Water Sorption Properties and Hydrothermal Stability of Al-Containing Metal–Organic Frameworks CAU-10 and MIL-96 Studied Using Quasi-Equilibrated Thermodesorption
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The Chemistry and Applications of Metal-Organic Frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-L.; Qian, J.; Yang, G.-P.; Yang, F.; Liang, Y.-T.; Zhang, W.-Y.; Wang, Y.-Y. High CO2 Uptake Capacity and Selectivity in a Fascinating Nanotube-Based Metal–Organic Framework. Inorg. Chem. 2017, 56, 908–913. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Liu, C.; Jiang, F.; Chen, Q.; Zhang, L.; Xue, H.; Jiang, H.-L.; Qian, J.; Yuan, D.; Hong, M. Carbon Dioxide Capture and Conversion by an Acid-Base Resistant Metal-Organic Framework. Nat. Commun. 2017, 8, 1233. [Google Scholar] [CrossRef] [PubMed]
- Nadol, A.; Venel, F.; Giovine, R.; Leloire, M.; Volkringer, C.; Loiseau, T.; Gervais, C.; Mellot-Draznieks, C.; Doumert, B.; Trébosc, J.; et al. Probing Water Adsorption and Stability under Steam Flow of Zr-Based Metal-Organic Frameworks Using 91Zr Solid-State NMR Spectroscopy. Chem. Sci. 2024; online ahead of print. [Google Scholar] [CrossRef]
- Cheng, L.; Dang, Y.; Wang, Y.; Chen, K.-J. Recent Advances in Metal–Organic Frameworks for Water Absorption and Their Applications. Mater. Chem. Front. 2024, 8, 1171–1194. [Google Scholar] [CrossRef]
- Ho, C.-H.; Valentine, M.L.; Chen, Z.; Xie, H.; Farha, O.; Xiong, W.; Paesani, F. Structure and Thermodynamics of Water Adsorption in NU-1500-Cr. Commun. Chem. 2023, 6, 70. [Google Scholar] [CrossRef]
- Mazur, B.; Firlej, L.; Kuchta, B. Efficient Modeling of Water Adsorption in MOFs Using Interpolated Transition Matrix Monte Carlo. ACS Appl. Mater. Interfaces 2024, 16, 25559–25567. [Google Scholar] [CrossRef]
- Küsgens, P.; Rose, M.; Senkovska, I.; Fröde, H.; Henschel, A.; Siegle, S.; Kaskel, S. Characterization of Metal-Organic Frameworks by Water Adsorption. Microporous Mesoporous Mater. 2009, 120, 325–330. [Google Scholar] [CrossRef]
- Burtch, N.C.; Jasuja, H.; Walton, K.S. Water Stability and Adsorption in Metal–Organic Frameworks. Chem. Rev. 2014, 114, 10575–10612. [Google Scholar] [CrossRef]
- Makowski, W. Quasi-Equilibrated Temperature Programmed Desorption and Adsorption: A New Method for Determination of the Isosteric Adsorption Heat. Thermochim. Acta 2007, 454, 26–32. [Google Scholar] [CrossRef]
- Sławek, A.; Vicent-Luna, J.M.; Ogorzały, K.; Valencia, S.; Rey, F.; Makowski, W.; Calero, S. Adsorption of Alkanes in Zeolites LTA and FAU: Quasi-Equilibrated Thermodesorption Supported by Molecular Simulations. J. Phys. Chem. C 2019, 123, 29665–29678. [Google Scholar] [CrossRef]
- Makowski, W.; Gil, B.; Majda, D. Characterization of Acidity and Porosity of Zeolite Catalysts by the Equilibrated Thermodesorption of N-Hexane and n-Nonane. Catal. Lett. 2008, 120, 154–160. [Google Scholar] [CrossRef]
- Mlekodaj, K.; Sadowska, K.; Datka, J.; Góra-Marek, K.; Makowski, W. Porosity and Accessibility of Acid Sites in Desilicated ZSM-5 Zeolites Studied Using Adsorption of Probe Molecules. Microporous Mesoporous Mater. 2014, 183, 54–61. [Google Scholar] [CrossRef]
- Sławek, A.; Vicent-Luna, J.M.; Marszałek, B.; Balestra, S.R.G.; Makowski, W.; Calero, S. Adsorption of n -Alkanes in MFI and MEL: Quasi-Equilibrated Thermodesorption Combined with Molecular Simulations. J. Phys. Chem. C 2016, 120, 25338–25350. [Google Scholar] [CrossRef]
- Makowski, W.; Chmielarz, L.; Kuśtrowski, P. Determination of the Pore Size Distribution of Mesoporous Silicas by Means of Quasi-Equilibrated Thermodesorption of n-Nonane. Microporous Mesoporous Mater. 2009, 120, 257–262. [Google Scholar] [CrossRef]
- Makowski, W.; Leżańska, M.; Mańko, M.; Włoch, J. Porosity and Surface Properties of Mesoporous Silicas and Their Carbon Replicas Investigated with Quasi-Equlibrated Thermodesorption of n-Hexane and n-Nonane. J. Porous Mater. 2010, 17, 737–745. [Google Scholar] [CrossRef]
- Sławek, A.; Vicent-Luna, J.M.; Marszałek, B.; Gil, B.; Morris, R.E.; Makowski, W.; Calero, S. Gate-Opening Mechanism of Hydrophilic-Hydrophobic Metal-Organic Frameworks: Molecular Simulations and Quasi-Equilibrated Desorption. Chem. Mater. 2018, 30, 5116–5127. [Google Scholar] [CrossRef]
- Jajko, G.; Gryta, P.; Kozyra, P.; Szufla, M.; Matoga, D.; Majda, D.; Makowski, W. Effect of Synthesis Temperature on Water Adsorption in UiO-66 Derivatives: Experiment, DFT+D Modeling, and Monte Carlo Simulations. J. Phys. Chem. C 2022, 126, 9185–9194. [Google Scholar] [CrossRef]
- Jajko, G.; Gutiérrez-Sevillano, J.J.; Sławek, A.; Szufla, M.; Kozyra, P.; Matoga, D.; Makowski, W.; Calero, S. Water Adsorption in Ideal and Defective UiO-66 Structures. Microporous Mesoporous Mater. 2022, 330, 111555. [Google Scholar] [CrossRef]
- Makowski, W.; Gryta, P.; Jajko, G.; Rodlamul, P.; Jędrzejowski, D.; Roztocki, K.; Matoga, D. Co-Adsorption of Alcohols and Water in JUK-8 Studied Using Quasi-Equilibrated Thermodesorption. Molecules 2024, 29, 2309. [Google Scholar] [CrossRef]
- Makowski, W.; Yaremenko, N.; Gryta, P.; Cieślik-Górna, M.; Korzeniowska, A.; Majda, D. New Low-Cost and Compact Experimental System for Characterization of Porous Materials by Quasi-Equilibrated Thermodesorption of Nonane or Water; Springer Science and Business Media LLC.: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
- Makowski, W.; Jajko, G.; Nowicka, B.; Gryta, P.; Ogorzały, K. Experimental and Computational Study on the Hydration-Dehydration Transitions in [Ni(Cyclam)]3 M(CN)n Coordination Polymers. J. Phys. Chem. C 2024, 128, 8034–8041. [Google Scholar] [CrossRef]
- Fröhlich, D.; Pantatosaki, E.; Kolokathis, P.D.; Markey, K.; Reinsch, H.; Baumgartner, M.; van der Veen, M.A.; De Vos, D.E.; Stock, N.; Papadopoulos, G.K.; et al. Water Adsorption Behaviour of CAU-10-H: A Thorough Investigation of Its Structure–Property Relationships. J. Mater. Chem. A Mater. 2016, 4, 11859–11869. [Google Scholar] [CrossRef]
- Benzaqui, M.; Pillai, R.S.; Sabetghadam, A.; Benoit, V.; Normand, P.; Marrot, J.; Menguy, N.; Montero, D.; Shepard, W.; Tissot, A.; et al. Revisiting the Aluminum Trimesate-Based MOF (MIL-96): From Structure Determination to the Processing of Mixed Matrix Membranes for CO 2 Capture. Chem. Mater. 2017, 29, 10326–10338. [Google Scholar] [CrossRef]
- Nowicka, B.; Rams, M.; Stadnicka, K.; Sieklucka, B. Reversible Guest-Induced Magnetic and Structural Single-Crystal-to-Single-Crystal Transformation in Microporous Coordination Network {[Ni(Cyclam)]3[W(CN)8]2}n. Inorg. Chem. 2007, 46, 8123–8125. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, D.; Henninger, S.K.; Janiak, C. Multicycle Water Vapour Stability of Microporous Breathing MOF Aluminium Isophthalate CAU-10-H. Dalton Trans. 2014, 43, 15300–15304. [Google Scholar] [CrossRef] [PubMed]
- Benoit, V.; Chanut, N.; Pillai, R.S.; Benzaqui, M.; Beurroies, I.; Devautour-Vinot, S.; Serre, C.; Steunou, N.; Maurin, G.; Llewellyn, P.L. A Promising Metal–Organic Framework (MOF), MIL-96(Al), for CO2 Separation under Humid Conditions. J. Mater. Chem. A Mater. 2018, 6, 2081–2090. [Google Scholar] [CrossRef]
- Loiseau, T.; Lecroq, L.; Volkringer, C.; Marrot, J.; Férey, G.; Haouas, M.; Taulelle, F.; Bourrelly, S.; Llewellyn, P.L.; Latroche, M. MIL-96, a Porous Aluminum Trimesate 3D Structure Constructed from a Hexagonal Network of 18-Membered Rings and μ3-Oxo-Centered Trinuclear Units. J. Am. Chem. Soc. 2006, 128, 10223–10230. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makowski, W.; Gryta, P.; Jajko-Liberka, G.; Cieślik-Górna, M.; Korzeniowska, A. Water Sorption Properties and Hydrothermal Stability of Al-Containing Metal–Organic Frameworks CAU-10 and MIL-96 Studied Using Quasi-Equilibrated Thermodesorption. Molecules 2024, 29, 5625. https://doi.org/10.3390/molecules29235625
Makowski W, Gryta P, Jajko-Liberka G, Cieślik-Górna M, Korzeniowska A. Water Sorption Properties and Hydrothermal Stability of Al-Containing Metal–Organic Frameworks CAU-10 and MIL-96 Studied Using Quasi-Equilibrated Thermodesorption. Molecules. 2024; 29(23):5625. https://doi.org/10.3390/molecules29235625
Chicago/Turabian StyleMakowski, Waclaw, Patrycja Gryta, Gabriela Jajko-Liberka, Monika Cieślik-Górna, and Aleksandra Korzeniowska. 2024. "Water Sorption Properties and Hydrothermal Stability of Al-Containing Metal–Organic Frameworks CAU-10 and MIL-96 Studied Using Quasi-Equilibrated Thermodesorption" Molecules 29, no. 23: 5625. https://doi.org/10.3390/molecules29235625
APA StyleMakowski, W., Gryta, P., Jajko-Liberka, G., Cieślik-Górna, M., & Korzeniowska, A. (2024). Water Sorption Properties and Hydrothermal Stability of Al-Containing Metal–Organic Frameworks CAU-10 and MIL-96 Studied Using Quasi-Equilibrated Thermodesorption. Molecules, 29(23), 5625. https://doi.org/10.3390/molecules29235625