Synthesis and Mesomorphic Properties of Geometric and Conformation-Modulated Amphiphilic β-Cyclodextrin Liquid Crystals
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Synthesis and Characterization
2.2. Mesomorphic Properties
3. Conclusions
4. Materials and Methods
4.1. Methods
4.2. Chemical Synthesis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dodziuk, H. (Ed.) Cyclodextrins and Their Complexes: Chemistry, Analytical Methods, Applications, 1st ed.; Wiley-VCH: Weinheim, Germany, 2006; ISBN 978-3-527-31280-1. [Google Scholar]
- Khan, A.R.; Forgo, P.; Stine, K.J.; D’Souza, V.T. Methods for Selective Modifications of Cyclodextrins. Chem. Rev. 1998, 98, 1977–1996. [Google Scholar] [CrossRef] [PubMed]
- Ashton, P.R.; Ellwood, P.; Staton, I.; Stoddart, J.F. Synthesis and Characterization of Per-3,6-Anhydro Cyclodextrins. Angew. Chem. Int. Ed. Engl. 1991, 30, 80–81. [Google Scholar] [CrossRef]
- Fügedi, P. Synthesis of Heptakis(6-O-tert-Butyldimethylsilyl)Cyclomaltoheptaose and Octakis(6-O-tert-Butyldimethylsilyl)Cyclomaltooctaose. Carbohydr. Res. 1989, 192, 366–369. [Google Scholar] [CrossRef]
- Gadelle, A.; Defaye, J. Selective Halogenation at Primary Positions of Cyclomaltooligosaccharides and a Synthesis of Per-3,6-Anhydro Cyclomaltooligosaccharides. Angew. Chem. Int. Ed. Engl. 1991, 30, 78–80. [Google Scholar] [CrossRef]
- Wang, A.; Li, W.; Zhang, P.; Ling, C.-C. Synthesis of a Novel Class of Cyclodextrin-Based Nanotubes. Org. Lett. 2011, 13, 3572–3575. [Google Scholar] [CrossRef]
- Sallas, F.; Darcy, R. Amphiphilic Cyclodextrins—Advances in Synthesis and Supramolecular Chemistry. Eur. J. Org. Chem. 2008, 2008, 957–969. [Google Scholar] [CrossRef]
- Rivero-Barbarroja, G.; Benito, J.M.; Ortiz Mellet, C.; García Fernández, J.M. Cyclodextrin-Based Functional Glyconanomaterials. Nanomaterials 2020, 10, 2517. [Google Scholar] [CrossRef]
- Bilensoy, E.; Hincal, A.A. Recent Advances and Future Directions in Amphiphilic Cyclodextrin Nanoparticles. Expert Opin. Drug Deliv. 2009, 6, 1161–1173. [Google Scholar] [CrossRef]
- Parrot-Lopez, H.; Ling, C.C.; Zhang, P.; Baszkin, A.; Albrecht, G.; De Rango, C.; Coleman, A.W. Self-Assembling Systems of the Amphiphilic Cationic per-6-Amino-.Beta.-Cyclodextrin 2,3-Di-O-Alkyl Ethers. J. Am. Chem. Soc. 1992, 114, 5479–5480. [Google Scholar] [CrossRef]
- Zhang, P.; Chang-Chun, L.; Coleman, A.W.; Parrot-Lopez, H.; Galons, H. Formation of Amphiphilic Cyclodextrins via Hydrophobic Esterification at the Secondary Hydroxyl Face. Tetrahedron Lett. 1991, 32, 2769–2770. [Google Scholar] [CrossRef]
- Badi, N.; Jarroux, N.; Guégan, P. Synthesis of Per-2,3-Di-O-Heptyl-β and γ-Cyclodextrins: A New Kind of Amphiphilic Molecules Bearing Hydrophobic Parts. Tetrahedron Lett. 2006, 47, 8925–8927. [Google Scholar] [CrossRef]
- Díaz-Moscoso, A.; Guilloteau, N.; Bienvenu, C.; Méndez-Ardoy, A.; Blanco, J.L.J.; Benito, J.M.; Le Gourriérec, L.; Di Giorgio, C.; Vierling, P.; Defaye, J.; et al. Mannosyl-Coated Nanocomplexes from Amphiphilic Cyclodextrins and pDNA for Site-Specific Gene Delivery. Biomaterials 2011, 32, 7263–7273. [Google Scholar] [CrossRef] [PubMed]
- Wazynska, M.; Temeriusz, A.; Chmurski, K.; Bilewicz, R.; Jurczak, J. Synthesis and Monolayer Behavior of Amphiphilic per(2,3-Di-O-Alkyl)-α- and β-Cyclodextrins and Hexakis(6-Deoxy-6-Thio-2,3-Di-O-Pentyl)-α-Cyclodextrin at an Air–Water Interface. Tetrahedron Lett. 2000, 41, 9119–9123. [Google Scholar] [CrossRef]
- Roux, M.; Perly, B.; Djedaïni-Pilard, F. Self-Assemblies of Amphiphilic Cyclodextrins. Eur. Biophys. J. 2007, 36, 861–867. [Google Scholar] [CrossRef]
- Falvey, P.; Lim, C.W.; Darcy, R.; Revermann, T.; Karst, U.; Giesbers, M.; Marcelis, A.; Lazar, A.; Coleman, A.W.; Reinhoudt, D.N. Bilayer Vesicles of Amphiphilic Cyclodextrins: Host Membranes That Recognize Guest Molecules. Chem.-A Eur. J. 2005, 11, 1171–1180. [Google Scholar] [CrossRef]
- Mazzaglia, A.; Forde, D.; Garozzo, D.; Malvagna, P.; Ravoo, B.J.; Darcy, R. Multivalent Binding of Galactosylated Cyclodextrin Vesicles to Lectin. Org. Biomol. Chem. 2004, 2, 957–960. [Google Scholar] [CrossRef]
- Ravoo, B.J.; Darcy, R. Cyclodextrin Bilayer Vesicles. Angew. Chem. Int. Ed. 2000, 39, 4324–4326. [Google Scholar] [CrossRef]
- Bienvenu, C.; Martínez, Á.; Blanco, J.L.J.; Giorgio, C.D.; Vierling, P.; Mellet, C.O.; Defaye, J.; Fernández, J.M.G. Polycationic Amphiphilic Cyclodextrins as Gene Vectors: Effect of the Macrocyclic Ring Size on the DNA Complexing and Delivery Properties. Org. Biomol. Chem. 2012, 10, 5570–5581. [Google Scholar] [CrossRef]
- McMahon, A.; O’Neill, M.J.; Gomez, E.; Donohue, R.; Forde, D.; Darcy, R.; O’Driscoll, C.M. Targeted Gene Delivery to Hepatocytes with Galactosylated Amphiphilic Cyclodextrins. J. Pharm. Pharmacol. 2012, 64, 1063–1073. [Google Scholar] [CrossRef]
- Champagne, P.-L.; Kumar, R.; Ling, C.-C. Supramolecular Liquid Crystals Based on Cyclodextrins. In Cyclodextrin Applications in Medicine, Food, Environment and Liquid Crystals; Fourmentin, S., Crini, G., Lichtfouse, E., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 183–240. ISBN 978-3-319-76162-6. [Google Scholar]
- Votava, M.; Ravoo, B.J. Principles and Applications of Cyclodextrin Liquid Crystals. Chem. Soc. Rev. 2021, 50, 10009–10024. [Google Scholar] [CrossRef]
- Ling, C.-C.; Darcy, R.; Risse, W. Cyclodextrin Liquid Crystals: Synthesis and Self-Organisation of Amphiphilic Thio-β-Cyclodextrins. J. Chem. Soc. Chem. Commun. 1993, 438–440. [Google Scholar] [CrossRef]
- Chen, L.; Hu, T.-H.; Xie, H.-L.; Zhang, H.-L. A Mixed Cyclodextrin-Biphenyl Thermotropic Liquid Crystal: Synthesis, Liquid-Crystalline Properties, and Supramolecular Organization. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 2838–2845. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, Y.; Guo, H. Novel Supramolecular Liquid Crystals: Cyclodextrin-Triphenylene Column Liquid Crystals Based on Click Chemistry. New J. Chem. 2013, 37, 2275–2279. [Google Scholar] [CrossRef]
- Ward, S.; Calderon, O.; Zhang, P.; Sobchuk, M.; Keller, S.N.; Williams, V.E.; Ling, C.-C. Investigation into the Role of the Hydrogen Bonding Network in Cyclodextrin-Based Self-Assembling Mesophases. J. Mater. Chem. C 2014, 2, 4928–4936. [Google Scholar] [CrossRef]
- Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. [Google Scholar] [CrossRef]
- Geng, Z.; Shin, J.J.; Xi, Y.; Hawker, C.J. Click Chemistry Strategies for the Accelerated Synthesis of Functional Macromolecules. J. Polym. Sci. 2021, 59, 963–1042. [Google Scholar] [CrossRef]
- Champagne, P.-L.; Ester, D.; Zeeman, M.; Zellman, C.; Williams, V.E.; Ling, C.-C. Inverting Substitution Patterns on Amphiphilic Cyclodextrins Induces Unprecedented Formation of Hexagonal Columnar Superstructures. J. Mater. Chem. C 2017, 5, 9247–9254. [Google Scholar] [CrossRef]
- Che, A.; Zellman, C.O.; Sarkar, D.; Trudel-Lachance, S.; Espejo, J.; Michaelis, V.K.; Williams, V.E.; Ling, C.-C. Functional Group Polarity-Modulated Formation of Liquid Crystals of Amphiphilic Cyclodextrins. J. Mater. Chem. C 2023, 11, 4153–4163. [Google Scholar] [CrossRef]
- Champagne, P.-L.; Ester, D.; Ward, S.; Williams, V.E.; Ling, C.-C. A Family of Amphiphilic Cyclodextrin Liquid Crystals Governed by Dipole–Dipole Interactions. ChemPlusChem 2017, 82, 423–432. [Google Scholar] [CrossRef]
- Champagne, P.-L.; Ester, D.; Polan, D.; Williams, V.E.; Thangadurai, V.; Ling, C.-C. Amphiphilic Cyclodextrin-Based Liquid Crystals for Proton Conduction. J. Am. Chem. Soc. 2019, 141, 9217–9224. [Google Scholar] [CrossRef]
- Champagne, P.-L.; Ester, D.; Bhattacharya, A.; Hofstetter, K.; Zellman, C.; Bag, S.; Yu, H.; Trudel, S.; Michaelis, V.K.; Williams, V.E.; et al. Liquid Crystalline Lithium-Ion Electrolytes Derived from Biodegradable Cyclodextrin. J. Mater. Chem. A 2019, 7, 12201–12213. [Google Scholar] [CrossRef]
- Moore, J.E.; McCoy, T.M.; Marlow, J.B.; Pottage, M.J.; Mudie, S.T.; Pearson, G.R.; Wilkinson, B.L.; Tabor, R.F. Rich Liquid Crystal Phase Behavior of Novel Alkyl-Tri(Ethylene Glycol)-Glucoside Carbohydrate Surfactants. J. Colloid Interface Sci. 2019, 540, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Alamro, F.S.; Ahmed, H.A.; Bedowr, N.S.; Naoum, M.M.; Mostafa, A.M.; Al-Kadhi, N.S. New Liquid Crystals Based on Terminal Fatty Chains and Polymorphic Phase Formation from Their Mixtures. Crystals 2022, 12, 350. [Google Scholar] [CrossRef]
- Alnoman, R.; Al-Nazawi, F.K.; Ahmed, H.A.; Hagar, M. Synthesis, Optical, and Geometrical Approaches of New Natural Fatty Acids’ Esters/Schiff Base Liquid Crystals. Molecules 2019, 24, 4293. [Google Scholar] [CrossRef]
- Varia, M.C.; Srinivasa, H.T.; Kumar, S. Effects of Chain Branching and Lateral Fluorine Substitution on Mesomorphism of Cholesteryl Benzoates. Liq. Cryst. 2014, 41, 883–890. [Google Scholar] [CrossRef]
- Funakoshi, Y.; Iwao, Y.; Noguchi, S.; Itai, S. Effect of Alkyl Chain Length and Unsaturation of the Phospholipid on the Physicochemical Properties of Lipid Nanoparticles. Chem. Pharm. Bull. 2015, 63, 731–736. [Google Scholar] [CrossRef]
- Díaz-Moscoso, A.; Vercauteren, D.; Rejman, J.; Benito, J.M.; Mellet, C.O.; De Smedt, S.C.; Fernández, J.M.G. Insights in Cellular Uptake Mechanisms of pDNA–Polycationic Amphiphilic Cyclodextrin Nanoparticles (CDplexes). J. Control. Release 2010, 143, 318–325. [Google Scholar] [CrossRef]
- Cao, Y.; Alaasar, M.; Nallapaneni, A.; Salamończyk, M.; Marinko, P.; Gorecka, E.; Tschierske, C.; Liu, F.; Vaupotič, N.; Zhu, C. Molecular Packing in Double Gyroid Cubic Phases Revealed via Resonant Soft X-Ray Scattering. Phys. Rev. Lett. 2020, 125, 027801. [Google Scholar] [CrossRef]
- Do, T.H.; Kim, H.-J.; Nguyen, M.L.; Cho, B.-K. Bicontinuous Cubic and Hexagonal Columnar Liquid Crystalline Ion-Conductors at Room Temperature in Ion-Doped Dendritic Amphiphiles. Crystals 2020, 10, 193. [Google Scholar] [CrossRef]
- Ichikawa, T.; Kato, T.; Ohno, H. 3D Continuous Water Nanosheet as a Gyroid Minimal Surface Formed by Bicontinuous Cubic Liquid-Crystalline Zwitterions. J. Am. Chem. Soc. 2012, 134, 11354–11357. [Google Scholar] [CrossRef]
- Ichikawa, T.; Yoshio, M.; Hamasaki, A.; Taguchi, S.; Liu, F.; Zeng, X.; Ungar, G.; Ohno, H.; Kato, T. Induction of Thermotropic Bicontinuous Cubic Phases in Liquid-Crystalline Ammonium and Phosphonium Salts. J. Am. Chem. Soc. 2012, 134, 2634–2643. [Google Scholar] [CrossRef]
Compound | Phase Transitions | |
---|---|---|
3 | Heating | X ~4 °C (81.3 kJ/mol) Colh 88.3 °C (2.7 kJ/mol) Iso |
Cooling | Iso 82.1 °C (6.6 kJ/mol) Colh −21.3 °C (86.8 kJ/mol) X | |
4 | Heating | X −0.2 °C (79.7 kJ/mol) Cubbi ~70 °C a Colh 161.4 °C (2.6 kJ/mol) Iso |
Cooling | Iso 154.0 °C (4.8 kJ/mol) Colh −19.7 °C (68.7 kJ/mol) X | |
5 | Heating | Colh 51 °C a Iso |
Cooling | Iso 44 °C a Colh | |
6 | Heating | Colh 150 °C a Iso |
Cooling | Iso 147 °C a Colh |
T (°C) | d-Spacing (Å) | Miller Index (hkl) | Phase (Lattice Constants) | |
---|---|---|---|---|
3 | 70 | 49.57 | (100) | Colh (a = 57.2 Å) |
28.55 | (110) | |||
24.64 | (200) | |||
18.61 | (210) | |||
5.1 | alkyl halo | |||
4 | 140 | 52.5 | (100) | Colh (a = 60.6 Å) |
30.2 | (110) | |||
26.3 | (200) | |||
5.1 | alkyl halo | |||
RT | 57.7 | (211) | Cubbi (Ia3d) | |
50.4 | (220) | (a = 141 Å) | ||
37.7 | (321) | |||
35.2 | (400) | |||
33.3 | Colh | |||
31.5 | (420) | |||
30.2 | (332) | |||
27.7 | (510) | |||
5.0 | alkyl halo | |||
5 | RT | 47.7 | (100) | Colh (a = 55.1 Å) |
27.1 | (110) | |||
5.0 | alkyl halo | |||
6 | 140 | 52.8 | (100) | Colh (a = 61.0 Å) |
30.2 | (110) | |||
26.3 | (200) | |||
4.9 | alkyl halo |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Che, A.; Ghaseminezhad, H.; Zellmann-Parrotta, C.O.; Duong, J.; Williams, V.E.; Ling, C.-C. Synthesis and Mesomorphic Properties of Geometric and Conformation-Modulated Amphiphilic β-Cyclodextrin Liquid Crystals. Molecules 2024, 29, 5633. https://doi.org/10.3390/molecules29235633
Che A, Ghaseminezhad H, Zellmann-Parrotta CO, Duong J, Williams VE, Ling C-C. Synthesis and Mesomorphic Properties of Geometric and Conformation-Modulated Amphiphilic β-Cyclodextrin Liquid Crystals. Molecules. 2024; 29(23):5633. https://doi.org/10.3390/molecules29235633
Chicago/Turabian StyleChe, Austin, Homayoun Ghaseminezhad, Carson O. Zellmann-Parrotta, Jessica Duong, Vance E. Williams, and Chang-Chun Ling. 2024. "Synthesis and Mesomorphic Properties of Geometric and Conformation-Modulated Amphiphilic β-Cyclodextrin Liquid Crystals" Molecules 29, no. 23: 5633. https://doi.org/10.3390/molecules29235633
APA StyleChe, A., Ghaseminezhad, H., Zellmann-Parrotta, C. O., Duong, J., Williams, V. E., & Ling, C.-C. (2024). Synthesis and Mesomorphic Properties of Geometric and Conformation-Modulated Amphiphilic β-Cyclodextrin Liquid Crystals. Molecules, 29(23), 5633. https://doi.org/10.3390/molecules29235633