The Role of Unsaturated Fatty Acid-Rich Dairy Products in Adipocyte Metabolism
Abstract
:1. Introduction
2. Results and Discussion
2.1. Functional Yogurt Fatty Acid Profile
2.2. Fatty Acid Permeability
2.3. Effect on Adipocyte Metabolism
3. Materials and Methods
3.1. Yogurt Production, Digestion, and Fatty Acid Profile
3.2. Cellular Models
3.2.1. Cell Lines
3.2.2. Cytotoxicity Evaluation
3.2.3. Co-Culture Models
3.2.4. Cell Monolayer Integrity
3.2.5. 3T3-L1 Metabolism Modulation
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Okunogbe, A.; Nugent, R.; Spencer, G.; Ralston, J.; Wilding, J. Economic Impacts of Overweight and Obesity: Current and Future Estimates for Eight Countries. BMJ Glob. Health 2021, 6, e006351. [Google Scholar] [CrossRef]
- Salsinha, A.S.; Rodríguez-Alcalá, L.M.; Pimentel, L.L.; Pintado, M. Role of Bioactive Lipids in Obesity. In Bioactive Lipids; Elsevier: Amsterdam, The Netherlands, 2023; pp. 133–167. [Google Scholar]
- DiNicolantonio, J.J.; O’Keefe, J.H. Good Fats versus Bad Fats: A Comparison of Fatty Acids in the Promotion of Insulin Resistance, Inflammation, and Obesity. Mo. Med. 2017, 114, 303–307. [Google Scholar] [PubMed]
- Hannon, B.A.; Thompson, S.V.; An, R.; Teran-Garcia, M. Clinical Outcomes of Dietary Replacement of Saturated Fatty Acids with Unsaturated Fat Sources in Adults with Overweight and Obesity: A Systematic Review and Meta-Analysis of Randomized Control Trials. Ann. Nutr. Metab. 2017, 71, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Briggs, M.; Petersen, K.; Kris-Etherton, P. Saturated Fatty Acids and Cardiovascular Disease: Replacements for Saturated Fat to Reduce Cardiovascular Risk. Healthcare 2017, 5, 29. [Google Scholar] [CrossRef] [PubMed]
- Kojta, I.; Chacińska, M.; Błachnio-Zabielska, A. Obesity, Bioactive Lipids, and Adipose Tissue Inflammation in Insulin Resistance. Nutrients 2020, 12, 1305. [Google Scholar] [CrossRef]
- Sethi, J.K.; Vidal-Puig, A.J. Thematic Review Series: Adipocyte Biology. Adipose Tissue Function and Plasticity Orchestrate Nutritional Adaptation. J. Lipid Res. 2007, 48, 1253–1262. [Google Scholar] [CrossRef]
- Aruna, P.; Venkataramanamma, D.; Singh, A.K.; Singh, R.P. Health Benefits of Punicic Acid: A Review. Compr. Rev. Food Sci. Food Saf. 2016, 15, 16–27. [Google Scholar] [CrossRef]
- Vroegrijk, I.O.C.M.; van Diepen, J.A.; van den Berg, S.; Westbroek, I.; Keizer, H.; Gambelli, L.; Hontecillas, R.; Bassaganya-Riera, J.; Zondag, G.C.M.; Romijn, J.A.; et al. Pomegranate Seed Oil, a Rich Source of Punicic Acid, Prevents Diet-Induced Obesity and Insulin Resistance in Mice. Food Chem. Toxicol. 2011, 49, 1426–1430. [Google Scholar] [CrossRef]
- Lai, C.S.; Tsai, M.L.; Badmaev, V.; Jimenez, M.; Ho, C.T.; Pan, M.H. Xanthigen Suppresses Preadipocyte Differentiation and Adipogenesis through Down-Regulation of PPARγ and C/EBPs and Modulation of SIRT-1, AMPK, and FoxO Pathways. J. Agric. Food Chem. 2012, 60, 1094–1101. [Google Scholar] [CrossRef]
- Chou, Y.-C.; Su, H.-M.; Lai, T.-W.; Chyuan, J.-H.; Chao, P.-M. Cis-9, Trans-11, Trans-13-Conjugated Linolenic Acid Induces Apoptosis and Sustained ERK Phosphorylation in 3T3-L1 Preadipocytes. Nutrition 2012, 28, 803–811. [Google Scholar] [CrossRef]
- Anusree, S.S.; Priyanka, A.; Nisha, V.M.; Das, A.A.; Raghu, K.G. An in Vitro Study Reveals the Nutraceutical Potential of Punicic Acid Relevant to Diabetes via Enhanced GLUT4 Expression and Adiponectin Secretion. Food Funct. 2014, 5, 2590–2601. [Google Scholar] [CrossRef]
- Hontecillas, R.; O’Shea, M.; Einerhand, A.; Diguardo, M.; Bassaganya-Riera, J. Activation of Ppar γ and α by Punicic Acid Ameliorates Glucose Tolerance and Suppresses Obesity-Related Inflammation. J. Am. Coll. Nutr. 2009, 28, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Khajebishak, Y.; Payahoo, L.; Hamishehkar, H.; Alivand, M.; Alipour, M.; Solhi, M.; Alipour, B. Effect of Pomegranate Seed Oil on the Expression of PPAR-γ and pro-Inflammatory Biomarkers in Obese Type 2 Diabetic Patients. Nutr. Food Sci. 2019, 49, 854–865. [Google Scholar] [CrossRef]
- Machado, M.; Sousa, S.; Rodriguez-Alcalá, L.M.; Gomes, A.M.; Pintado, M. Anti-Obesity Potential of a Yogurt Functionalized with a CLNA-Rich Pomegranate Oil. Food Res. Int. 2023, 173, 113364. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.; Sousa, S.; Morais, P.; Miranda, A.; Rodriguez-Alcalá, L.M.; Gomes, A.M.; Pintado, M. Medium-Chain Triglycerides and Conjugated Linolenic Acids in Functional Yogurts: Impact of GIT and Potential Biological Activities. Food Funct. 2022, 13, 10937–10946. [Google Scholar] [CrossRef] [PubMed]
- Salsinha, A.S.; Cunha, S.A.; Machado, M.; Rodríguez-Alcalá, L.M.; Relvas, J.B.; Pintado, M. Assessment of the Bioaccessibility and Bioavailability Prediction of Omega 3 and Conjugated Fatty Acids by in Vitro Standardized Digestion Model (INFOGEST) and Cell Model. Food Biosci. 2023, 53, 102635. [Google Scholar] [CrossRef]
- ISO 10993-5:2009; Biological Evaluation of Medical Devices Tests for In Vitro Cytotoxicity. International Organization for Standardization: Geneva, Switzerland, 2009.
- Machado, M.; Costa, E.M.; Silva, S.; Rodriguez-Alcalá, L.M.; Gomes, A.M.; Pintado, M. Understanding the Anti-Obesity Potential of an Avocado Oil-Rich Cheese through an In Vitro Co-Culture Intestine Cell Model. Molecules 2023, 28, 5923. [Google Scholar] [CrossRef]
- Ghezzal, S.; Postal, B.G.; Quevrain, E.; Brot, L.; Seksik, P.; Leturque, A.; Thenet, S.; Carrière, V. Palmitic Acid Damages Gut Epithelium Integrity and Initiates Inflammatory Cytokine Production. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2020, 1865, 158530. [Google Scholar] [CrossRef]
- Aspenström-Fagerlund, B.; Ring, L.; Aspenström, P.; Tallkvist, J.; Ilbäck, N.G.; Glynn, A.W. Oleic Acid and Docosahexaenoic Acid Cause an Increase in the Paracellular Absorption of Hydrophilic Compounds in an Experimental Model of Human Absorptive Enterocytes. Toxicology 2007, 237, 12–23. [Google Scholar] [CrossRef]
- Aspenström-Fagerlund, B.; Sundström, B.; Tallkvist, J.; Ilbäck, N.G.; Glynn, A.W. Fatty Acids Increase Paracellular Absorption of Aluminium across Caco-2 Cell Monolayers. Chem. Biol. Interact. 2009, 181, 272–278. [Google Scholar] [CrossRef]
- Yuan, G.; Sinclair, A.J.; Zhou, C.; Li, D. A-Eleostearic Acid Is More Effectively Metabolized into Conjugated Linoleic Acid than Punicic Acid in Mice. J. Sci. Food Agric. 2009, 89, 1006–1011. [Google Scholar] [CrossRef]
- Tsuzuki, T.; Kawakami, Y.; Abe, R.; Nakagawa, K.; Koba, K.; Imamura, J.; Iwata, T.; Ikeda, I.; Miyazawa, T. Conjugated Linolenic Acid Is Slowly Absorbed in Rat Intestine, but Quickly Converted to Conjugated Linoleic Acid. J. Nutr. 2006, 136, 2153–2159. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, T.; Tsuzuki, T.; Tokuyama, Y.; Igarashi, M.; Nakagawa, K.; Ohsaki, Y.; Komai, M. α-Eleostearic Acid (9Z11E13E-18:3) Is Quickly Converted to Conjugated Linoleic Acid (9Z11E-18:2) in Rats. J. Nutr. 2004, 134, 2634–2639. [Google Scholar] [CrossRef] [PubMed]
- Schneider, A.-C.; Mignolet, E.; Schneider, Y.-J.; Larondelle, Y. Uptake of Conjugated Linolenic Acids and Conversion to Cis -9, Trans -11-or Trans -9, Trans -11-Conjugated Linoleic Acids in Caco-2 Cells. Br. J. Nutr. 2013, 109, 57–64. [Google Scholar] [CrossRef]
- Lim, S.Y.; Chien, Y.-W. Effects of Polyunsaturated Fatty Acid/Saturated Fatty Acid Ratio and Different Amounts of Monounsaturated Fatty Acids on Adipogenesis in 3T3-L1 Cells. Biomedicines 2024, 12, 1980. [Google Scholar] [CrossRef]
- Hamza, M.S.; Pott, S.; Vega, V.B.; Thomsen, J.S.; Kandhadayar, G.S.; Ng, P.W.P.; Chiu, K.P.; Pettersson, S.; Wei, C.L.; Ruan, Y.; et al. De-Novo Identification of PPARγ/RXR Binding Sites and Direct Targets during Adipogenesis. PLoS ONE 2009, 4, e4907. [Google Scholar] [CrossRef]
- Bozzetto, L.; Costabile, G.; Luongo, D.; Naviglio, D.; Cicala, V.; Piantadosi, C.; Patti, L.; Cipriano, P.; Annuzzi, G.; Rivellese, A.A. Reduction in Liver Fat by Dietary MUFA in Type 2 Diabetes Is Helped by Enhanced Hepatic Fat Oxidation. Diabetologia 2016, 59, 2697–2701. [Google Scholar] [CrossRef]
- Siriwardhana, N.; Kalupahana, N.S.; Cekanova, M.; LeMieux, M.; Greer, B.; Moustaid-Moussa, N. Modulation of Adipose Tissue Inflammation by Bioactive Food Compounds. J. Nutr. Biochem. 2013, 24, 613–623. [Google Scholar] [CrossRef]
- Chait, A.; den Hartigh, L.J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front. Cardiovasc. Med. 2020, 7, 522637. [Google Scholar] [CrossRef]
- Saraswathi, V.; Kumar, N.; Gopal, T.; Bhatt, S.; Ai, W.; Ma, C.; Talmon, G.A.; Desouza, C. Lauric Acid versus Palmitic Acid: Effects on Adipose Tissue Inflammation, Insulin Resistance, and Non-Alcoholic Fatty Liver Disease in Obesity. Biology 2020, 9, 346. [Google Scholar] [CrossRef]
- Schaeffler, A.; Gross, P.; Buettner, R.; Bollheimer, C.; Buechler, C.; Neumeier, M.; Kopp, A.; Schoelmerich, J.; Falk, W. Fatty Acid-Induced Induction of Toll-like Receptor-4/Nuclear Factor-ΚB Pathway in Adipocytes Links Nutritional Signalling with Innate Immunity. Immunology 2009, 126, 233–245. [Google Scholar] [CrossRef] [PubMed]
- Granados, N.; Amengual, J.; Ribot, J.; Palou, A.; Luisa Bonet, M. Distinct Effects of Oleic Acid and Its Trans-Isomer Elaidic Acid on the Expression of Myokines and Adipokines in Cell Models. Br. J. Nutr. 2011, 105, 1226–1234. [Google Scholar] [CrossRef] [PubMed]
- Mallick, R.; Basak, S.; Das, R.K.; Banerjee, A.; Paul, S.; Pathak, S.; Duttaroy, A.K. Fatty Acids and Their Proteins in Adipose Tissue Inflammation. Cell Biochem. Biophys. 2023, 82, 35–51. [Google Scholar] [CrossRef] [PubMed]
- Hill, E.M.; Esper, R.M.; Sen, A.; Simon, B.R.; Aslam, M.N.; Jiang, Y.; Dame, M.K.; McClintock, S.D.; Colacino, J.A.; Djuric, Z.; et al. Dietary Polyunsaturated Fatty Acids Modulate Adipose Secretome and Is Associated with Changes in Mammary Epithelial Stem Cell Self-Renewal. J. Nutr. Biochem. 2019, 71, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Teng, K.-T.; Chang, C.-Y.; Chang, L.F.; Nesaretnam, K. Modulation of Obesity-Induced Inflammation by Dietary Fats: Mechanisms and Clinical Evidence. Nutr. J. 2014, 13, 12. [Google Scholar] [CrossRef]
- Han, C.Y.; Kargi, A.Y.; Omer, M.; Chan, C.K.; Wabitsch, M.; O’Brien, K.D.; Wight, T.N.; Chait, A. Differential Effect of Saturated and Unsaturated Free Fatty Acids on the Generation of Monocyte Adhesion and Chemotactic Factors by Adipocytes: Dissociation of Adipocyte Hypertrophy from Inflammation. Diabetes 2010, 59, 386–396. [Google Scholar] [CrossRef]
- Huang, L.-Y.; Chiu, C.-J.; Hsing, C.-H.; Hsu, Y.-H. Interferon Family Cytokines in Obesity and Insulin Sensitivity. Cells 2022, 11, 4041. [Google Scholar] [CrossRef]
- Schmidt, F.M.; Weschenfelder, J.; Sander, C.; Minkwitz, J.; Thormann, J.; Chittka, T.; Mergl, R.; Kirkby, K.C.; Faßhauer, M.; Stumvoll, M.; et al. Inflammatory Cytokines in General and Central Obesity and Modulating Effects of Physical Activity. PLoS ONE 2015, 10, e0121971. [Google Scholar] [CrossRef]
- Ghazarian, M.; Revelo, X.S.; Nøhr, M.K.; Luck, H.; Zeng, K.; Lei, H.; Tsai, S.; Schroer, S.A.; Park, Y.J.; Chng, M.H.Y.; et al. Type I Interferon Responses Drive Intrahepatic T Cells to Promote Metabolic Syndrome. Sci. Immunol. 2017, 2, eaai7616. [Google Scholar] [CrossRef]
- Pillon, N.J.; Chan, K.L.; Zhang, S.; Mejdani, M.; Jacobson, M.R.; Ducos, A.; Bilan, P.J.; Niu, W.; Klip, A. Saturated Fatty Acids Activate Caspase-4/5 in Human Monocytes, Triggering IL-1β and IL-18 Release. Am. J. Physiol.-Endocrinol. Metab. 2016, 311, E825–E835. [Google Scholar] [CrossRef]
- Al-Mansoori, L.; Al-Jaber, H.; Prince, M.S.; Elrayess, M.A. Role of Inflammatory Cytokines, Growth Factors and Adipokines in Adipogenesis and Insulin Resistance. Inflammation 2022, 45, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.; Ferguson, B.S.; Stephens, J.M.; Morrison, R.F. Modulation of IL-27 in Adipocytes during Inflammatory Stress. Obesity 2016, 24, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Ge, Y.; Zhao, C.; Yang, L.; Ge, K.; Zhang, J. N-3 Polyunsaturated Fatty Acids in Fat-1 Transgenic Mice Prevent Obesity by Stimulating the IL-27 Signaling Pathway. J. Funct. Foods 2024, 118, 106288. [Google Scholar] [CrossRef]
- Kim, D.-H.; Sandoval, D.; Reed, J.A.; Matter, E.K.; Tolod, E.G.; Woods, S.C.; Seeley, R.J. The Role of GM-CSF in Adipose Tissue Inflammation. Am. J. Physiol.-Endocrinol. Metab. 2008, 295, E1038–E1046. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, J.D.; Li, T.; Rau, C.M.; LeSuer, W.E.; Wang, P.; Coletta, D.K.; Madura, J.A.; Jacobsen, E.A.; De Filippis, E. ω-3PUFA Supplementation Ameliorates Adipose Tissue Inflammation and Insulin-Stimulated Glucose Disposal in Subjects with Obesity: A Potential Role for Apolipoprotein E. Int. J. Obes. 2021, 45, 1331–1341. [Google Scholar] [CrossRef]
- Machado, M.; Costa, E.M.; Silva, S.; Rodriguez-Alcalá, L.M.; Gomes, A.M.; Pintado, M. Pomegranate Oil’s Potential as an Anti-Obesity Ingredient. Molecules 2022, 27, 4958. [Google Scholar] [CrossRef]
Fatty Acid | Amount (mg/g) |
---|---|
C14 | 0.22 ± 0.01 |
C16 | 0.84 ± 0.03 |
C18 | 0.40 ± 0.03 |
C18:1 c9 | 0.70 ± 0.1 |
C18:1 c11 | 0.04 ± 0.01 |
C18:2 c9c12 | 0.3 ± 0.1 |
C20:1 | 0.07 ± 0.01 |
C18:3 c9c12c15 | 0.06 ± 0.01 |
C18:3 c9t11c13 | 1.9 ± 0.3 |
C18:3 c9t11t13 | 0.22 ± 0.04 |
C18:3 t9t11c13 | 0.06 ± 0.01 |
C18: 3 t9t11t13 | 0.21 ± 0.04 |
∑ Fatty acids | 5.0 ± 0.2 |
6 h | 24 h | |||||
---|---|---|---|---|---|---|
Initial (µg/mL) | Apical (µg/mL) | Membrane (µg/mL) | Basolateral (µg/mL) | Papp (cm/s) | Cells (µg/mL) | |
C14 | 4.5 ± 0.3 | nd | 1.0 ± 0.1 | nd | - | nd |
C16 | 29 ± 6 | 5 ± 2 | 11 ± 5 | 6 ± 1 | 0.19 ± 0.02 | 1.3 ± 0.2 |
C16:1 | nd | nd | 3 ± 1 | nd | - | 3.6 ± 0.1 |
C18 | 16 ± 3 | 4 ± 1 | 5.7 ± 0.2 | 6.2 ± 0.2 | 0.4 ± 0.1 | 0.75 ± 0.03 |
C18:1 t9 | nd | nd | 5 ± 2 | nd | - | nd |
C18:1 c9 | 32 ± 8 | 6 ± 3 | 15 ± 7 | 5 ± 1 | 0.16 ± 0.04 | 5.4 ± 0.8 |
C18:1 c11 | 2.1 ± 0.4 | nd | 4 ± 3 | nd | - | nd |
C18:2 c9c12 | 23 ± 6 | nd | 3 ± 1 | nd | - | nd |
C20 | nd | 8 ± 5 | 5 ± 2 | 23 ± 1 | - | 11 ± 5 |
C20:1 | 2.02 ± 0.03 | nd | 1.1 ± 0.2 | nd | - | nd |
C18:3 c9c12c15 | 2.8 ± 0.3 | nd | 1.91 ± 0.03 | nd | - | nd |
C18:2 c9t11 | nd | nd | 2.93 ± 0.01 | nd | - | nd |
C18:2 t9t11 | nd | nd | 1.88 ± 0.02 | nd | - | nd |
C20:3 c11c14c17 | nd | nd | nd | nd | - | 2 ± 1 |
C18:3 c9t11c13 | 42 ± 6 | nd | nd | nd | - | nd |
C18:3 c9t11t13 | 13 ± 1 | nd | nd | nd | - | nd |
C18:3 t9t11c13 | 9 ± 1 | nd | nd | nd | - | nd |
C18: 3 t9t11t13 | 3 ± 1 | nd | nd | nd | - | nd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado, M.; Costa, E.M.; Silva, S.; Gomes, A.M.; Pintado, M. The Role of Unsaturated Fatty Acid-Rich Dairy Products in Adipocyte Metabolism. Molecules 2024, 29, 5502. https://doi.org/10.3390/molecules29235502
Machado M, Costa EM, Silva S, Gomes AM, Pintado M. The Role of Unsaturated Fatty Acid-Rich Dairy Products in Adipocyte Metabolism. Molecules. 2024; 29(23):5502. https://doi.org/10.3390/molecules29235502
Chicago/Turabian StyleMachado, Manuela, Eduardo M. Costa, Sara Silva, Ana Maria Gomes, and Manuela Pintado. 2024. "The Role of Unsaturated Fatty Acid-Rich Dairy Products in Adipocyte Metabolism" Molecules 29, no. 23: 5502. https://doi.org/10.3390/molecules29235502
APA StyleMachado, M., Costa, E. M., Silva, S., Gomes, A. M., & Pintado, M. (2024). The Role of Unsaturated Fatty Acid-Rich Dairy Products in Adipocyte Metabolism. Molecules, 29(23), 5502. https://doi.org/10.3390/molecules29235502