Synergism of Specific Maca Phenotypes (Lepidium peruvianum) in Combination with Saw Palmetto (Serenoa repens) Extract for Chemoprevention of Prostate Cancer as Determined in In Vitro Cytotoxicity Assays on Human Epithelial and Prostate Cancer Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Screening of the In Vitro Cytotoxicity of Red and Black Maca Hypocotyl Extracts on Human Prostate Cancer and Noncancerous Prostate Epithelial Cell Lines
2.2. Screening of the In Vitro Cytotoxicity of Saw Palmetto Extracts on Human Prostate Cancer and Noncancerous Epithelial Cell Lines
2.3. Screening of the In Vitro Cytotoxicity of Maca and Saw Palmetto Combinations on Human Prostate Cancer and Noncancerous Epithelial Cell Lines
2.4. Antioxidant and Anti-Inflammatory Activity of Maca and Saw Palmetto Extracts
2.5. The Fingerprinting of the Investigated Maca Extracts by the HPLC-MS Approach
2.6. PCA and Clustering Analysis of Black and Red Maca Samples
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Maca Hypocotyls and Saw Palmetto Extracts
3.3. Antioxidant Activity Assays
3.3.1. DPPH Radical Scavenging Assay
3.3.2. ABTS Radical Scavenging Assay
3.4. Inhibition of COX-2
3.5. In Vitro Cytotoxicity
3.5.1. Cell Lines
3.5.2. Neutral Red Uptake Test
3.6. Fingerprinting of Maca Extracts by the HPLC-ESI-QTOF-MS/MS Platform
3.7. Statistical Analysis
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, J.M. Management of localized prostate cancer in senior adults: The crucial role of comorbidity. BJU Int. 2008, 101 (Suppl. 2), 16–22. [Google Scholar] [CrossRef] [PubMed]
- Sumanasuriya, S.; De Bono, J. Treatment of Advanced Prostate Cancer-A Review of Current Therapies and Future Promise. Cold Spring Harb. Perspect. Med. 2018, 8, a030635. [Google Scholar] [CrossRef] [PubMed]
- McVary, K.T. BPH: Epidemiology and comorbidities. Am. J. Manag. Care 2006, 12 (Suppl. S5), S122–S128. [Google Scholar] [PubMed]
- Csikós, E.; Horváth, A.; Ács, K.; Papp, N.; Balázs, V.L.; Dolenc, M.S.; Kenda, M.; Kočevar Glavač, N.; Nagy, M.; Protti, M.; et al. Treatment of Benign Prostatic Hyperplasia by Natural Drugs. Molecules 2021, 26, 7141. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, G.F. Ethnobiology and Ethnopharmacology of Lepidium meyenii (Maca), a Plant from the Peruvian Highlands. Evid. Based Complement. Altern. Med. 2012, 2012, 193496. [Google Scholar] [CrossRef] [PubMed]
- Esparza, E.; Hadzich, A.; Kofer, W.; Mithöfer, A.; Cosio, E.G. Bioactive maca (Lepidium meyenii) alkamides are a result of traditional Andean postharvest drying practices. Phytochemistry 2015, 116, 138–148. [Google Scholar] [CrossRef]
- Tello, J.; Micheal, H.; Abelardo, C. La maca (Lepidium meyenii Walp.) cultivo alimenticio potencial para las zonas altoandinas. Boletín Lima 1992, 81, 59–66. [Google Scholar]
- Clément, C.; Diaz Grados, D.A.; Avula, B.; Khan, I.A.; Mayer, A.C.; Ponce Aguirre, D.D.; Manrique, I.; Kreuzer, M. Influence of colour type and previous cultivation on secondary metabolites in hypocotyls and leaves of maca (Lepidium meyenii Walpers). J. Sci. Food Agric. 2010, 90, 861–869. [Google Scholar] [CrossRef]
- Minich, D.M.; Ross, K.; Frame, J.; Fahoum, M.; Warner, W.; Meissner, H.O. Not All Maca Is Created Equal: A Review of Colors, Nutrition, Phytochemicals, and Clinical Uses. Nutrients 2024, 16, 530. [Google Scholar] [CrossRef]
- Gonzales, G.F.; Miranda, S.; Nieto, J.; Fernández, G.; Yucra, S.; Rubio, J.; Yi, P.; Gasco, M. Red maca (Lepidium meyenii) reduced prostate size in rats. Reprod. Biol. Endocrinol. 2005, 3, 5. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, C.; Rubio, J.; Gasco, M.; Nieto, J.; Yucra, S.; Gonzales, G.F. Effect of short-term and long-term treatments with three ecotypes of Lepidium meyenii (MACA) on spermatogenesis in rats. J. Ethnopharmacol. 2006, 103, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, G.F.; Vasquez, V.; Rodriguez, D.; Maldonado, C.; Mormontoy, J.; Portella, J.; Pajuelo, M.; Villegas, L.; Gasco, M. Effect of two different extracts of red maca in male rats with testosterone-induced prostatic hyperplasia. Asian J. Androl. 2007, 9, 245–251. [Google Scholar] [CrossRef]
- Meissner, H.O.; Mscisz, A.; Piatkowska, E.; Baraniak, M.; Mielcarek, S.; Kedzia, B.; Holderna-Kedzia, E.; Pisulewski, P. Peruvian Maca (Lepidium peruvianum): (II) Phytochemical Profiles of Four Prime Maca Phenotypes Grown in Two Geographically-Distant Locations. Int. J. Biomed. Sci. 2016, 12, 9–24. [Google Scholar] [CrossRef]
- Tarabasz, D.; Szczeblewski, P.; Laskowski, T.; Płaziński, W.; Baranowska-Wójcik, E.; Szwajgier, D.; Kukula-Koch, W.; Meissner, H.O. The Distribution of Glucosinolates in Different Phenotypes of Lepidium peruvianum and Their Role as Acetyl- and Butyrylcholinesterase Inhibitors-In Silico and In Vitro Studies. Int. J. Mol. Sci. 2022, 23, 4858. [Google Scholar] [CrossRef]
- Kwon, Y. Use of saw palmetto (Serenoa repens) extract for benign prostatic hyperplasia. Food Sci. Biotechnol. 2019, 28, 1599–1606. [Google Scholar] [CrossRef]
- Habib, F.K.; Ross, M.; Ho, C.K.; Lyons, V.; Chapman, K. Serenoa repens (Permixon) inhibits the 5alpha-reductase activity of human prostate cancer cell lines without interfering with PSA expression. Int. J. Cancer 2005, 114, 190–194. [Google Scholar] [CrossRef]
- Hostanska, K.; Suter, A.; Melzer, J.; Saller, R. Evaluation of cell death caused by an ethanolic extract of Serenoae repentis fructus (Prostasan) on human carcinoma cell lines. Anticancer Res. 2007, 27, 873–881. [Google Scholar]
- Ishii, K.; Usui, S.; Sugimura, Y.; Yamamoto, H.; Yoshikawa, K.; Hiran, K. Extract from Serenoa repens Suppresses the Invasion Activity of Human Urological Cancer Cells by Inhibiting Urokinase-Type Plasminogen Activator. Biol. Pharm. Bull. 2001, 24, 188–190. [Google Scholar] [CrossRef]
- Opoku-Acheampong, A.B.; Penugonda, K.; Lindshield, B.L. Effect of Saw Palmetto Supplements on Androgen-Sensitive LNCaP Human Prostate Cancer Cell Number and Syrian Hamster Flank Organ Growth. Evid. Based Complement. Alternat. Med. 2016, 2016, 8135135. [Google Scholar] [CrossRef]
- Bostwick, D.G.; Alexander, E.E.; Singh, R.; Shan, A.; Qian, J.; Santella, R.M.; Oberley, L.W.; Yan, T.; Zhong, W.; Jiang, X.; et al. Antioxidant enzyme expression and reactive oxygen species damage in prostatic intraepithelial neoplasia and cancer. Cancer 2000, 89, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Aydin, A.; Arsova-Sarafinovska, Z.; Sayal, A.; Eken, A.; Erdem, O.; Erten, K.; Ozgök, Y.; Dimovski, A. Oxidative stress and antioxidant status in non-metastatic prostate cancer and benign prostatic hyperplasia. Clin. Biochem. 2006, 39, 176–179. [Google Scholar] [CrossRef] [PubMed]
- Ohtake, S.; Kawahara, T.; Ishiguro, Y.; Takeshima, T.; Kuroda, S.; Izumi, K.; Miyamoto, H.; Uemura, H. Oxidative stress marker 8-hydroxyguanosine is more highly expressed in prostate cancer than in benign prostatic hyperplasia. Mol. Clin. Oncol. 2018, 9, 302–304. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Srivastava, J.K.; Shankar, E.; Kanwal, R.; Nawab, A.; Sharma, H.; Bhaskaran, N.; Ponsky, L.E.; Fu, P.; MacLennan, G.T.; et al. Oxidative Stress and Antioxidant Status in High-Risk Prostate Cancer Subjects. Diagnostics 2020, 10, 126. [Google Scholar] [CrossRef]
- Chen, W.; Jia, L.; Gupta, S.; MacLennan, G.T. The Role of Chronic Inflammation in Prostate Carcinogenesis: A Follow-Up Study. Ann. Urol. Oncol. 2019, 2, 1–8. [Google Scholar] [CrossRef]
- Aparicio Gallego, G.; Díaz Prado, S.; Jiménez Fonseca, P.; García Campelo, R.; Cassinello Espinosa, J.; Antón Aparicio, L.M. Cyclooxygenase-2 (COX-2): A molecular target in prostate cancer. Clin. Transl. Oncol. 2007, 9, 694–702. [Google Scholar] [CrossRef]
- Gupta, S.; Srivastava, M.; Ahmad, N.; Bostwick, D.G.; Mukhtar, H. Over-expression of cyclooxygenase-2 in human prostate adenocarcinoma. Prostate 2000, 42, 73–78. [Google Scholar] [CrossRef]
- Yoshimura, R.; Sano, H.; Masuda, C.; Kawamura, M.; Tsubouchi, Y.; Chargui, J.; Yoshimura, N.; Hla, T.; Wada, S. Expression of cyclooxygenase-2 in prostate carcinoma. Cancer 2000, 89, 589–596. [Google Scholar] [CrossRef]
- Madaan, S.; Abel, P.D.; Chaudhary, K.S.; Hewitt, R.; Stott, M.A.; Stamp, G.W.; Lalani, E.N. Cytoplasmic induction and over-expression of cyclooxygenase-2 in human prostate cancer: Implications for prevention and treatment. BJU Int. 2000, 86, 736–741. [Google Scholar] [CrossRef]
- Lee, L.M.; Pan, C.C.; Cheng, C.J.; Chi, C.W.; Liu, T.Y. Expression of cyclooxygenase-2 in prostate adenocarcinoma and benign prostatic hyperplasia. Anticancer Res. 2001, 21, 1291–1294. [Google Scholar]
- Uotila, P.; Valve, E.; Martikainen, P.; Nevalainen, M.; Nurmi, M.; Härkönen, P. Increased expression of cyclooxygenase-2 and nitric oxide synthase-2 in human prostate cancer. Urol. Res. 2001, 29, 25–28. [Google Scholar] [CrossRef] [PubMed]
- Zha, S.; Gage, W.R.; Sauvageot, J.; Saria, E.A.; Putzi, M.J.; Ewing, C.M.; Faith, D.A.; Nelson, W.G.; De Marzo, A.M.; Isaacs, W.B. Cyclooxygenase-2 is up-regulated in proliferative inflammatory atrophy of the prostate, but not in prostate carcinoma. Cancer Res. 2001, 61, 8617–8623. [Google Scholar] [PubMed]
- Shao, N.; Feng, N.; Wang, Y.; Mi, Y.; Li, T.; Hua, L. Systematic review and meta-analysis of COX-2 expression and polymorphisms in prostate cancer. Mol. Biol. Rep. 2012, 39, 10997–11004. [Google Scholar] [CrossRef]
- Kirschenbaum, A.; Klausner, A.P.; Lee, R.; Unger, P.; Yao, S.; Liu, X.-H.; Levine, A.C. Expression of Cyclooxygenase-1 and Cyclooxygenase-2 in the human prostate. Urology 2000, 56, 671–676. [Google Scholar] [CrossRef]
- Tołoczko-Iwaniuk, N.; Dziemiańczyk-Pakieła, D.; Nowaszewska, B.K.; Celińska-Janowicz, K.; Miltyk, W. Celecoxib in Cancer Therapy and Prevention—Review. CDT 2019, 20, 302–315. [Google Scholar] [CrossRef]
- Hussain, T.; Gupta, S.; Mukhtar, H. Cyclooxygenase-2 and prostate carcinogenesis. Cancer Lett. 2003, 191, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Goldmann, W.H.; Sharma, A.L.; Currier, S.J.; Johnston, P.D.; Rana, A.; Sharma, C.P. Saw Palmetto Berry Extract Inhibits Cell Growth and COX-2 Expression in Prostatic Cancer Cells. Cell Biol. Int. 2001, 25, 1117–1124. [Google Scholar] [CrossRef]
- Silvestri, I.; Cattarino, S.; Aglianò, A.; Nicolazzo, C.; Scarpa, S.; Salciccia, S.; Frati, L.; Gentile, V.; Sciarra, A. Effect of Serenoa repens (Permixon®) on the expression of inflammation-related genes: Analysis in primary cell cultures of human prostate carcinoma. J. Inflamm. 2013, 10, 11. [Google Scholar] [CrossRef]
- Díaz, P.; Cardenas, H.; Orihuela, P.A. Red Maca (Lepidium meyenii) did not affect cell viability despite increased androgen receptor and prostate-specific antigen gene expression in the human prostate cancer cell line LNCaP. Andrologia 2016, 48, 922–926. [Google Scholar] [CrossRef]
- Yang, Y.; Ikezoe, T.; Zheng, Z.; Taguchi, H.; Koeffler, H.; Zhu, W.G. Saw Palmetto induces growth arrest and apoptosis of androgen-dependent prostate cancer LNCaP cells via inactivation of STAT 3 and androgen receptor signaling. Int. J. Oncol. 2007, 31, 593–600. [Google Scholar] [CrossRef]
- Iguchi, K.; Okumura, N.; Usui, S.; Sajiki, H.; Hirota, K.; Hirano, K. Myristoleic acid, a cytotoxic component in the extract from Serenoa repens, induces apoptosis and necrosis in human prostatic LNCaP cells. Prostate 2001, 47, 59–65. [Google Scholar] [CrossRef]
- Garg, R.; Blando, J.M.; Perez, C.J.; Lal, P.; Feldman, M.D.; Smyth, E.M.; Ricciotti, E.; Grosser, T.; Benavides, F.; Kazanietz, M.G. COX-2 mediates pro-tumorigenic effects of PKCε in prostate cancer. Oncogene 2018, 37, 4735–4749. [Google Scholar] [CrossRef] [PubMed]
- Sooriakumaran, P.; Kaba, R. The risks and benefits of cyclo-oxygenase-2 inhibitors in prostate cancer: A review. Int. J. Surg. 2005, 3, 278–285. [Google Scholar] [CrossRef]
- McCollom, M.M.; Villinski, J.R.; McPhail, K.L.; Craker, L.E.; Gafner, S. Analysis of Macamides in Samples of Maca (Lepidium Meyenii) by HPLC-UV-MS/MS. Phytochem. Anal. 2005, 16, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Chen, X.; Dai, P.; Yu, L. Lepidiline C and D: Two New Imidazole Alkaloids from Lepidium Meyenii Walpers (Brassicaceae) Roots. Phytochem. Lett. 2016, 17, 158–161. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, P.; Brantner, A.; Wang, H.; Shu, X.; Yang, J.; Si, N.; Han, L.; Zhao, H.; Bian, B. Chemical Profiling Analysis of Maca Using UHPLC-ESI-Orbitrap MS Coupled with UHPLC-ESI-QqQ MS and the Neuroprotective Study on Its Active Ingredients. Sci. Rep. 2017, 7, 44660. [Google Scholar] [CrossRef] [PubMed]
- United States Pharmacopeial Convention. Saw Palmetto. In United States Pharmacopeia and National Formulary (USP 40-NF 35); United States Pharmacopeial Convention: Rockville, MD, USA, 2017; pp. 7175–7183. [Google Scholar]
- European Pharmacopoeia (Ph. Eur.), 11th ed.; The Council of Europe: Strasbourg, France, 2023.
- Matejić, J.; Džamić, A.; Mihajilov-Krstev, T.; Ranđelović, V.; Krivošej, Z.; Marin, P. Total phenolic content, flavonoid concentration, antioxidant and antimicrobial activity of methanol extracts from three Seseli L. taxa. Open Life Sci. 2012, 7, 1116–1122. [Google Scholar] [CrossRef]
- Sabitov, A.; Gaweł-Bęben, K.; Sakipova, Z.; Strzępek-Gomółka, M.; Hoian, U.; Satbayeva, E.; Głowniak, K.; Ludwiczuk, A. Rosa platyacantha Schrenk from Kazakhstan—Natural Source of Bioactive Compounds with Cosmetic Significance. Molecules 2021, 26, 2578. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Kukula-Koch, W.; Szwajgier, D.; Gaweł-Bęben, K.; Strzępek-Gomółka, M.; Głowniak, K.; Meissner, H.O. Is Phytomelatonin Complex Better Than Synthetic Melatonin? The Assessment of the Antiradical and Anti-Inflammatory Properties. Molecules 2021, 26, 6087. [Google Scholar] [CrossRef]
- Repetto, G.; Del Peso, A.; Zurita, J.L. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat. Protoc. 2008, 3, 1125–1131. [Google Scholar] [CrossRef]
Sample No. | Maca Extract | SP_CO2 | PNT2 Viability (in %; Mean ± SD) | LNCaP Viability (in %; Mean ± SD) |
---|---|---|---|---|
1 | - | 0.33 mg/mL | 109.08 ± 16.43 | 83.65 ± 17.66 |
2 | BL_SMALL 0.67 mg/mL | - | 95.78 ± 16.43 | 59.78 ± 16.79 ** |
3 | BL_LARGE 0.67 mg/mL | - | 114.97 ± 12.66 | 58.14 ± 15.11 ** |
4 | RE_SMALL 0.67 mg/mL | - | 117.25 ± 12.88 | 74.84 ± 15.13 |
5 | RE_LARGE 0.67 mg/mL | - | 111.84 ± 8.00 | 69.07 ± 11.25 |
6 | BL_SMALL 0.67 mg/mL | 0.33 mg/mL | 88.72 ± 11.35 | 50.06 ± 15.26 *** |
7 | BL_LARGE 0.67 mg/mL | 0.33 mg/mL | 92.18 ± 8.88 | 56.27 ± 12.00 ** |
8 | RE_SMALL 0.67 mg/mL | 0.33 mg/mL | 95.18 ± 8.88 | 71.41 ± 22.78 |
9 | RE_LARGE 0.67 mg/mL | 0.33 mg/mL | 100.72 ± 9.44 | 76.81 ± 19.27 |
% Content in the Reagent Solution (μg of the Extract in the Well) | % Inhibition of COX-2 ± SD | |||
---|---|---|---|---|
No | SP_Powder | RE_LARGE | BL_SMALL | |
1 | - | 100 (375) | - | 6.1 ± 1.2 |
2 | - | 100 (750) | - | 24.2 ± 0.3 |
3 | - | 100 (1500) | - | 48.5 ± 3.7 |
4 | 33 (500) | 67 (1000) | - | 87.9 ± 2.8 |
5 | 50 (750) | 25 (375) | 25 (375) | 87.9 ± 1.0 |
6 | 20 (300) | 60 (900) | 20 (300) | 81.8 ± 4.9 |
7 | 30 (450) | 55 (825) | 15 (225) | 78.8 ± 3.3 |
8 | 50 (750) | 50 (750) | - | 81.8 ± 4.7 |
9 | 75 (1125) | 25 (375) | - | 81.8 ± 5.6 |
10 | 15 (225) | 85 (1275) | - | 78.8 ± 4.1 |
No | Ion.+/− | Rt [min] | Molecular Formula | m/z Theoretical | m/z Experimental | Error (ppm) | DBE | MS/MS Spectrum | Proposed Compound |
---|---|---|---|---|---|---|---|---|---|
A | − | 5.54 | C14H19NO10S2 | 424.0378 | 424.0388 | −2.44 | 6 | 328.0038; 259.0062; 182.0237 | Glucosinalbin * |
B | − | 9.3 | C14H19NO9S2 | 408.0428 | 408.0446 | −4.29 | 6 | 259.0023; 166.0271 | Glucotropaeolin * |
C | − | 12.59 | C15H21NO10S2 | 438.0534 | 438.0544 | −2.25 | 6 | 259.0081; 196.0418 | Glucolimnanthin * |
D | − | 17.13 | C12H24O7N2S2 | 371.0952 | 371.0978 | −6.94 | 2 | 249.0626 | Pentenylglucosinolate |
E | − | 18.47 | C22H38O9N2S2 | 521.1997 | 521.2031 | −6.55 | 5 | 359.1562; 329.1425 | Indolyl-hexyl-methyl-cyclohexane-glucosinolate |
F | + | 17.9 | C15H18N2 | 227.1543 | 227.1538 | 2.1 | 8 | 135.0876 | Lepidiline E |
G | + | 23.45 | C19H20N2 | 277.1699 | 277.1684 | −4.18 | 6.5 | 185.1019 | Lepidiline A |
H | + | 23.97 | C20H22N2O | 307.1805 | 307.1791 | 4.54 | 11 | 171.0788 | Lepidiline C |
I | + | 24.61 | C21H24N2O | 321.1961 | 321.1946 | 4.81 | 11 | 230.1108 199.0941 | Lepidiline D |
J | + | 35.03 | C23H39NO | 346.3104 | 346.3070 | 2.2 | 0.5 | 308.1678 | Macamide B * |
K | + | 38.88 | C25H37NO2 | 384.2906 | 384.2877 | 5.23 | 8 | 260.1876 | Benzyl-oxo- octadecadienamide |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaweł-Bęben, K.; Kukula-Koch, W.; Szwajgier, D.; Antosiewicz-Klimczak, B.; Orihuela-Campos, R.C.; Głowniak, K.; Meissner, H.O. Synergism of Specific Maca Phenotypes (Lepidium peruvianum) in Combination with Saw Palmetto (Serenoa repens) Extract for Chemoprevention of Prostate Cancer as Determined in In Vitro Cytotoxicity Assays on Human Epithelial and Prostate Cancer Cells. Molecules 2024, 29, 5632. https://doi.org/10.3390/molecules29235632
Gaweł-Bęben K, Kukula-Koch W, Szwajgier D, Antosiewicz-Klimczak B, Orihuela-Campos RC, Głowniak K, Meissner HO. Synergism of Specific Maca Phenotypes (Lepidium peruvianum) in Combination with Saw Palmetto (Serenoa repens) Extract for Chemoprevention of Prostate Cancer as Determined in In Vitro Cytotoxicity Assays on Human Epithelial and Prostate Cancer Cells. Molecules. 2024; 29(23):5632. https://doi.org/10.3390/molecules29235632
Chicago/Turabian StyleGaweł-Bęben, Katarzyna, Wirginia Kukula-Koch, Dominik Szwajgier, Beata Antosiewicz-Klimczak, Rita Cristina Orihuela-Campos, Kazimierz Głowniak, and Henry O. Meissner. 2024. "Synergism of Specific Maca Phenotypes (Lepidium peruvianum) in Combination with Saw Palmetto (Serenoa repens) Extract for Chemoprevention of Prostate Cancer as Determined in In Vitro Cytotoxicity Assays on Human Epithelial and Prostate Cancer Cells" Molecules 29, no. 23: 5632. https://doi.org/10.3390/molecules29235632
APA StyleGaweł-Bęben, K., Kukula-Koch, W., Szwajgier, D., Antosiewicz-Klimczak, B., Orihuela-Campos, R. C., Głowniak, K., & Meissner, H. O. (2024). Synergism of Specific Maca Phenotypes (Lepidium peruvianum) in Combination with Saw Palmetto (Serenoa repens) Extract for Chemoprevention of Prostate Cancer as Determined in In Vitro Cytotoxicity Assays on Human Epithelial and Prostate Cancer Cells. Molecules, 29(23), 5632. https://doi.org/10.3390/molecules29235632