneous quantitation of phenolics in Taiwan elderberry and its anti-glycation activity. Molecules 2019, 24, 3861. [Google Scholar] [CrossRef]
- Česlová, L.; Kalendová, P.; Dubnová, L.; Pernica, M.; Fischer, J. The Effect of Sample Pretreatment on the Anthocyanin Content in Czech Wild Elderberry (Sambucus nigra L.). Molecules 2023, 28, 6690. [Google Scholar] [CrossRef]
- Li, S.J.; Yang, N.; Chen, L.Q. Paraffin section observation of flower bud differentiation of Chimonanthus praecox in Kunming and comparison of the differentiation processes in different regions, China. Hortic. Plant J. 2022, 8, 221–229. [Google Scholar] [CrossRef]
- Sun, J.; Wang, N.; Wang, C.; Zhang, S.; Tian, L. Effects of superfine pulverization technology on the morphology, microstructure, and physicochemical properties of Apium graveolens L. root. Microsc. Res. Tech. 2022, 85, 2455–2466. [Google Scholar] [CrossRef]
- Gu, X.P.; Yang, L.L.; Qi, D.M.; Liu, T.L.; Dong, C.M. Quantitative modeling and content determination of active ingredients in Lonicera japonica flos by fourier transform infrared spectroscopy. Spectrosc. Spectral Anal. 2024, 44, 467–473. [Google Scholar]
- Shi, Y.; Jin, J.; Xu, C.; Liang, Y.S.; Liu, X.; Gao, X.; Qin, K.M.; Li, W.D. Simultaneous quantitative analyses of five constituents in crude and salt-processed Cuscutae Semen using a validated high-performance thin-layer chromatography method. JPC-J. Planar Chromat. 2022, 35, 421–430. [Google Scholar] [CrossRef]
- Chu, R.; Fan, J.Y.; Xia, Y. Comprehensive evaluation of Eucommia ulmoides leaf quality based on multi-index component quantification and chemical pattern recognition. Nat. Prod. Res. Dev. 2024, 36, 1670–1678+1741. [Google Scholar]
- Liu, Y.; Ma, X.P.; Shi, Y.Z.; Wang, X. Protective effect and antioxidant activity of Artemisia scoparia extract on LPS-induced acute lung injury in mice. Pharm. Clin. Chin. Mater. Med. 2024, 40, 78–82. [Google Scholar]
- Li, D.X.; Guan, R.F.; Huang, H.Z.; Zhong, H.; Liu, X.F.; Yang, K. Optimization of extraction of flavonoids from three kinds of Xinjiang sea buckthorns and comparative of antioxidant activities. J. Chin. Inst. Food Sci. Tech. 2023, 23, 157–167. [Google Scholar]
- Jin, S.Y.; Li, L.Y.; Song, X.F.; Chen, F.Z.; Yuan, Z.Z. Analysis of active components in different polar parts of Pelvetia siliquosa ethanol extract and their antioxidant activity in vitro. Chin Food Addit. 2023, 34, 78–84. [Google Scholar]
- Wang, Y.P.; Jia, X.S.; Niu, W.X.; Wang, Y.; Cui, F.; Hu, D.F. Optimization of yeast solid fermentation process for fresh Codonopsis pilosula and its effective constituents, anti-oxidant activity. Chin. Tradit. Patent Med. 2022, 44, 3428–3433. [Google Scholar]
Compound | Formula | Parent Ion (m/z) | Daughter Ion (m/z) | Dwell (s) | CV (v) | CE (v) |
---|---|---|---|---|---|---|
Rutin | C27H30O16 | 609 | 255 | 0.02 | 60 | 50 |
300 | 0.02 | 60 | 35 | |||
Chlorogenic acid | C16H18O9 | 353 | 179 | 0.02 | 36 | 30 |
191 | 0.02 | 36 | 20 | |||
Quercetin | C15H10O7 | 301 | 151 | 0.02 | 40 | 26 |
179 | 0.02 | 40 | 22 | |||
Isoquercetin | C21H20O12 | 463 | 271 | 0.02 | 45 | 45 |
300 | 0.02 | 45 | 25 | |||
Astragalin | C21H20O11 | 447 | 255 | 0.02 | 50 | 44 |
284 | 0.02 | 50 | 56 |
NO. | Analytes | RT (min) | Range (μg·g−1) | Regression Equations | R2 | LOD (ng·mL−1) | LOQ (ng·mL−1) | 48 h Stability (RSD%, n = 6) |
---|---|---|---|---|---|---|---|---|
1 | Rutin | 2.77 | 20–200 | y = 92.698x + 5512.3 | 0.9991 | 4.5 | 14.9 | 2.39 |
2 | Chlorogenic acid | 2.61 | 10–250 | y = 234.46x + 1679.6 | 0.9993 | 3.8 | 12.5 | 1.59 |
3 | Quercetin | 3.27 | 0.1–2 | y = 1671.2x − 79.086 | 0.9993 | 8.5 | 28.4 | 1.86 |
4 | Isoquercetin | 2.84 | 0.3–5 | y = 394.92x + 68.319 | 0.9992 | 3.1 | 10.2 | 1.18 |
5 | Astragalin | 2.91 | 0.1–1.2 | y = 506.88x − 6.5775 | 0.9995 | 1.0 | 3.4 | 2.78 |
NO. | Analytes | Precision (RSD%) | Repeatability (RSD%, n = 6) | Recovery (RSD%, n = 3) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Intra-Day (n = 6) | Inter-Day (n = 6) | High | Middle | Low | ||||||
Mean | RSD% | Mean | RSD% | Mean | RSD% | |||||
1 | Rutin | 1.39 | 4.39 | 1.70 | 97.53 | 3.04 | 102.28 | 2.51 | 100.92 | 1.31 |
2 | Chlorogenic acid | 1.59 | 2.89 | 1.09 | 102.20 | 2.46 | 100.98 | 1.82 | 104.70 | 2.41 |
3 | Quercetin | 2.78 | 4.70 | 1.90 | 99.94 | 0.23 | 103.56 | 4.41 | 99.79 | 1.52 |
4 | Isoquercetin | 1.19 | 3.74 | 1.76 | 99.76 | 1.20 | 97.88 | 0.82 | 101.86 | 1.08 |
5 | Astragalin | 1.59 | 2.89 | 1.78 | 101.80 | 2.80 | 99.71 | 1.16 | 104.91 | 0.81 |
Analytes | Contents (Mean ± SD, n = 3, μg·g−1 in Dry Weight) | ||
---|---|---|---|
Leaves | Branches | Fruits | |
Rutin | 4535.60 ± 0.02 | 1076.30 ± 0.05 | 26.40 ± 0.05 |
Chlorogenic acid | 2226.80 ± 0.01 | 3204.00 ± 0.02 | 205.70 ± 0.02 |
Quercetin | 7.50 ± 0.02 | 1.60 ± 0.05 | 1.00 ± 0.05 |
Isoquercetin | 74.40 ± 0.02 | 13.60 ± 0.03 | 18.00 ± 0.03 |
Astragalin | 20.40 ± 0.02 | 22.50 ± 0.04 | 6.90 ± 0.04 |
Species | Regions (Type) | Parts | Methods | Contents | Units a | Ref. | |||
---|---|---|---|---|---|---|---|---|---|
Chlorogenic Acid | Rutin | Quercetin | Isoquercetin | ||||||
S. nigra | Poland (unknown) | fruits | HPLC-UV | 48.8–7.2 | 18.9–333.6 | 20.0–221.7 | — | μg·g−1 DW | [21] |
S. nigra | Bulgaria (wild) | flowers | HPLC-UV/Vis | 46.733 | — | 0.116 | — | mg·g−1 DW | [22] |
leaves | 21.491 | — | 0.178 | — | |||||
S. ebulus | flowers | 23.075 | — | 0.164 | — | ||||
leaves | 20.680 | — | 0.921 | — | |||||
S. nigra subsp. canadensis | East of the USA (wild) | fruits | HPLC-UV | 0.107 | 0.525 | 0.022 | 0.065 | mg·g−1 FW | [23] |
S. williamsii | Shandong, China (cultivate) | root bark | HPLC-UV | — | 0.026–0.033 | 0.007–3.570 | — | mg·g−1 DW | [24] |
branches | 0.100–0.340 | 0.090–0.360 | |||||||
leaves | 1.860–4.090 | 1.240–3.570 | |||||||
fruits | 0.130–0.430 | 0.060–0.720 | |||||||
S. williamsii | Jilin, China (wild) | branches | HPLC | — — — | 0.171 0.522 0.165 | — — — | — — — | mg·g−1 DW | [25] |
leaves | |||||||||
fruits | |||||||||
S. sibirica | Xinjiang, China (wild) | branches and leaves | HPLC-UV | — | 7.785–13.300 | 0.097–0.199 | — | mg·g−1 DW | [26] |
S. canadensis ‘Aurea’ | Ningxia, China (cultivate) | branches | HPLC-UV | — | 660 | 0.480 | — | μg·g−1 DW | [27] |
leaves | — | 530 | nd | — | |||||
S. chinensis | China (unknown) | branches and leaves | HPLC-UV | 53.9–346.0 | — | — | — | μg·g−1 DW | [28] |
S. formosana | Taiwan, China (unknown) | whole plant | HPLC-DAD-MS | 2.7 | 4.8 | 6.4 | 3.9 | mg·g−1 DW | [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, P.; Halimubek, S.; Chen, J.; Ding, W.; Fan, S.; Wang, D.; Zhang, X.; Xu, H.; Zhang, X. Microscopic Identification, Phytochemical Analysis, and Study of Antioxidant Properties of Branches, Leaves, and Fruits of Kazakh Medicine Sambucus sibirica. Molecules 2024, 29, 5503. https://doi.org/10.3390/molecules29235503
Yan P, Halimubek S, Chen J, Ding W, Fan S, Wang D, Zhang X, Xu H, Zhang X. Microscopic Identification, Phytochemical Analysis, and Study of Antioxidant Properties of Branches, Leaves, and Fruits of Kazakh Medicine Sambucus sibirica. Molecules. 2024; 29(23):5503. https://doi.org/10.3390/molecules29235503
Chicago/Turabian StyleYan, Pengyan, Shuak Halimubek, Jingjing Chen, Wenhuan Ding, Sien Fan, Dongdong Wang, Xiaoqing Zhang, Haiyan Xu, and Xuejia Zhang. 2024. "Microscopic Identification, Phytochemical Analysis, and Study of Antioxidant Properties of Branches, Leaves, and Fruits of Kazakh Medicine Sambucus sibirica" Molecules 29, no. 23: 5503. https://doi.org/10.3390/molecules29235503
APA StyleYan, P., Halimubek, S., Chen, J., Ding, W., Fan, S., Wang, D., Zhang, X., Xu, H., & Zhang, X. (2024). Microscopic Identification, Phytochemical Analysis, and Study of Antioxidant Properties of Branches, Leaves, and Fruits of Kazakh Medicine Sambucus sibirica. Molecules, 29(23), 5503. https://doi.org/10.3390/molecules29235503