Bioactive Properties of Microencapsulated Anthocyanins from Vaccinium floribundum and Rubus glaucus
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Characterization and Antioxidant Activity
2.2. Fourier Transform Infrared Spectroscopy (FTIR) Analysis
2.2.1. O-H Stretching Region (3200–3600 cm−1)
2.2.2. C-H Stretching Region (2800–3000 cm−1)
2.2.3. C=O Stretching (1700–1750 cm−1)
2.2.4. Aromatic C=C Stretching (1500–1600 cm−1)
2.2.5. C-O and C-O-C Stretching (1000–1300 cm−1)
2.2.6. C-O-C Stretching of Polysaccharides (1027 cm−1)
2.3. Morphological Analysis by Scanning Electron Microscope (SEM)
2.4. Antibacterial Activity
2.5. Antitumor Activity
2.6. Anti-Inflammatory Activity
3. Methods
3.1. Plant Material
3.2. Anthocyanin Extraction
3.3. Quantification of Total Anthocyanins and Phenolic Compounds
3.4. Microencapsulation
3.5. Characterization by FTIR
3.6. Morphological Analysis by Scanning Electron Microscope (SEM)
3.7. Antibacterial Assay
3.8. Determination of Minimum Inhibitory Concentration (MIC)
3.9. Antitumor Activity
3.10. Anti-Inflammatory Assay
3.11. Antioxidant Assay
3.12. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nandane, A.S.; Ranveer, R.C. Antioxidative effects of subtropical fruits rich in anthocyanins. In Anthocyanins in Subtropical Fruits: Chemical Properties, Processing, and Health Benefits; CRC Press: New York, NY, USA, 2023; pp. 149–159. ISBN 9781003242598. [Google Scholar]
- Câmara, J.S.; Locatelli, M.; Pereira, J.A.M.; Oliveira, H.; Arlorio, M.; Fernandes, I.; Perestrelo, R.; Freitas, V.; Bordiga, M. Behind the Scenes of Anthocyanins—From the Health Benefits to Potential Applications in Food, Pharmaceutical and Cosmetic Fields. Nutrients 2022, 14, 5133. [Google Scholar] [CrossRef] [PubMed]
- Chikane, A.; Rakshe, P.; Kumbhar, J.; Gadge, A.; More, S. Sandesh More A review on anthocyanins: Coloured pigments as food, pharmaceutical ingredients and the potential health benefits. Int. J. Sci. Res. Sci. Technol. 2022, 9, 547–550. [Google Scholar] [CrossRef]
- Tyagi, S.; Mani, S.; Chaturvedi, N. Anthocyanin extraction, purification and therapeutic properties on human health—A review. J. Popul. Ther. Clin. Pharmacol. 2022, 29, 1159–1169. [Google Scholar] [CrossRef]
- Zang, Z.; Tang, S.; Li, Z.; Chou, S.; Shu, C.; Chen, Y.; Chen, W.; Yang, S.; Yang, Y.; Tian, J.; et al. An updated review on the stability of anthocyanins regarding the interaction with food proteins and polysaccharides. Comp. Rev. Food Sci. Food Saf. 2022, 21, 4378–4401. [Google Scholar] [CrossRef]
- Herrera-Balandrano, D.D.; Chai, Z.; Beta, T.; Feng, J.; Huang, W. Blueberry anthocyanins: An updated review on approaches to enhancing their bioavailability. Trends Food Sci. Technol. 2021, 118, 808–821. [Google Scholar] [CrossRef]
- Cao, L.; Lee, S.G.; Shin, J.H. Effects of encapsulation methods on bioaccessibility of anthocyanins: A systematic review and meta-analysis. Food Funct. 2023, 14, 639–652. [Google Scholar] [CrossRef]
- Paes, F.E.R.; de Sabino, L.B.S.; da Silva, L.M.R.; da Silva, I.J.; Ricardo, N.M.P.S.; de Brito, D.H.A.; de Menezes, F.L.; de Figueiredo, R.W. Anthocyanins extracted from Jamelon fruits (Syzygium cumini L.): Effect of microencapsulation on the properties and bioaccessibility. S. Afr. J. Bot. 2024, 166, 423–431. [Google Scholar] [CrossRef]
- Barba-Ostria, C.; Carrera-Pacheco, S.E.; Gonzalez-Pastor, R.; Zuñiga, J.; Mayorga-Ramos, A.; Tejera, E.; Guamán, L. Exploring the Multifaceted Biological Activities of Anthocyanins Isolated from Two Andean Berries. Foods 2024, 13, 2625. [Google Scholar] [CrossRef] [PubMed]
- Yücetepe, M.; Tuğba Özaslan, Z.; Karakuş, M.Ş.; Akalan, M.; Karaaslan, A.; Karaaslan, M.; Başyiğit, B. Unveiling the multifaceted world of anthocyanins: Biosynthesis pathway, natural sources, extraction methods, copigmentation, encapsulation techniques, and future food applications. Food Res. Int. 2024, 187, 114437. [Google Scholar] [CrossRef]
- Rigolon, T.C.B.; Silva, R.R.A.; de Oliveira, T.V.; Nascimento, A.L.A.A.; de Barros, F.A.R.; Martins, E.; Campelo, P.H.; Stringheta, P.C. Exploring anthocyanins-polysaccharide synergies in microcapsule wall materials via spray drying: Interaction characterization and evaluation of particle stability. Meas. Food 2024, 13, 100126. [Google Scholar] [CrossRef]
- Llivisaca-Contreras, S.A.; León-Tamariz, F.; Manzano-Santana, P.; Ruales, J.; Naranjo-Morán, J.; Serrano-Mena, L.; Chica-Martínez, E.; Cevallos-Cevallos, J.M. Mortiño (Vaccinium floribundum Kunth): An Underutilized Superplant from the Andes. Horticulturae 2022, 8, 358. [Google Scholar] [CrossRef]
- Golovinskaia, O.; Wang, C.-K. Review of functional and pharmacological activities of berries. Molecules 2021, 26, 3904. [Google Scholar] [CrossRef] [PubMed]
- Sellappan, S.; Akoh, C.C.; Krewer, G. Phenolic compounds and antioxidant capacity of Georgia-grown blueberries and blackberries. J. Agric. Food Chem. 2002, 50, 2432–2438. [Google Scholar] [CrossRef]
- Moyer, R.A.; Hummer, K.E.; Finn, C.E.; Frei, B.; Wrolstad, R.E. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, rubus, and ribes. J. Agric. Food Chem. 2002, 50, 519–525. [Google Scholar] [CrossRef]
- Tzulker, R.; Glazer, I.; Bar-Ilan, I.; Holland, D.; Aviram, M.; Amir, R. Antioxidant activity, polyphenol content, and related compounds in different fruit juices and homogenates prepared from 29 different pomegranate accessions. J. Agric. Food Chem. 2007, 55, 9559–9570. [Google Scholar] [CrossRef]
- Ishiguro, K.; Kuranouchi, T.; Kai, Y.; Katayama, K. Comparison of anthocyanin and polyphenolics in purple sweetpotato (Ipomoea batatas Lam.) grown in different locations in Japan. Plant Prod. Sci. 2022, 25, 84–94. [Google Scholar] [CrossRef]
- Pan, P.; Skaer, C.W.; Stirdivant, S.M.; Young, M.R.; Stoner, G.D.; Lechner, J.F.; Huang, Y.-W.; Wang, L.-S. Beneficial regulation of metabolic profiles by black raspberries in human colorectal cancer patients. Cancer Prev. Res. 2015, 8, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.-S.; Burke, C.A.; Hasson, H.; Kuo, C.-T.; Molmenti, C.L.S.; Seguin, C.; Liu, P.; Huang, T.H.-M.; Frankel, W.L.; Stoner, G.D. A phase Ib study of the effects of black raspberries on rectal polyps in patients with familial adenomatous polyposis. Cancer Prev. Res. 2014, 7, 666–674. [Google Scholar] [CrossRef] [PubMed]
- Otálora, M.C.; Wilches-Torres, A.; Gómez Castaño, J.A. Spray-Drying Microencapsulation of Andean Blueberry (Vaccinium meridionale Sw.) Anthocyanins Using Prickly Pear (Opuntia ficus indica L.) Peel Mucilage or Gum Arabic: A Comparative Study. Foods 2023, 12, 1811. [Google Scholar] [CrossRef]
- Lingua, M.S.; Salomón, V.; Baroni, M.V.; Blajman, J.E.; Maldonado, L.M.; Páez, R. Effect of spray drying on the microencapsulation of blueberry natural antioxidants. Proceedings 2021, 70, 26. [Google Scholar]
- Li, X.; Wang, Y.; Jiang, Y.; Liu, C.; Zhang, W.; Chen, W.; Tian, L.; Sun, J.; Lai, C.; Bai, W. Microencapsulation with fructooligosaccharides and whey protein enhances the antioxidant activity of anthocyanins and their ability to modulate gut microbiota in vitro. Food Res. Int. 2024, 181, 114082. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.; Ji, Q.; Jin, Z.; Guo, T.; Yu, K.; Ding, W.; Liu, C.; Wu, Y.; Zhang, N. Nano-microencapsulation of tea seed oil via modified complex coacervation with propolis and phosphatidylcholine for improving antioxidant activity. LWT 2022, 163, 113550. [Google Scholar] [CrossRef]
- Wilkowska, A.; Ambroziak, W.; Adamiec, J.; Czyżowska, A. Preservation of Antioxidant Activity and Polyphenols in Chokeberry Juice and Wine with the Use of Microencapsulation. J. Food Process. Preserv. 2017, 41, e12924. [Google Scholar] [CrossRef]
- de Cássia Gomes da Rocha, J.; Caroline Buttow Rigolon, T.; Lorrane Rodrigues Borges, L.; Laís Alves Almeida Nascimento, A.; de Andrade Neves, N.; tuler Perrone, Í.; Stephani, R.; César Stringheta, P. Anthocyanin stability in a mix of phenolic extracts microencapsulated by maltodextrine, whey protein and gum arabic. J. Food Nutr. Res. 2023, 11, 1–12. [Google Scholar] [CrossRef]
- Lestario, L.N.; Melanie, M.; Rahardjo, M. Effect of maltodextrin concentration on anthocyanin content and antioxidant activity of rukem fruits extract powder. J. Teknol. Ind. Pangan 2023, 34, 142–151. [Google Scholar] [CrossRef]
- Nurhidajah, N.; Rosidi, A.; Yonata, D.; Nrrahman, N.; Pranata, B. Physicochemical Characteristics of Anthocyanin Extract Powder from Black Rice Based on Maltodextrin and Skimmed Milk Powder Ratio as Encapsulant. J. Tek. Pertan. Lampung 2023, 12, 152. [Google Scholar] [CrossRef]
- Jang, Y.; Koh, E. Effect of encapsulation on stability of anthocyanins and chlorogenic acid isomers in aronia during in vitro digestion and their transformation in a model system. Food Chem. 2024, 434, 137443. [Google Scholar] [CrossRef]
- Millinia, B.L.; Mashithah, D.; Nawatila, R.; Kartini, K. Microencapsulation of roselle (Hibiscus sabdariffa L.) anthocyanins: Effects of maltodextrin and trehalose matrix on selected physicochemical properties and antioxidant activities of spray-dried powder. Future Foods 2024, 9, 100300. [Google Scholar] [CrossRef]
- Paula da Silva Dos Passos, A.; Madrona, G.S.; Marcolino, V.A.; Baesso, M.L.; Matioli, G. The Use of Thermal Analysis and Photoacoustic Spectroscopy in the Evaluation of Maltodextrin Microencapsulation of Anthocyanins from Juçara Palm Fruit (Euterpe edulis Mart.) and Their Application in Food. Food Technol. Biotechnol. 2015, 53, 385–396. [Google Scholar] [CrossRef]
- Bottenmuller, A.; Théodon, L.; Debayle, J.; Vélez, D.T.; Tourbin, M.; Frances, C.; Gavet, Y. Granulometric analysis of maltodextrin particles observed by scanning electron microscopy. In Proceedings of the 2023 IEEE 13th International Conference on Pattern Recognition Systems (ICPRS), Guayaquil, Ecuador, 4–7 July 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–7. [Google Scholar]
- Li, Z.; Sun, B.; Zhu, Y.; Liu, L.; Huang, Y.; Lu, M.; Zhu, X.; Gao, Y. Effect of maltodextrin on the oxidative stability of ultrasonically induced soybean oil bodies microcapsules. Front. Nutr. 2022, 9, 1071462. [Google Scholar] [CrossRef]
- Abdelhamid, H.N. Characterization and modeling of drug release encapsulation materials. In Comprehensive Materials Processing; Elsevier: Amsterdam, The Netherlands, 2024; pp. 97–108. ISBN 9780323960212. [Google Scholar]
- Perković, G.; Planinić, M.; Šelo, G.; Martinović, J.; Nedić, R.; Puš, M.; Bucić-Kojić, A. Optimisation of the encapsulation of grape pomace extract by spray drying using goat whey protein as coating material. Coatings 2024, 14, 1101. [Google Scholar] [CrossRef]
- Piacentini, E.; Dragosavac, M.; Giorno, L. Pharmaceutical particles design by membrane emulsification: Preparation methods and applications in drug delivery. Curr. Pharm. Des. 2017, 23, 302–318. [Google Scholar] [CrossRef] [PubMed]
- Rokkam, M.; Vadaga, A.K. A brief review on the current trends in microencapsulation. J. Pharma Insights Res. 2024, 2, 108–114. [Google Scholar] [CrossRef]
- Aslam, S.; Khan, R.S.; Maqsood, S.; Khalid, N. Application of nano/microencapsulated ingredients in drinks and beverages. In Application of Nano/Microencapsulated Ingredients in Food Products; Elsevier: Amsterdam, The Netherlands, 2021; pp. 105–169. ISBN 9780128157268. [Google Scholar]
- Kalkumbe, A. Microencapsulation: A Review. Int. J. Pharm. Biol. Sci. 2022, 3, 509–531. [Google Scholar] [CrossRef]
- Yan, C.; Kim, S.-R. Microencapsulation for pharmaceutical applications: A review. ACS Appl. Bio Mater. 2024, 7, 692–710. [Google Scholar] [CrossRef]
- Nguyen, D.Q.; Nguyen, T.H.; Mounir, S.; Allaf, K. Effect of feed concentration and inlet air temperature on the properties of soymilk powder obtained by spray drying. Dry. Technol. 2017, 36, 817–829. [Google Scholar] [CrossRef]
- von Halling Laier, C.; Sonne Alstrøm, T.; Travers Bargholz, M.; Bjerg Sjøltov, P.; Rades, T.; Boisen, A.; Nielsen, L.H. Evaluation of the effects of spray drying parameters for producing cubosome powder precursors. Eur. J. Pharm. Biopharm. 2019, 135, 44–48. [Google Scholar] [CrossRef]
- Alonso, B.; Cruces, R.; Perez, A.; Fernandez-Cruz, A.; Guembe, M. Activity of maltodextrin and vancomycin against staphylococcus aureus biofilm. Front. Biosci. Sch. Ed. 2018, 10, 300–308. [Google Scholar] [CrossRef]
- Grande-Tovar, C.; Araujo Pabón, L.; Flórez López, E.; Aranaga Arias, C. Determinación de la actividad antioxidante y antimicrobiana de residuos de mora (Rubus glaucus Benth). Inf. Téc. 2020, 85, 64–82. [Google Scholar] [CrossRef]
- Garzón, G.A.; Soto, C.Y.; López-R, M.; Riedl, K.M.; Browmiller, C.R.; Howard, L. Phenolic profile, in vitro antimicrobial activity and antioxidant capacity of Vaccinium meridionale swartz pomace. Heliyon 2020, 6, e03845. [Google Scholar] [CrossRef]
- Dong, Y.; Yang, C.; Zhong, W.; Shu, Y.; Zhang, Y.; Yang, D. Antibacterial effect and mechanism of anthocyanin from Lycium ruthenicum Murr. Front. Microbiol. 2022, 13, 974602. [Google Scholar] [CrossRef] [PubMed]
- Jeyaraj, E.J.; Vidana Gamage, G.C.; Cintrat, J.-C.; Choo, W.S. Acylated and non-acylated anthocyanins as antibacterial and antibiofilm agents. Discov. Food 2023, 3, 21. [Google Scholar] [CrossRef]
- Llivisaca, S.; Manzano, P.; Ruales, J.; Flores, J.; Mendoza, J.; Peralta, E.; Cevallos-Cevallos, J.M. Chemical, antimicrobial, and molecular characterization of mortiño (Vaccinium floribundum Kunth) fruits and leaves. Food Sci. Nutr. 2018, 6, 934–942. [Google Scholar] [CrossRef] [PubMed]
- Paczkowska-Walendowska, M.; Gościniak, A.; Szymanowska, D.; Szwajgier, D.; Baranowska-Wójcik, E.; Szulc, P.; Dreczka, D.; Simon, M.; Cielecka-Piontek, J. Blackberry Leaves as New Functional Food? Screening Antioxidant, Anti-Inflammatory and Microbiological Activities in Correlation with Phytochemical Analysis. Antioxidants 2021, 10, 1945. [Google Scholar] [CrossRef] [PubMed]
- Mudrić, J.; Ibrić, S.; Đuriš, J. Microencapsulation methods for plants biologically active compounds: A review. Lek. Sirovine 2018, 38, 62–67. [Google Scholar] [CrossRef]
- Rahaiee, S.; Assadpour, E.; Faridi Esfanjani, A.; Silva, A.S.; Jafari, S.M. Application of nano/microencapsulated phenolic compounds against cancer. Adv. Colloid Interface Sci. 2020, 279, 102153. [Google Scholar] [CrossRef]
- Fathi, F.; Ebrahimi, S.N.; Pereira, D.M.; Estevinho, B.N.; Rocha, F. Preliminary studies of microencapsulation and anticancer activity of polyphenols extract from Punica granatum peels. Can. J. Chem. Eng. 2022, 100, 3240–3252. [Google Scholar] [CrossRef]
- Kazan, A.; Sevimli-Gur, C.; Yesil-Celiktas, O.; Dunford, N.T. In vitro tumor suppression properties of blueberry extracts in liquid and encapsulated forms. Eur. Food Res. Technol. 2017, 243, 1057–1063. [Google Scholar] [CrossRef]
- Liu, Q.; Hamid, N.; Liu, Y.; Kam, R.; Kantono, K.; Wang, K.; Lu, J. Bioactive Components and Anticancer Activities of Spray-Dried New Zealand Tamarillo Powder. Molecules 2022, 27, 2687. [Google Scholar] [CrossRef]
- Navolokin, N.; Lomova, M.; Bucharskaya, A.; Godage, O.; Polukonova, N.; Shirokov, A.; Grinev, V.; Maslyakova, G. Antitumor Effects of Microencapsulated Gratiola officinalis Extract on Breast Carcinoma and Human Cervical Cancer Cells In Vitro. Materials 2023, 16, 1470. [Google Scholar] [CrossRef]
- Sharif, N.; Khoshnoudi-Nia, S.; Jafari, S.M. Nano/microencapsulation of anthocyanins; a systematic review and meta-analysis. Food Res. Int. 2020, 132, 109077. [Google Scholar] [CrossRef] [PubMed]
- Aftab, A.; Ahmad, B.; Bashir, S.; Rafique, S.; Bashir, M.; Ghani, T.; Gul, A.; Shah, A.U.; Khan, R.; Sajini, A.A. Comparative study of microscale and macroscale technique for encapsulation of Calotropis gigantea extract in metal-conjugated nanomatrices for invasive ductal carcinoma. Sci. Rep. 2023, 13, 13474. [Google Scholar] [CrossRef] [PubMed]
- Ondua, M.; Njoya, E.M.; Abdalla, M.A.; McGaw, L.J. Anti-inflammatory and antioxidant properties of leaf extracts of eleven South African medicinal plants used traditionally to treat inflammation. J. Ethnopharmacol. 2019, 234, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Sharma, J.N.; Al-Omran, A.; Parvathy, S.S. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 2007, 15, 252–259. [Google Scholar] [CrossRef]
- Rathod, N.B.; Elabed, N.; Punia, S.; Ozogul, F.; Kim, S.-K.; Rocha, J.M. Recent Developments in Polyphenol Applications on Human Health: A Review with Current Knowledge. Plants 2023, 12, 1217. [Google Scholar] [CrossRef]
- Pachuau, L.; Laldinchhana; Roy, P.K.; Zothantluanga, J.H.; Ray, S.; Das, S. Encapsulation of bioactive compound and its therapeutic potential. In Bioactive Natural Products for Pharmaceutical Applications; Pal, D., Nayak, A.K., Eds.; Advanced Structured Materials; Springer International Publishing: Cham, Switzerland, 2021; Volume 140, pp. 687–714. ISBN 978-3-030-54026-5. [Google Scholar]
- Bhatt, S.C.; Naik, B.; Kumar, V.; Gupta, A.K.; Kumar, S.; Preet, M.S.; Sharma, N.; Rustagi, S. Untapped potential of non-conventional rubus species: Bioactivity, nutrition, and livelihood opportunities. Plant Methods 2023, 19, 114. [Google Scholar] [CrossRef]
- Pérez, B.; Endara, A.; Garrido, J.; Ramírez Cárdenas, L. Extraction of anthocyanins from Mortiño (Vaccinium floribundum) and determination of their antioxidant capacity. Rev. Fac. Nac. Agron. Medellín 2021, 74, 9453–9460. [Google Scholar] [CrossRef]
- Wrolstad, R.E.; Durst, R.W.; Lee, J. Tracking color and pigment changes in anthocyanin products. Trends Food Sci. Technol. 2005, 16, 423–428. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Oxidants and Antioxidants Part A; Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, pp. 152–178. ISBN 9780121822002. [Google Scholar]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef]
- Teran, R.; Guevara, R.; Mora, J.; Dobronski, L.; Barreiro-Costa, O.; Beske, T.; Pérez-Barrera, J.; Araya-Maturana, R.; Rojas-Silva, P.; Poveda, A.; et al. Characterization of Antimicrobial, Antioxidant, and Leishmanicidal Activities of Schiff Base Derivatives of 4-Aminoantipyrine. Molecules 2019, 24, 2696. [Google Scholar] [CrossRef]
- Cutler, R.R.; Wilson, P. Antibacterial activity of a new, stable, aqueous extract of allicin against methicillin-resistant Staphylococcus aureus. Br. J. Biomed. Sci. 2004, 61, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-C.; Ku, W.-C.; Liu, C.-Y.; Cheng, Y.-C.; Chien, C.-C.; Chang, K.-W.; Huang, C.-J. Supplementation of Probiotic Butyricicoccus pullicaecorum Mediates Anticancer Effect on Bladder Urothelial Cells by Regulating Butyrate-Responsive Molecular Signatures. Diagnostics 2021, 11, 2270. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Liufang, H.; Shah, S.M.; Ali, F.; Khan, S.A.; Shah, F.A.; Li, J.B.; Li, S. Cytotoxic effects of extracts and isolated compounds from Ifloga spicata (forssk.) sch. bip against HepG-2 cancer cell line: Supported by ADMET analysis and molecular docking. Front. Pharmacol. 2022, 13, 986456. [Google Scholar] [CrossRef] [PubMed]
- Eo, H.J.; Jang, J.H.; Park, G.H. Anti-Inflammatory Effects of Berchemia floribunda in LPS-Stimulated RAW264.7 Cells through Regulation of NF-κB and MAPKs Signaling Pathway. Plants 2021, 10, 586. [Google Scholar] [CrossRef]
Parameter | V. floribundum | R. glaucus |
---|---|---|
Total polyphenols content (TPC) (gallic acid mg/100 g fresh weight) | 354 ± 25.16 * | 294 ± 24.03 * |
Anthocyanin content (mg/100 g) | 79.67 ± 5.61 * | 53.3± 3.9 * |
Antioxidant activity of fruit extract (IC50 DPPH assay expressed in μg/mL anthocyanins) | 83.5 ± 19.40 * | 167.92 ± 39.57 * |
Wavenumber (cm−1) | Functional Group | Non-Microencapsulated (Qualitative Intensity) | Microencapsulated (Qualitative Intensity) |
---|---|---|---|
3200–3600 | O-H stretching (hydroxyl) | High | Medium |
2800–3000 | C-H stretching (alkanes) | - | Medium |
1700–1750 | C=O stretching (carbonyl) | High | Low |
1500–1600 | C=C stretching (aromatic rings) | Medium | Low |
1000–1300 | C-O, C-O-C stretching (ethers, glycosidic bonds) | Medium | Low |
1027 | C-O-C stretching (polysaccharides) | - | Medium |
Wavenumber (cm−1) | Functional Group | Non-Microencapsulated (Qualitative Intensity) | Microencapsulated (Qualitative Intensity) |
---|---|---|---|
3200–3600 | O-H stretching (hydroxyl) | High | Medium |
2800–3000 | C-H stretching (alkanes) | Low | Medium |
1700–1750 | C=O stretching (carbonyl) | Medium | Low |
1500–1600 | C=C stretching (aromatic rings) | Medium | Low |
1000–1300 | C-O, C-O-C stretching (ethers, glycosidic bonds) | Medium | Low to Medium |
1027 | C-O-C stretching (polysaccharides) | - | Medium |
MDAMB231 | SKMEL103 | HCT116 | HT29 | NIH3T3 | |
---|---|---|---|---|---|
R. glaucus | 4.16 ± 0.25 *** | 3.07 ± 0.60 *** | 5.03 ± 0.09 *** | 4.76 ± 0.20 *** | 4.32 ± 0.37 *** |
V. floribundum | 8.15 ± 1.67 | 15.46 ± 1.01 | 15.59 ± 3.55 | 10.53 ± 0.22 | 10.44 ± 1.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barba-Ostria, C.; Gonzalez-Pastor, R.; Castillo-Solís, F.; Carrera-Pacheco, S.E.; Lopez, O.; Zúñiga-Miranda, J.; Debut, A.; Guamán, L.P. Bioactive Properties of Microencapsulated Anthocyanins from Vaccinium floribundum and Rubus glaucus. Molecules 2024, 29, 5504. https://doi.org/10.3390/molecules29235504
Barba-Ostria C, Gonzalez-Pastor R, Castillo-Solís F, Carrera-Pacheco SE, Lopez O, Zúñiga-Miranda J, Debut A, Guamán LP. Bioactive Properties of Microencapsulated Anthocyanins from Vaccinium floribundum and Rubus glaucus. Molecules. 2024; 29(23):5504. https://doi.org/10.3390/molecules29235504
Chicago/Turabian StyleBarba-Ostria, Carlos, Rebeca Gonzalez-Pastor, Fabián Castillo-Solís, Saskya E. Carrera-Pacheco, Orestes Lopez, Johana Zúñiga-Miranda, Alexis Debut, and Linda P. Guamán. 2024. "Bioactive Properties of Microencapsulated Anthocyanins from Vaccinium floribundum and Rubus glaucus" Molecules 29, no. 23: 5504. https://doi.org/10.3390/molecules29235504
APA StyleBarba-Ostria, C., Gonzalez-Pastor, R., Castillo-Solís, F., Carrera-Pacheco, S. E., Lopez, O., Zúñiga-Miranda, J., Debut, A., & Guamán, L. P. (2024). Bioactive Properties of Microencapsulated Anthocyanins from Vaccinium floribundum and Rubus glaucus. Molecules, 29(23), 5504. https://doi.org/10.3390/molecules29235504