Genistein and Naringenin as Defense Molecules
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Aphids
4.2. Chemicals and Gels
4.3. Aphid Probing and Feeding Behavior
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mondal, T.; Mondal, D. A review on efficacy of A. indica A. Juss based biopesticides: An Indian perspective. Res. J. Recent Sci. 2012, 35, 445–516. [Google Scholar]
- Poopathi, S.; Archana, B. Mosquitocidal bacterial toxins (Bacillus sphaericus and Bacillus thuringiensis serovar israelensis): Mode of action, cytopathological effects and mechanism of resistance. J. Physiol. Pathophysiol. 2010, 1, 22–38. [Google Scholar]
- Regnault-Roger, C.; Philogène, B.J.R. Past and current prospects for the use of botanicals and plant allelochemicals in Integrated Pest Management. Pharm. Biol. 2008, 46, 41–52. [Google Scholar] [CrossRef]
- Sithisut, D.; Fields, P.G.; Chandrapathya, A. Contact toxicity, feeding reduction and repellency of essential oils from three plants from the ginger family (Zingiberaceae) and their major components against Sitophilus zeamais and Tribolium castaneum. J. Stored Prod. 2011, 104, 1445–1454. [Google Scholar] [CrossRef] [PubMed]
- Lattanzio, V.; Lattanzio, V.M.T.; Cardinali, A. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In Phytochemistry: Advances in Research; Imperato, F., Ed.; Research Signpost: Kerala, India, 2006; pp. 23–67. [Google Scholar]
- Adeyemi, M.M.H. The potential of secondary metabolites in plant material as deterrents against insect pests: A review. Afr. J. Pure Appl. Chem. 2010, 4, 243–246. [Google Scholar]
- Okwu, D.E. Evaluation of the chemical composition of Indigenous spices and flavoring agents. Glob. J. Pure Appl. Sci. 2001, 7, 455–459. [Google Scholar]
- Boate, U.R.; Abalis, O.R. Review on the bio-insecticidal properties of some plant secondary metabolites: Types, formulations, modes of action, advantages and limitations. Asian J. Res. Zool. 2020, 3, 27–60. [Google Scholar] [CrossRef]
- Johnson, S.; Morgan, E.D.; Peiris, C.N. Development of the major triterpenoids and oil in the fruits and seeds of neem Azadirachta indica. Ann. Bot. 1996, 78, 383–388. [Google Scholar] [CrossRef]
- Nakanishi, T.; Suzuki, M. Revision of the structure of fagaridine based on comparison of UV and NMR data of synthetic compounds. J. Nat. Prod. 1998, 61, 1263–1267. [Google Scholar] [CrossRef]
- Ogbonna, O.A.; Ogbonna, P.C.; Dike, M.C. Phytochemical screening and quantitative estimates of bioactive compounds in Spondus mombin and Azadirachta indica. Res. J. Chem. Sci. 2016, 6, 38–40. [Google Scholar]
- David, J.P.; Rey, D.; Pautou, M.P.; Meyran, J.C. Differential toxicity of leaf litter to dipteran larvae of mosquito developmental sites. J. Invertebr. Pathol. 2000, 75, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Diwan, R.K.; Saxena, R.C. Insecticidal property of flavinoid isolated from Tephrosia purpuria. Int. J. Chem. Sci. 2010, 8, 777–782. [Google Scholar]
- Simmonds, M.S.; Stevenson, P.C. Effects of isoflavonoids from cicer on larvae of Heliocoverpa armigera. J. Chem. Ecol. 2001, 27, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, M.S. Flavonoid–insect interactions: Recent advances in our knowledge. Phytochemistry 2003, 64, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Mallikarjuna, N.; Kranthi, K.R.; Jadhav, D.R.; Kranthi, S.; Chandra, S. Influence of foliar chemical compounds on the development of Spodoptera litura in interspecific derivatives of groundnut. J. Appl. Entomol. 2004, 128, 321–328. [Google Scholar] [CrossRef]
- Gould, K.S.; Lister, C. Flavonoid functions in plants. In Flavonoids: Chemistry, Biochemistry and Applications; Andersen, Ø.M., Markham, K.R., Eds.; CRC Press LLC: Boca Raton, FL, USA, 2006; pp. 397–443. [Google Scholar]
- Wang, S.D.; Liu, W.; Xue, C.B.; Luo, W.C. The effects of luteolin on phenoloxidase and the growth of Spodoptera exigue (Hubner) larvae (Lepidoptera: Noctuidae). J. Pestic. Sci. 2010, 35, 483–487. [Google Scholar] [CrossRef]
- Bentivenha, J.P.F.; Canassa, V.F.; Baldin, E.L.L.; Borguini, M.L.; Lima, G.P.P.; Lourenção, A.L. Role of the rutin and genistein flavonoids in soybean resistance to Piezodorus guildinii (Hemiptera: Pentatomidae). Arthropod Plant Interact. 2018, 12, 311–320. [Google Scholar] [CrossRef]
- Isman, M.B.; Duffey, S.S. Toxicity of tomato phenolic compounds to the fruitworm, Heliothis zea. Entomol. Exp. Appl. 1982, 31, 370–3761. [Google Scholar] [CrossRef]
- Hoffmann-Campo, C.B.; Harborne, J.B.; McCaffery, A.R. Pre-ingestive and post-ingestive effects of soya bean extracts and rutin on Trichoplusia ni growth. Entomol. Exp. Appl. 2001, 98, 181–194. [Google Scholar] [CrossRef]
- Piubelli, G.C.; Hoffmann-Campo, C.B.; Moscardi, F.; Miyakubo, S.H.; de Oliveira, M.C. Are chemical compounds important for soybean resistance to Anticarsia gemmatalis? J. Chem. Ecol. 2005, 31, 1509–1524. [Google Scholar] [CrossRef]
- Hohenstein, J.D.; Studham, M.E.; Klein, A.; Kovinich, N.; Barry, K.; Lee, Y.-J.; MacIntosh, G.C. Transcriptional and chemical changes in soybean leaves in response to long-term aphid colonization. Front. Plant Sci. 2019, 10, 310. [Google Scholar] [CrossRef] [PubMed]
- Murakami, S.; Nakata, R.; Aboshi, T.; Yoshinaga, N.; Teraishi, M.; Okumoto, Y.; Ishihara, A.; Morisaka, H.; Huffaker, A.; Schmelz, E.A.; et al. Insect-induced daidzein, formononetin and their conjugates in soybean leaves. Metabolites 2014, 4, 532–546. [Google Scholar] [CrossRef]
- Yuan, E.; Yan, H.; Gao, J.; Guo, H.; Ge, F.; Sun, Y. Increases in genistein in Medicago sativa confer resistance against the Pisum host race of Acyrthosiphon pisum. Insects 2019, 10, 97. [Google Scholar] [CrossRef] [PubMed]
- War, A.R.; Sharma, S.P.; Sharma, H.C. Differential induction of flavonoids in groundnut in response to Helicoverpa armigera and Aphis craccivora infestation. Int. J. Insect Sci. 2016, 8, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Grimaldi, D.; Engel, M.S. Evolution of the Insects; Cambridge University Press: New York, NY, USA, 2005; p. 770. [Google Scholar]
- Pettersson, J.; Tjallingii, W.F.; Hardie, J. Host-plant selection and feeding. In Aphids as Crop Pests; van Emden, H.F., Harrington, R., Eds.; CABI: Wallingford, UK, 2017; pp. 173–195. [Google Scholar]
- Tjallingii, W.F. Sieve element acceptance by aphids. Eur. J. Entomol. 1994, 91, 47–52. [Google Scholar]
- Goławska, S.; Łukasik, I.; Chojnacki, A.A. Luteolin and quercetin affect aphid feeding behavior. Eur. Zool. J. 2024, 91, 318–331. [Google Scholar] [CrossRef]
- Goławska, S.; Łukasik, I. Antifeedant activity of luteolin and genistein against the pea aphid. J. Pest Sci. 2012, 85, 443–450. [Google Scholar] [CrossRef]
- Arai, Y.; Watanabe, S.; Kimira, M.; Shimoi, K.; Mochizuki, R.; Kinae, N. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correction between quercetin intake and plasma LDL cholesterol concentration. J. Nutr. 2000, 130, 2243–2250. [Google Scholar] [CrossRef]
- Erdman, J.W.; Balentine, D.; Arab, L.; Beecher, G.; Dwyer, J.T.; Folts, J.; Harnly, J.; Hollman, P.; Keen, C.L.; Mazza, M.; et al. Flavonoids and heart health: Proceedings of the ILSI North America Flavonoids Workshop, May 31-June 1, 2005, Washington, DC. J. Nutr. 2007, 137, 718S–737S. [Google Scholar] [CrossRef]
- Mink, P.J.; Scrafford, C.G.; Barraj, L.M.; Harnack, L.; Hng, C.P.; Nettleton, J.A.; Jacobs, D.R. Flavonoid intake and cardiovascular disease mortality: A prospective study in postmenopausal women. Am. J. Clin. Nutr. 2007, 85, 895–909. [Google Scholar] [CrossRef]
- Ji, G.; Yang, Q.; Hao, J.; Guo, L.; Chen, X.; Hu, J.; Leng, L.; Jiang, Z. Anti-inflammatory effect of genistein on non-alcoholic steatohepatitis rats induced by high fat diet and its potential mechanisms. Int. Immunopharmacol. 2011, 11, 762–768. [Google Scholar] [CrossRef]
- Jeong, J.W.; Lee, H.H.; Han, M.H.; Kim, G.Y.; Kim, W.J.; Choi, Y.H. Anti-inflammatory effects of genistein via suppression of the toll-like receptor 4-mediated signaling pathway in lipopolysaccharide-stimulated BV2 microglia. Chem. Biol. Interact. 2014, 212, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Yoon, G.A.; Park, S. Antioxidant action of soy isoflavones on oxidative stress and antioxidant enzyme activities in exercised rats. Nutr. Res. Pract. 2014, 8, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Ardito, F.; Pellegrino, M.R.; Perrone, D.; Troiano, G.; Cocco, A.; Lo Muzio, L. In vitro study on anti-cancer properties of genistein in tongue cancer. OncoTargets Ther. 2017, 10, 5405–5415. [Google Scholar] [CrossRef] [PubMed]
- Ardito, F.; Di Gioia, G.; Pellegrino, M.R.; Muzio, L.L. Genistein as a potential anticancer agent against head and neck squamous cell carcinoma. Curr. Top. Med. Chem. 2018, 18, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Pierzynowska, K.; Gaffke, L.; Jankowska, E.; Rintz, E.; Witkowska, J.; Wieczerzak, E.; Podlacha, M.; Węgrzyn, G. Proteasome composition and activity changes in cultured fibroblasts derived from mucopolysaccharidoses patients and their modulation by genistein. Front. Cell Dev. Biol. 2020, 8, 540726. [Google Scholar] [CrossRef]
- Pierzynowska, K.; Cyske, Z.; Gaffke, L.; Rintz, E.; Mantej, J.; Podlacha, M.; Wiśniewska, K.; Ĺťabińska, M.; Sochocka, M.; Lorenc, P.; et al. Potencjał autofagii indukowanej przez genisteinę w leczeniu chorób neurodegeneracyjnych. Postępy Biochem. 2021, 67, 117–129. [Google Scholar] [CrossRef]
- Hasanein, P.; Fazeli, F. Role of naringenin in protection against diabetic hyperalgesia and tactile allodynia in male Wistar rats. J. Physiol. Biochem. 2014, 70, 997–1006. [Google Scholar] [CrossRef]
- Yi, L.; Li, C.; Zhan, X.; Cui, C.; Xiao, F.; Zhou, L.; Xie, Y. Involvement of monoaminergic system in the antidepressant-like effect of the flavonoid naringenin in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 2010, 4, 1223–1228. [Google Scholar] [CrossRef]
- Lisa, J.W.; Nica, M.B.; Murray, W.H. Antiatherogenic properties of naringenin, a citrus flavonoid. Cardiovasc. Drug Rev. 1996, 17, 160–178. [Google Scholar]
- Kocyigit, A.; Koyuncu, I.; Dikilitas, M.; Bahadori, F.; Turkkan, B. Cytotoxic, genotoxic and apoptotic effects of naringenin-oxime relative to naringenin on normal and cancer cell. Asian Pac. J. Trop. Biomed. 2016, 6, 872–880. [Google Scholar] [CrossRef]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 16, 162750. [Google Scholar] [CrossRef] [PubMed]
- Salvamani, S.; Gunasekaran, B.; Shaharuddin, N.A.; Ahmad, S.A.; Shukor, M.Y. Antiartherosclerotic effects of plant flavonoids. BioMed Res. Int. 2014, 11, 480258. [Google Scholar] [CrossRef] [PubMed]
- Brodowska, K.M. Natural flavonoids: Classification, potential role, and application of flavonoid analogues. Eur. J. Biol. Res. 2017, 7, 108–123. [Google Scholar]
- Deavours, B.E.; Dixon, R.A. Metabolic engineerimg of isoflavonoid biosynthesis in alfalfa. Plant Physiol. 2005, 138, 2245–2259. [Google Scholar] [CrossRef]
- Esmaeili-Vardanjani, M.; Askarianzadeh, A.; Saeidi, Z.; Hasanshahi, G.H.; Karimi, J.; Nourbakhsh, S.H. A study on common bean cultivars to identify sources of resistance against the black bean aphid, Aphis fabae Scopoli (Hemiptera: Aphididae). Arch. Phytopathol. Plant Prot. 2013, 46, 1598–1608. [Google Scholar] [CrossRef]
- Sauvion, N.; Charles, H.; Febvay, G.; Rahbe, Y. Effects of jackbean lectin (ConA) on the feeding behavior and kinetics of intoxication of the pea aphid, Acyrthosiphon pisum. Ent. Exp. Appl. 2003, 110, 31–44. [Google Scholar] [CrossRef]
- Goławska, S.; Łukasik, I.; Sprawka, I.; Sytykiewicz, H.; Chojnacki, A. Comparison of probing/feeding behavior for diet analysis to control strategy: A case study on aphids. Allelopath. J. 2020, 49, 113–124. [Google Scholar] [CrossRef]
- Sudarshan, K.; Yarlagadda, S.; Sengupta, S. Recent Advances in the Synthesis of Diarylheptanoids. Chem. Asian J. 2024, 19, e202400380. [Google Scholar] [CrossRef]
- Sudarshan, K.; Singh Aidhen, I. Convenient Synthesis of 3-Glycosylated Isocoumarins. Eur. J. Org. Chem. 2017, 1, 34–38. [Google Scholar] [CrossRef]
- Goławska, S.; Sprawka, I.; Łukasik, I.; Goławski, A. Are naringenin and quercetin useful chemicals in pest-management strategies? J. Pest Sci. 2014, 87, 173–180. [Google Scholar] [CrossRef]
- Reynolds, M.; Chapman, S.; Crespo-Herrera, L.; Molero, G.; Mondal, S.; Pequeno, D.N.L.; Pinto, F.; Pinera-Chavez, F.J.; Poland, J.; Rivera-Amado, C.; et al. Breeder friendly phenotyping. Plant Sci. 2020, 295, 110396. [Google Scholar] [CrossRef]
- Łukasik, I.; Goławska, S.; Sytykiewicz, H. Differences in Oxidative Stress Markers and Antioxidant Enzyme Activities in Black Bean Aphid Morphs (Aphis fabae Scop.) Fed on the Primary Host Viburnum opulus L. Antioxidants 2022, 11, 2476. [Google Scholar] [CrossRef] [PubMed]
- Goławska, S.; Sprawka, I.; Łukasik, I. Effect of saponins and apigenin mixtures on feeding behavior of the pea aphid, Acyrthosiphon pisum Harris. Biochem. Syst. Ecol. 2014, 55, 137–144. [Google Scholar] [CrossRef]
- Urbańska, A.; Tjallingii, W.F.; Dixon, A.F.G.; Leszczynski, B. Phenol oxidising enzymes in the grain aphid’s saliva. Entomol. Exp. Appl. 1998, 86, 197–203. [Google Scholar] [CrossRef]
- Gabryś, B.; Dancewicz, K.; Gliszczyńska, A.; Kordan, B.; Wawrzeńczyk, C. Systemic deterrence of aphid probing and feeding by novel β—Damascone analogues. J. Pest Sci. 2015, 88, 507–516. [Google Scholar] [CrossRef]
- Goławska, S. Deterrence and toxicity of plant saponins for the pea aphid Acyrthosiphon pisum Harris. J. Chem. Ecol. 2007, 33, 1598–1606. [Google Scholar] [CrossRef] [PubMed]
- Sprawka, I.; Goławska, S. Effect of the lectin PHA on the feeding behavior of the grain aphid. J. Pest Sci. 2010, 83, 149–155. [Google Scholar] [CrossRef]
- Sprawka, I.; Goławska, S.; Czerniewicz, P.; Sytykiewicz, H. Insecticidal action of phytohemagglutinin (PHA) against the grain aphid, Sitobion avenae. Pestic. Biochem. Physiol. 2011, 100, 64–69. [Google Scholar] [CrossRef]
- Sprawka, I.; Goławska, S.; Goławski, A.; Czerniewicz, P. Toxic and deterrent effects of phytohemagglutinin on the grain aphid Sitobion avenae. Biologia 2013, 63, 525–532. [Google Scholar] [CrossRef]
- Van Emden, H.F. Host-plant resistance. In Aphids as Crop Pests; Van Emden, H., Harrington, R., Eds.; CABI Publisher: Oxfordshire, UK, 2017; pp. 515–532. [Google Scholar]
- Wróblewska-Kurdyk, A.; Dancewicz, K.; Gliszczyńska, A.; Gabryś, B. New insight into the behavior modifying activity of two natural sesquiterpenoids farnesol and nerolidol towards Myzus persicae (Sulzer) (Homoptera: Aphididae). Bull. Ent. Res. 2020, 110, 249–258. [Google Scholar] [CrossRef]
- Powell, G.; Hardie, J.; Pickett, J.A. Laboratory evaluation of antifeedant compounds for inhibiting settling by cereal aphids. Entomol. Exp. Appl. 1997, 84, 189–193. [Google Scholar] [CrossRef]
- Souza, M.F.; Davis, J.A.; Ranger, C.; Ranger, C. Detailed characterization of Melanaphis sacchari (Hemiptera: Aphididae) feeding behavior on different host plants. Environ. Entomol. 2020, 49, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Tjallingii, W.F. Continuous recording of stylet penetration activities by aphids. In Aphid–Plant Genotype Interactions; Campbell, R., Eikenbary, R., Eds.; Elsevier Publisher: Amsterdam, The Netherlands, 1990; pp. 88–89. [Google Scholar]
- Van Bel, A.J.E.; Will, T. Functional evaluation of proteins in watery and gel saliva of aphids. Front. Plant Sci. 2016, 7, 1840. [Google Scholar] [CrossRef] [PubMed]
- Paprocka, M.; Dancewicz, K.; Kordan, B.; Damszel, M.; Sergiel, I.; Biesaga, M.; Mroczek, J.; Arroyo Garcia, R.A.; Gabryś, B. Probing behavior of Aphis fabae and Myzus persicae on three species of grapevines with analysis of grapevine leaf anatomy and allelochemicals. Eur. Zool. J. 2023, 90, 83–100. [Google Scholar] [CrossRef]
- Kim, H.J.; Park, J.; Hwang, I. Investigating water transport through the xylem network in vascular plants. J. Exp. Bot. 2014, 65, 1895–1904. [Google Scholar] [CrossRef]
- Kordan, B.; Stec, K.; Słomiński, P.; Laszczak-Dawid, A.; Wróblewska-Kurdy, A.; Gabryś, B. Antixenosis potential in pulses against the pea aphid (Hemiptera: Aphididae). J. Econ. Entomol. 2019, 112, 465–474. [Google Scholar] [CrossRef]
- Stec, K.; Kordan, B.; Gabryś, B. Effect of soy leaf flavonoids on pea aphid probing behavior. Insects 2021, 12, 756. [Google Scholar] [CrossRef]
- Ateyyat, M.A.; Abu-Romman, S.; Abu-Darwish, M.; Ghabeish, I. Impact of flavonoids against woolly apple aphid, Eriosoma lanigerum (Hausmann) and its sole parasitoid, Aphelinus mali (Hald.). J. Agric. Sci. 2012, 4, 227–236. [Google Scholar] [CrossRef]
- Lahtinen, M.; Kapari, L.; Haukioja, E.; Pihlaja, K. Effects if increased content of leaf surface flavonoids on the performance of mountain birch feeding sawflies vary for early and late season species. Chemoecology 2006, 16, 159–167. [Google Scholar] [CrossRef]
- del Río, J.A.; Gómez, P.; Baidez, A.G.; Arcas, M.C.; Botía, J.M.; Ortuño, A. Changes in the levels of polymethoxyflavones and flavanones as part of the defense mechanism of Citrus sinensis (Cv. Valencia Late) fruits against Phytophthora citrophthora. J. Agric. Food Chem. 2004, 52, 1913–1917. [Google Scholar] [CrossRef] [PubMed]
- Acheuk, F.; Doumandji-Mitiche, B. Insecticidal activity of alkaloids extract of Pergularia tomentosa (Asclepiadaceae) against fifth instar larvae of Locusta migratoria cinerascens (Fabricius 1781) (Orthoptera: Acrididae). Int. J. Sci. Adv. Technol. 2013, 3, 8–13. [Google Scholar]
- Boué, S.M.; Raina, A.K. Effects of plant flavonoids on fecundity, survival, and feeding of the Formosan subterranean termite. J. Chem. Ecol. 2003, 29, 2575–2584. [Google Scholar] [CrossRef]
- Quiroz, A.; Mendez, L.; Mutis, A.; Hormazabal, E.; Ortega, F.; Birkett, M.A.; Parra, L. Antifeedant activity of red clover root isoflavonoids on Hylastinus obscurus. J. Soil Sci. Plant Nutr. 2017, 17, 231–239. [Google Scholar] [CrossRef]
- Tjallingii, W.F. Electrical recording of stylet penetration activities. In Aphids: Their Biology, Natural Enemies and Control; Minks, A., Harrewijn, P., Eds.; Elsevier Publisher: Amsterdam, The Netherlands, 1988; pp. 95–108. [Google Scholar]
- Sauvion, N.; Rahbe, Y. Recording feeding behaviour of Hemiptera with the EPG method: A review. Ann. Soc. Entomol. Fr. 1999, 35, 175–183. [Google Scholar]
Flavonoid Added | Concentration (%) | Number of Waveforms/2 h | Time to the First Waveform (min) | Duration of the First Waveform (min) | Average Time of Waveform (min) |
---|---|---|---|---|---|
g-C waveform | |||||
Control | 0.00 | 4.70 ± 1.86 | 3.66 ± 1.54 | 7.25 ± 5.80 | 19.26 ± 5.76 |
Genistein | 0.0001 | 4.70 ± 0.96 | 4.78 ± 0.52 a | 12.89 ± 2.79 | 17.50 ± 4.03 |
0.001 | 4.00 ± 0.42 | 3.85 ± 0.14 a | 13.11 ± 2.49 | 12.21 ± 1.94 | |
0.01 | 4.00 ± 0.88 | 0.79 ± 0.14 b | 28.35 ± 6.82 * | 19.22 ± 5.55 | |
0.1 | 3.30 ± 0.45 | 0.53 ± 0.09 b | 45.15 ± 5.86 * | 31.28 ± 4.63 | |
Naringenin | 0.0001 | 4.50 ± 0.26 | 4.34 ± 0.26 AB | 9.76 ± 1.25 | 21.90 ± 1.96 |
0.001 | 5.30 ± 0.28 | 4.15 ± 0.24 AB | 12.01 ± 4.59 | 19.68 ± 1.67 | |
0.01 | 5.60 ± 1.19 | 4.79 ± 0.57 A | 17.94 ± 3.69 * | 16.84 ± 2.99 | |
0.1 | 5.30 ± 1.49 | 1.47 ± 0.55 B | 29.14 ± 8.31 * | 32.28 ± 7.65 | |
g-E1 waveform | |||||
Control | 0.00 | 3.40 ± 1.38 | 16.77 ± 6.98 | 18.02 ± 6.68 | 25.20 ± 7.04 |
Genistein | 0.0001 | 2.20 ± 0.60 | 30.91 ± 3.76 a | 12.89 ± 2.80 a | 10.89 ± 2.40 a |
0.001 | 2.40 ± 0.55 | 25.05 ± 6.59 a | 5.80 ± 0.74 a | 5.82 ± 0.73 a | |
0.01 | 2.60 ± 0.79 | 17.82 ± 7.05 a | 3.68 ± 1.40 a | 3.46 ± 1.04 a | |
0.1 | 0.00 ± 0.00 | 0.00 ± 0.00 b | 0.00 ± 0.00 b | 0.00 ± 0.00 b | |
Naringenin | 0.0001 | 1.80 ± 0.13 | 15.19 ± 1.81 AB | 3.52 ± 0.32 A | 3.25 ± 0.24 AB |
0.001 | 2.50 ± 0.32 | 16.21 ± 4.79 AB | 2.05 ± 0.34 AB | 1.98 ± 0.24 *AB | |
0.01 | 3.00 ± 0.99 | 33.09 ± 8.11 A | 4.50 ± 0.51 A | 4.36 ± 0.53 A | |
0.1 | 3.70 ± 1.41 | 7.04 ± 4.04 B | 0.96 ± 0.40 *B | 1.54 ± 0.55 *B | |
g-G waveform | |||||
Control | 0.00 | 0.80 ± 0.40 | 5.89 ± 5.46 | 7.71 ± 5.92 | 8.54 ± 5.48 |
Genistein | 0.0001 | 1.60 ± 0.25 | 45.89 ± 8.86 * | 31.84 ± 7.16 | 31.79 ± 7.18 ab |
0.001 | 1.80 ± 0.13 | 44.09 ± 5.58 * | 32.64 ± 4.70 * | 36.10 ± 4.32 *ab | |
0.01 | 1.10 ± 0.09 | 63.62 ± 8.30 * | 49.29 ± 9.32 * | 51.34 ± 8.73 *a | |
0.1 | 2.00 ± 0.49 | 45.03 ± 9.50 * | 13.41 ± 3.62 | 12.93 ± 3.44 b | |
Naringenin | 0.0001 | 1.70 ± 0.15 | 24.65 ± 4.00 | 12.03 ± 1.55 * | 9.38 ± 1.20 AB |
0.001 | 2.10 ± 0.17 | 42.64 ± 6.73 * | 6.67 ± 1.01 | 5.26 ± 0.59 B | |
0.01 | 2.20 ± 0.28 | 32.59 ± 5.97 * | 15.28 ± 2.92 * | 16.88 ± 2.57 *AB | |
0.1 | 1.10 ± 0.29 | 28.99 ± 8.50 | 20.33 ± 7.27 | 23.28 ± 6.89 A |
Waveform g-C | F7,72 | p-Value |
---|---|---|
Number | ||
Compound | 3.39 | 0.069 |
Concentration | 0.11 | 0.955 |
Compound × concentration | 0.57 | 0.639 |
Total time | ||
Compound | 43.89 | <0.001 |
Concentration | 5.68 | <0.001 |
Compound × concentration | 16.72 | <0.001 |
Time to the first | ||
Compound | 19.51 | <0.001 |
Concentration | 33.57 | <0.001 |
Compound × concentration | 12.78 | <0.001 |
Duration of the first | ||
Compound | 4.32 | <0.05 |
Concentration | 10.48 | <0.001 |
Compound × concentration | 0.85 | 0.473 |
Waveform g-E1 | F7,72 | p-Value |
---|---|---|
Number | ||
Compound | 2.98 | 0.089 |
Concentration | 0.62 | 0.605 |
Compound × Concentration | 2.89 | 0.053 |
Total time | ||
Compound | 1.08 | 0.301 |
Concentration | 1.86 | 0.144 |
Compound × Concentration | 6.35 | <0.001 |
Time to the first | ||
Compound | 0.03 | 0.885 |
Concentration | 6.64 | <0.001 |
Compound × Concentration | 3.38 | <0.05 |
Duration of the first | ||
Compound | 10.56 | <0.001 |
Concentration | 13.10 | <0.001 |
Compound × Concentration | 7.79 | <0.001 |
Waveform g-G | F7,72 | p-Value |
---|---|---|
Number | ||
Compound | 0.59 | 0.443 |
Concentration | 0.79 | 0.501 |
Compound × concentration | 4.48 | <0.05 |
Total time | ||
Compound | 29.81 | <0.001 |
Concentration | 3.41 | <0.05 |
Compound × concentration | 6.77 | <0.001 |
Time to the first | ||
Compound | 10.01 | <0.05 |
Concentration | 1.15 | 0.335 |
Compound × concentration | 1.25 | 0.297 |
Duration of the first | ||
Compound | 20.11 | <0.001 |
Concentration | 2.74 | <0.05 |
Compound × concentration | 4.77 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goławska, S.; Łukasik, I.; Czerniewicz, P. Genistein and Naringenin as Defense Molecules. Molecules 2024, 29, 5505. https://doi.org/10.3390/molecules29235505
Goławska S, Łukasik I, Czerniewicz P. Genistein and Naringenin as Defense Molecules. Molecules. 2024; 29(23):5505. https://doi.org/10.3390/molecules29235505
Chicago/Turabian StyleGoławska, Sylwia, Iwona Łukasik, and Paweł Czerniewicz. 2024. "Genistein and Naringenin as Defense Molecules" Molecules 29, no. 23: 5505. https://doi.org/10.3390/molecules29235505
APA StyleGoławska, S., Łukasik, I., & Czerniewicz, P. (2024). Genistein and Naringenin as Defense Molecules. Molecules, 29(23), 5505. https://doi.org/10.3390/molecules29235505