Changes in Morphological, Physiological and Phytochemical Traits of Different Dill (Anethum graveolens L.) Cultivars as Affected by Light-Emitting Diodes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of LED Light Spectra on Dill Cultivars’ Growth
2.2. Effect of LED Light Spectra on the Dill Cultivars Color Index
2.3. Effect of LED Light Spectra on Photosynthesis Pigments in Dill Cultivars
2.4. Effect of LED Light Spectra on Physiological Parameters of Dill Cultivars
2.5. Effect of LED Light Spectra on Essential Oil Composition in Dill Cultivars
2.6. Heat Map and PCA of LED Light Spectra Impact on Dill Cultivars Growth and Physiological Characteristics
2.7. Heat Map and PCA of LED Light Spectra Impact on Dill Essential Oil in Different Cultivars
3. Materials and Methods
3.1. Design of Experiments, Cultivation, and Treatment Application
3.2. Measured Parameters
3.2.1. Plant Growth Parameters
3.2.2. Color Index
3.2.3. Total Carotenoid and Chlorophyll Content of the Leaves
3.2.4. The Leaf Relative Water Content
3.2.5. Concentrations of Proline
3.2.6. Total Phenolics
3.2.7. Flavonoid Concentrations
3.2.8. Antioxidant Activity
3.2.9. Determination of Electrolyte Leakage (EL)
3.2.10. Percentage and Components of Essential Oils
3.2.11. Essential Oil Analysis
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sangwan, R.S.; Chaurasiya, N.D.; Lal, P.; Misra, L.; Tuli, R.; Sangwan, N.S. Withanolide a is inherently de novo biosynthesized in roots of the medicinal plant ashwagandha (Withania somnifera). Physiol. Plant. 2008, 133, 278–287. [Google Scholar] [CrossRef] [PubMed]
- El Haddaji, H.; Akodad, M.; Skalli, A.; Moumen, A.; Bellahcen, S.; Elhani, S.; Urrestarazu, M.; Kolar, M.; Imperl, J.; Petrova, P.; et al. Effects of light-emitting diodes (leds) on growth, nitrates and osmoprotectant content in microgreens of aromatic and medicinal plants. Horticulturae 2023, 9, 494. [Google Scholar] [CrossRef]
- Lazić, B.; Ilić, Z.; Đurovka, M. Organska Proizvodnja Povrća; Centar za Organsku Poljoprivredu iz Selenče i Univerzitet Edukons: Sremska Kamenica, Serbia, 2013. [Google Scholar]
- Goswami, A.; Mitra, A. Light spectra manipulation stimulates growth, specialized metabolites and nutritional quality in Anethum graveolens. J. Photochem. Photobiol. B Biol. 2023, 249, 112812. [Google Scholar] [CrossRef]
- Alan, O.; Kanturer, D.; Powell, A.A.; Ilbi, H. Growing season climate affects phenological development, seed yield and seed quality of dill (Anethum graveolens). Seed Sci. Technol. 2022, 50, 11–20. [Google Scholar] [CrossRef]
- Raut, S.J.; Karuppayil, S.M. A status review on the medicinal properties of the essental oils. Ind. Crop. Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
- Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Bhat, M.A.; Prabhakar, A.; Shalla, H.; Rather, M.A. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug resistant microbial pathogens. Microb. Pathog. 2019, 134, 103580. [Google Scholar] [CrossRef] [PubMed]
- Dagli, N.; Dagli, R.; Mahmoud, R.S.; Baroudi, K. Essential oils, their therapeutic properties, and implications in dentristry. A review. J. Int. Soc. Prev. Community Dent. 2015, 5, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Milenković, L.; Ilić, Z.S.; Stanojević, L.; Danilović, B.; Šunić, L.; Kevrešan, Ž.; Stanojević, J.; Cvetković, D. Chemical composition and bioactivity of dill seed (Anethum graveolens L.) essential oil from plants grown under shading. Plants 2024, 13, 886. [Google Scholar] [CrossRef]
- Osakabe, Y.; Osakabe, K.; Shinozaki, K.; Tran, L.S.P. Response of plants to water stress. Front Plant Sci. 2014, 5, 86. [Google Scholar] [CrossRef]
- Rahimmalek, M.; Szumny, A.; Gharibi, S.; Pachura, N.; Miroliaei, M.; Łyczko, J. Chemical Investigations in Kelussia odoratissima Mozaff. leaves based on comprehensive analytical methods: LC-MS, SPME, and GC-MS Analyses. Molecules 2023, 28, 6140. [Google Scholar] [CrossRef]
- Raffo, A.; Mozzanini, E.; Ferrari Nicoli, S.; Lupotto, E.; Cervelli, C. Effect of light intensity and water availability on plant growth, essential oil production and composition in Rosmarinus officinalis L. Eur. Food Res. Technol. 2020, 246, 167–177. [Google Scholar] [CrossRef]
- Rafeie, M.; Shabani, L.; Sabzalian, M.R.; Gharibi, S. Pretreatment with LEDs regulates antioxidant capacity and polyphenolic profile in two genotypes of basil under salinity stress. Protoplasma 2022, 259, 1567–1583. [Google Scholar] [CrossRef] [PubMed]
- Lin, K.H.; Huang, M.Y.; Huang, W.D.; Hsu, M.H.; Yang, Z.W.; Yang, C.M. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci. Hortic. 2013, 150, 86–91. [Google Scholar] [CrossRef]
- Aldarkazali, M.; Rihan, H.Z.; Carne, D.; Fuller, M.P. The growth and development of sweet basil (Ocimum basilicum) and bush basil (Ocimum minimum) grown under three light regimes in a controlled environment. Agronomy 2019, 9, 743. [Google Scholar] [CrossRef]
- Ghafari, Z.; Rahimmalek, M.; Sabzalian, M.R. Variation in the primary and secondary metabolites derived from the isoprenoid pathway in the Perovskia species in response to diferent wavelengths generated by light emitting diodes (LEDs). Ind Crop. Prod. 2019, 140, 111592. [Google Scholar] [CrossRef]
- Tohidi, B.; Rahimmalek, M.; Arzani, A.; Sabzalian, M.R. Thymol, carvacrol, and antioxidant accumulation in Thymus species in response to different light spectra emitted by light-emitting diodes. Food Chem. 2019, 307, 125521. [Google Scholar] [CrossRef]
- Chu, H.T.T.; Vu, T.N.; Dinh, T.T.T.; Do, P.T.; Chu, H.H.; Tien, T.Q.; Tong, Q.C.; Nguyen, M.H.; Ha, Q.T.; Setzer, W.N. Effects of supplemental light spectra on the composition, production and antimicrobial activity of Ocimum basilicum L. essential oil. Molecules 2022, 27, 5599. [Google Scholar] [CrossRef]
- Amaki, W.; Yamazaki, N.; Watanabe, H.; Ichimura, M. Efects of light quality on the growth and essential oil content in sweet basil. Acta Hortic. 2011, 907, 91–94. [Google Scholar] [CrossRef]
- Sabzalian, M.R.; Heydarizadeh, P.; Zahedi, M.; Boroomand, A.; Agharokh, M.; Sahba, M.R.; Schoefs, B. High performance of vegetables, fowers and medicinal plants in a red-blue LED incubator for indoor plant production. Agron. Sustain. Dev. 2014, 65, 127–136. [Google Scholar] [CrossRef]
- Johkan, M.; Shoji, K.; Goto, F.; Hashida, S.; Yoshihara, T. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 2010, 12, 1809–1814. [Google Scholar] [CrossRef]
- Gahler, S.; Otto, K.; Bohm, V. Alterations of vitamin C, total phenolics, and antioxidant capacity as afected by processing tomatoes to diferent products. J. Agric. Food Chem. 2003, 51, 7962–7968. [Google Scholar] [CrossRef] [PubMed]
- Rajendra, P.P.; Rakshapal, S.; Rajeswara, R.; Singh, R.R.; Abhilasha, S.; Lal, R.K. Differential response of genotype × environment on phenology, essential oil yield and quality of natural aroma chemicals of fve Ocimum species. Ind. Crop. Prod. 2016, 87, 210–217. [Google Scholar] [CrossRef]
- Gholami Zali, A.G.; Ehsanzadeh, P. Exogenous proline improves osmoregulation, physiological functions, essential oil, and seed yield of fennel. Ind. Crop. Prod. 2018, 111, 133–140. [Google Scholar] [CrossRef]
- Dutta Gupta, S.; Jatothu, B. Fundamentals and applications of light emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnol. Rep. 2013, 7, 211–220. [Google Scholar] [CrossRef]
- Simlat, M.; Ślęzak, P.; Moś, M.; Warchoł, M.; Skrzypek, E.; Ptak, A. The effect of light quality on seed germination, seedling growth and selected biochemical properties of Stevia rebaudiana Bertoni. Sci Hortic. 2016, 211, 295–304. [Google Scholar] [CrossRef]
- Yu, W.; Liu, Y.; Song, L.; Jacobs, D.; Du, X.; Ying, Y.; Shao, Q.; Wu, J. Effect of differential light quality on morphology, photosynthesis, and antioxidant enzyme activity in Camptotheca acuminata seedlings. J. Plant Growth Regul. 2017, 36, 148–160. [Google Scholar] [CrossRef]
- Saleem, H.M.; Rahman, M.; Fahad, S.; Tung, S.; Iqbal, N.; Hassan, A.; Ayub, A.; Wahid, M.; Shaukat, S.; Liu, L.; et al. Leaf gas exchange, oxidative stress, and physiological attributes of rapeseed (Brassica napus L.) grown under different light-emitting diodes. Photosynthetica 2020, 58, 836. [Google Scholar] [CrossRef]
- Kurepin, L.V.; Walton, L.J.; Reid, D.M. Interaction of red to far red light ratio and ethylene in regulating stem elongation of Helianthus annuus. Plant Growth Regul. 2007, 51, 53–61. [Google Scholar] [CrossRef]
- Schaer, J.A.; Mandoli, D.F.; Briggs, W.R. Phytochrome-mediated cellular photomorphogenesis. Plant Physiol. 1983, 72, 706–712. [Google Scholar] [CrossRef]
- He, J.; Qin, L.; Chow, W.S. Impacts of LED spectral quality on leafy vegetables: Productivity closely linked to photosynthetic performance or associated with leaf traits? Int. J. Agric. Biol. Eng. 2019, 12, 16–25. [Google Scholar] [CrossRef]
- Frąszczak, B.; Gąsecka, M.; Golcz, A.; Zawirska Wojtasiak, R. The effect of radiation of LED modules on the growth of dill (Anethum graveolens L.). Open Life Sci. 2016, 11, 61–70. [Google Scholar] [CrossRef]
- Islam, M.A.; Kuwar, G.; Clarke, J.L.; Blystad, D.R.; Gislerød, H.R.; Olsen, J.E.; Torre, S. Artificial light from light emitting diodes (LEDs) with a high portion of blue light results in shorter poinsettias compared to high pressure sodium (HPS) lamps. Sci. Hortic. 2012, 147, 136–143. [Google Scholar] [CrossRef]
- Shoko, T.; Manhivi, V.E.; Mtlhako, M.; Sivakumar, D. Changes in functional compounds, volatiles, and antioxidant properties of culinary herb coriander leaves (Coriandrum sativum) stored under red and blue led light for different storage times. Front. Nutr. 2022, 9, 856484. [Google Scholar] [CrossRef] [PubMed]
- Owen, W.G.; Lopez, R.G. End-of-production supplemental lighting with red and blue light-emitting diodes (LEDs) influences red pigmentation of four lettuce varieties. HortScience 2015, 50, 676–684. [Google Scholar] [CrossRef]
- Lee, J.H.; Soh, S.Y.; Kim, H.J.; Nam, S.Y. Effects of LED light quality on the growth and leaf color of Orostachys japonica and O. boehmeri. J. Bio-Environ. Control 2022, 31, 104–113. [Google Scholar] [CrossRef]
- Kasajima, I. Measuring plant colors. Plant Biotechnol. 2019, 36, 63–75. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, H.; Sun, P.; Fan, Y.; Qiao, M.; Zhang, L.; Zhang, Z. Response of leaf color and the expression of photoreceptor genes of Camellia sinensis cv. Huangjinya to different light quality conditions. Sci. Hortic. 2019, 251, 225–232. [Google Scholar] [CrossRef]
- Hernandez, R.; Eguchi, T.; Deveci, M.; Kubota, C. Tomato seedling physiological responses under different percentages of blue and red photon flux ratios using LEDs and cool white fluorescent lamps. Sci Hortic. 2016, 213, 270–280. [Google Scholar] [CrossRef]
- Ahmadi, T.; Shabani, L.; Sabzalian, M.R. LED light sources improved the essential oil components and antioxidant activity of two genotypes of lemon balm (Melissa officinalis L.). Bot. Stud. 2021, 62, 9. [Google Scholar] [CrossRef]
- Amoozgar, A.; Mohammadi, A.; Sabzalian, M. Impact of light-emitting diode irradiation on photosynthesis, phytochemical composition and mineral element content of lettuce cv. Grizzly. Photosynthetica 2017, 55, 85–95. [Google Scholar] [CrossRef]
- Vitale, E.; Vitale, L.; Costanzo, G.; Velikova, V.; Tsonev, T.; Simoniello, P.; De Micco, V.; Arena, C. Light spectral composition influences structural and eco-physiological traits of Solanum lycopersicum L. cv. ‘Microtom’ in response to high-let ionizing radiation. Plants 2021, 10, 1752. [Google Scholar] [CrossRef] [PubMed]
- Buckley, T.N.; John, G.P.; Scoffoni, C.; Sack, L. How does leaf anatomy influence water transport outside the xylem? Plant Physiol. 2015, 168, 1616–1635. [Google Scholar] [CrossRef] [PubMed]
- Amitrano, C.; Arena, C.; Cirillo, V.; De Pascale, S.; De Micco, V. Leaf morpho-anatomical traits in Vigna radiata L. affect plant photosynthetic acclimation to changing vapor pressure deficit. Environ. Exp. Bot. 2021, 186, 104453. [Google Scholar] [CrossRef]
- Amitrano, C.; Arena, C.; Rouphael, Y.; De Pascale, S.; De Micco, V. Vapour pressure deficit: The hidden driver behind plant morphofunctional traits in controlled environments. Ann. Appl. Biol. 2019, 175, 313–325. [Google Scholar] [CrossRef]
- Verbruggen, N.; Hermans, C. Proline accumulation in plants: A review. Amino Acids 2008, 35, 753–759. [Google Scholar] [CrossRef]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments: A review. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef]
- Kim, K.; Kook, H.; Jang, Y.; Lee, W.; Kamala Kannan, S.; Chae, J.; Lee, K. The effect of blue-light-emitting diodes on antioxidant properties and resistance to Botrytis cinerea in tomato. J. Plant Pathol. Microbiol. 2013, 4, 9. [Google Scholar]
- Lobiuc, A.; Vasilache, V.; Pintilie, O.; Stoleru, T.; Burducea, M.; Oroian, M.; Zamfirache, M.M. Blue and red LED illumination improves growth and bioactive compounds contents in acyanic and cyanic Ocimum basilicum L. microgreens. Molecules 2017, 22, 2111. [Google Scholar] [CrossRef]
- Saldarriaga, J.F.; Cruz, Y.; Lopez, J.E. Preliminary study of the production of metabolites from in vitro cultures of C. ensiformis. BMC Biotechnol. 2020, 20, 49. [Google Scholar] [CrossRef]
- Jung, W.S.; Chung, I.M.; Hwang, M.H.; Kim, S.H.; Yu, C.Y.; Ghimire, B.K. Application of light-emitting diodes for improving the nutritional quality and bioactive compound levels of some crops and medicinal plants. Molecules 2021, 26, 1477. [Google Scholar] [CrossRef]
- HucheThelier, L.; Crespel, L.; Le Gourrierec, J.; Morel, P.; Sakr, S.; Leduc, N. Light signaling and plant responses to blue and UV radiations perspectives for applications in horticulture. EEB 2016, 121, 22–38. [Google Scholar] [CrossRef]
- Sarfaraz, D.; Rahimmalek, M.; Sabzalian, M.R.; Gharibi, S.; Matkowski, A.; Szumny, A. Essential oil composition and antioxidant activity of oregano and marjoram as affected by different light-emitting diodes. Molecules 2023, 28, 3714. [Google Scholar] [CrossRef]
- Adil, M.; Ren, X.; Jeong, B.R. Light elicited growth, antioxidant enzymes activities and production of medicinal compounds in callus culture of Cnidium officinale Makino. J. Photochem. Photobiol. B Biol. 2019, 196, 111509. [Google Scholar] [CrossRef] [PubMed]
- Shekelle, P.G.; Morton, S.C.; Jungvig, L.K.; Udani, J.; Spar, M.; Tu, W.; Suttorp, M.J.; Coulter, I.; Newberry, S.J.; Hardy, M. Effect of supplemental vitamin E for the prevention and treatment of cardiovascular disease. J. Gen. Intern. Med. 2004, 19, 380–389. [Google Scholar] [CrossRef] [PubMed]
- Son, K.H.; Oh, M.M. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience 2013, 48, 988–995. [Google Scholar] [CrossRef]
- Shibaeva, T.G.; Mamaev, A.V.; Sherudilo, E.G.; Titov, A.F. The role of photosynthetic daily light integral in plant response to extended photoperiods. Russ. J. Plant Physiol. 2022, 69, 7. [Google Scholar] [CrossRef]
- Ginzburg, D.N.; Klein, J.D. LED pre-exposure shines a new light on drought tolerance complexity in lettuce (Lactuca sativa) and rocket (Eruca sativa). Environ. Exp. Bot. 2020, 180, 104240. [Google Scholar] [CrossRef]
- Koeduka, T.; Watanabe, B.; Shirahama, K.; Nakayasu, M.; Suzuki, S.; Furuta, T.; Suzuki, H.; Matsui, K.; Kosaka, T.; Ozaki, S.I. Biosynthesis of dillapiole/apiole in dill (Anethum graveolens): Characterization of regioselective phenylpropene O-methyltransferase. Plant 2023, 113, 562–575. [Google Scholar] [CrossRef]
- Kaur, V.; Kaur, R.; Bhardwaj, U. A review on dill essential oil and its chief compounds as natural biocide. Flavour Fragr. J. 2021, 36, 412–431. [Google Scholar] [CrossRef]
- Nguyen, T.L.; Saleh, M.A. Effect of exposure to light emitted diode (LED) lights on essential oil composition of sweet mint plants. J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng. 2019, 54, 435–440. [Google Scholar] [CrossRef]
- Tian, Y.W.; Wang, X.J. Analysis of leaf parameters measurement of cucumber based on image processing. In Proceedings of the 2009 WRI World Congress on Software Engineering, Xiamen, China, 19–21 May 2009; Volume 3, pp. 34–37. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C.; Rahmsdorf, U. The importance of blue light for the development of sun-type chloroplasts. In The Blue Light Syndrome; Proceedings in life sciences; Senger, H., Ed.; Springer: Berlin/Heidelberg, Germany, 1980; pp. 485–494. [Google Scholar] [CrossRef]
- López-Serrano, L.; Canet-Sanchis, G.; Vuletin Selak, G.; Penella, C.; San Bautista, A.; López-Galarza, S.; Calatayud, Á. Pepper rootstock and scion physiological responses under drought stress. Front. Plant Sci. 2019, 10, 38. [Google Scholar] [CrossRef] [PubMed]
- Bates, L.S.; Waldarn, R.P.; Teare, I.P. Rapid determination of free proline for water studies. Plant Soil 1973, 39, 205–208. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Yazdizadeh Shotorbani, N.; Jamei, R.; Heidari, R. Antioxidant activities of two sweet pepper Capsicum annuum L cultivars phenolic extracts and the efects of thermal treatment. Am. J. Physiol. 2013, 3, 25–34. [Google Scholar] [CrossRef]
- Koleva, I.I.; Van Beek, T.A.; Linssen, J.P.H.; de Groot, A.; Evstatieva, L.N. Screening of plant extracts for antioxidant activity: A comparative study on three testing methods. Phytochem. Anal. 2002, 13, 8–17. [Google Scholar] [CrossRef]
- Bajji, M.; Kinet, J.M.; Lutts, S. The use of the electrolyte leakage method for assessing cell membrane stability as a water stress tolerance test in durum wheat. Plant Growth Regul. 2002, 36, 61–70. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Compounds by Gas Chromatography. QMS; Allured Publ.: Carol Stream, IL, USA, 2007. [Google Scholar]
Compound | RIa | Khomein | Isfahan | Varamin | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | B | R | RB | W | C | B | R | RB | W | C | B | R | RB | W | ||
2-butyl-octanol | 798 | nd | nd | 2.82 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | 8.22 | nd |
α-pinene | 939 | nd | nd | nd | 0.49 | 0.66 | nd | nd | nd | 0.07 | nd | nd | nd | nd | nd | nd |
β-pinene | 976 | 0.62 | nd | nd | 0.73 | 0.56 | nd | nd | 0.37 | 0.52 | 0.22 | nd | 3.48 | nd | nd | nd |
α-phellandrene | 1004 | 28.97 | nd | nd | 17.85 | 17.7 | 17.6 | 45.55 | 3.62 | 29.53 | 2.66 | 10.85 | 13.59 | 3.04 | 22.19 | 2.79 |
3-carene | 1018 | 11.43 | nd | nd | nd | 6.46 | 5.11 | nd | 0.16 | nd | nd | 4.04 | nd | 1.36 | nd | nd |
m-cymene | 1024 | nd | nd | nd | nd | nd | nd | nd | 0.44 | 1.02 | 2.16 | nd | 3.45 | nd | nd | 7.67 |
γ-terpinene | 1060 | nd | nd | nd | 0.34 | nd | nd | nd | nd | 0.64 | nd | nd | nd | nd | nd | nd |
terpinolene | 1086 | nd | nd | nd | 6.15 | nd | nd | nd | 0.72 | 3.03 | nd | nd | nd | nd | nd | nd |
undecane | 1100 | 3.98 | nd | nd | 1.38 | nd | nd | nd | nd | 3.44 | nd | nd | nd | nd | 0.85 | nd |
n-tridecane | 1300 | 0.6 | 2.82 | nd | nd | nd | 0.63 | nd | nd | nd | nd | 1.43 | nd | nd | nd | 0.7 |
dill ether | 1118 | nd | nd | nd | 0.78 | nd | nd | nd | nd | 2.58 | 4.87 | nd | 8.68 | nd | 14 | nd |
camphor | 1126 | nd | nd | 3.64 | 0.7 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
β-citronellol | 1196 | nd | nd | nd | nd | nd | nd | nd | nd | nd | 1.45 | nd | nd | 0.13 | nd | nd |
citronellol | 1225 | 0.48 | 22.23 | nd | 18.5 | 1.76 | nd | nd | 4.52 | nd | nd | nd | nd | nd | nd | nd |
carvone | 1243 | 1.88 | nd | 0.67 | 0.53 | 2.94 | 4.77 | nd | 0.24 | 0.23 | 1.32 | 0.03 | nd | 0.16 | 7.69 | 2.78 |
citronellyl formate | 1261 | nd | 30.45 | 10.27 | 0.91 | nd | 20.92 | 8.87 | 0.39 | nd | nd | 1.09 | nd | nd | nd | 3.99 |
thymol | 1290 | nd | nd | nd | nd | nd | nd | 4.49 | 0.88 | 10.69 | 12.96 | nd | nd | nd | nd | nd |
β-cubebene | 1348 | 0.35 | nd | nd | 0.26 | nd | nd | nd | nd | 0.28 | nd | 1.11 | nd | 0.24 | nd | nd |
α-copaene | 1378 | 0.04 | nd | nd | 0.03 | nd | nd | nd | nd | 0.55 | 0.74 | 0.85 | nd | nd | nd | 0.34 |
β-elemene | 1395 | 0.08 | nd | nd | 0.06 | nd | nd | nd | nd | 0.08 | nd | nd | nd | nd | nd | nd |
α-gurjunene | 1407 | 0.02 | nd | nd | nd | 0.18 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
aromadendrene | 1438 | 0.77 | nd | nd | 0.07 | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd | nd |
germacrene D | 1478 | 0.39 | nd | nd | 0.27 | 0.41 | nd | nd | 0.55 | nd | 0.43 | nd | 3.99 | 0.48 | nd | 0.12 |
valencene | 1491 | 0.18 | nd | 0.46 | 0.14 | nd | nd | nd | nd | nd | 0.2 | 0.64 | 0.22 | 0.15 | nd | nd |
α-amorphene | 1511 | 0.18 | nd | nd | 0.61 | nd | nd | nd | 0.64 | 0.14 | 0.14 | 1.61 | nd | nd | nd | nd |
δ-cadinene | 1523 | 0.08 | nd | nd | nd | nd | nd | nd | nd | 0.33 | nd | nd | nd | nd | nd | nd |
myristicin | 1523 | nd | nd | nd | nd | nd | nd | nd | 0.18 | nd | 1.04 | nd | nd | nd | nd | nd |
caryophyllene oxide | 1584 | 0.09 | nd | nd | 0.69 | nd | nd | nd | nd | nd | nd | 0.56 | nd | nd | nd | nd |
apiole | 1705 | 49 | 24.41 | 79.23 | 48.1 | 66.61 | 48.14 | 31.35 | 82.67 | 46.83 | 67.18 | 66.91 | 61.56 | 82.94 | 43 | 80.58 |
phytol | 2100 | nd | nd | nd | nd | nd | nd | nd | 0.3 | nd | 0.57 | 1.35 | 1.98 | 0.68 | nd | nd |
others | _ | 0.45 | 2.3 | 2.4 | 1.41 | 2.73 | 2.83 | nd | 1.75 | 0.04 | 1.94 | 0.02 | 3.05 | 3.05 | 4.05 | 1.03 |
Essential oil content (%) | 0.23 | 0.26 | 0.24 | 0.27 | 0.33 | 0.19 | 0.28 | 0.27 | 0.34 | 0.29 | 0.24 | 0.26 | 0.25 | 0.28 | 0.33 |
Cultivar | Longitude | Latitude | Altitude (cm) |
---|---|---|---|
Khomein | 50°5′ E | 33°43′ N | 1815 |
Isfahan | 51°40′ E | 32°40′ N | 1575 |
Varamin | 51°38′ E | 35°19′ N | 920 |
Cultivars | Production Area | Height of the Area Above Sea Level | Germination (%) | Purity (%) |
---|---|---|---|---|
Khomein | Khomein | 1800 | 75 | 90 |
Isfahan | North Braan | 1510 | 80 | 90 |
Varamin | Varamin | 1000 | 84 | 94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dehghani, N.; Haghighi, M.; Rahimmalek, M.; Sabzalian, M.R.; Szumny, A. Changes in Morphological, Physiological and Phytochemical Traits of Different Dill (Anethum graveolens L.) Cultivars as Affected by Light-Emitting Diodes. Molecules 2024, 29, 5506. https://doi.org/10.3390/molecules29235506
Dehghani N, Haghighi M, Rahimmalek M, Sabzalian MR, Szumny A. Changes in Morphological, Physiological and Phytochemical Traits of Different Dill (Anethum graveolens L.) Cultivars as Affected by Light-Emitting Diodes. Molecules. 2024; 29(23):5506. https://doi.org/10.3390/molecules29235506
Chicago/Turabian StyleDehghani, Nafiseh, Maryam Haghighi, Mehdi Rahimmalek, Mohammad R. Sabzalian, and Antoni Szumny. 2024. "Changes in Morphological, Physiological and Phytochemical Traits of Different Dill (Anethum graveolens L.) Cultivars as Affected by Light-Emitting Diodes" Molecules 29, no. 23: 5506. https://doi.org/10.3390/molecules29235506
APA StyleDehghani, N., Haghighi, M., Rahimmalek, M., Sabzalian, M. R., & Szumny, A. (2024). Changes in Morphological, Physiological and Phytochemical Traits of Different Dill (Anethum graveolens L.) Cultivars as Affected by Light-Emitting Diodes. Molecules, 29(23), 5506. https://doi.org/10.3390/molecules29235506