Changes in the Composition, Antioxidant Activity, and Sensory Attributes of Olive Oil Used as a Storage Medium for Dried Tomato Preservation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Quality Parameters
2.2. Fatty Acid Composition
2.3. Phenolic Compounds
2.4. Radical-Scavenging Activity
2.5. Pigments
2.6. Volatile Compounds
2.7. Sensory Attributes
3. Materials and Methods
3.1. Materials
3.2. Quality Parameters
3.3. Fatty Acids Analysis
3.4. Phenolic Compounds Analysis
3.5. Radical-Scavenging Activity
3.6. Pigments
3.7. Volatile Compounds Analysis
3.8. Sensory Characteristics
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Aparicio, R.; Harwood, J. Handbook of Olive Oil: Analysis and Properties, 2nd ed.; Springer: New York, NY, USA, 2013. [Google Scholar] [CrossRef]
- Velasco, J.; Dobarganes, C. Oxidative stability of virgin olive oil. Eur. J. Lipid Sci. Technol. 2002, 104, 661–676. [Google Scholar] [CrossRef]
- Conte, L.; Milani, A.; Calligaris, S.; Rovellini, P.; Lucci, P.; Nicoli, M.C. Temperature dependence of oxidation kinetics of extra virgin olive oil (EVOO) and shelf-life prediction. Foods 2020, 9, 295. [Google Scholar] [CrossRef]
- Gómez-Alonso, S.; Mancebo-Campos, V.; Salvador, M.D.; Fregapane, G. Evolution of major and minor components and oxidation indices of virgin olive oil during 21 months storage at room temperature. Food Chem. 2007, 100, 36–42. [Google Scholar] [CrossRef]
- Allouche, Y.; Jiménez, A.; Gaforio, J.J.; Uceda, M.; Beltrán, G. How heating affects extra virgin olive oil quality indexes and chemical composition. J. Agric. Food Chem. 2007, 55, 9646–9654. [Google Scholar] [CrossRef]
- Alzaa, D.F. Evaluation of Chemical and Physical Changes in Different Commercial Oils during Heating. Acta Sci. Nutr. Health 2018, 2, 2–11. [Google Scholar]
- Aranda, F.; Gómez-Alonso, S.; Rivera Del Álamo, R.M.; Salvador, M.D.; Fregapane, G. Triglyceride, total and 2-position fatty acid composition of Cornicabra virgin olive oil: Comparison with other Spanish cultivars. Food Chem. 2004, 86, 485–492. [Google Scholar] [CrossRef]
- Varzakas, T. Extra virgin olive oil (EVOO): Quality, safety, authenticity, and adulteration. Foods 2021, 10, 995. [Google Scholar] [CrossRef]
- Koprivnjak, O. Djevičansko Maslinovo Ulje. In Od Masline do Stola; CIP: Poreč, Croatia, 2006. (In Croatian) [Google Scholar]
- Boskou, D. Sources of natural phenolic antioxidants. Trends Food Sci. Technol. 2006, 17, 505–512. [Google Scholar] [CrossRef]
- Frankel, E.N. Chemistry of extra virgin olive oil: Adulteration, oxidative stability, and antioxidants. J. Agric. Food Chem. 2010, 58, 5991–6006. [Google Scholar] [CrossRef]
- Serrano, A.; De la Rosa, R.; Sánchez-Ortiz, A.; Cano, J.; Pérez, A.G.; Sanz, C.; Arias-Calderón, R.; Velasco, L.; León, L. Chemical components influencing oxidative stability and sensorial properties of extra virgin olive oil and effect of genotype and location on their expression. LWT Food Sci. Technol. 2021, 136, 110257. [Google Scholar] [CrossRef]
- Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Prieto, M.A.; Simal-Gandara, J. Bioactive compounds and quality of extra virgin olive oil. Foods 2020, 9, 1014. [Google Scholar] [CrossRef]
- Klisović, D.; Koprivnjak, O.; Novoselić, A.; Pleadin, J.; Lešić, T.; Brkić Bubola, K. Compositional changes in the extra virgin olive oil used as a medium for cheese preservation. Foods 2022, 11, 2329. [Google Scholar] [CrossRef]
- Keceli, T.; Robinson, R.K.; Gordon, M.H. The role of olive oil in the preservation of yogurt cheese (labneh anbaris). Int. J. Dairy Technol. 1999, 52, 68–72. [Google Scholar] [CrossRef]
- Vrdoljak, J.; Dobranić, V.; Filipović, I.; Zdolec, N. Microbiological quality of soft, semi-hard and hard cheeses during the shelf-life. Maced. Vet. Rev. 2016, 39, 59–64. [Google Scholar] [CrossRef]
- Al-Ismail, K.; Al-Awamleh, S.A.; Saleh, M.; Al-Titi, H. Impacts of oil types and storage conditions on milk fat quality of strained yogurt immersed in oil. J. Am. Oil Chem. Soc. 2019, 96, 171–178. [Google Scholar] [CrossRef]
- Caponio, F.; Gomes, T.; Summo, C. Assessment of the oxidative and hydrolytic degradation of oils used as liquid medium of in-oil preserved vegetables. J. Food Sci. 2003, 68, 147–151. [Google Scholar] [CrossRef]
- Sicari, V.; Leporini, M.; Romeo, R.; Poiana, M.; Tundis, R.; Loizzo, M.R. Shelf-life evaluation of “San Marzano” dried tomato slices preserved in extra virgin olive oil. Foods 2021, 10, 1706. [Google Scholar] [CrossRef]
- EEC. Commission Delegated Regulation (EU) 2022/2104 of 29 July 2022 supplementing Regulation (EU) No 1308/2013 of the European Parliament and of the Council as regards marketing standards for olive oil. Off. J. Eur. Union 2022, L284, 1–22. [Google Scholar]
- Pristouri, G.; Badeka, A.; Kontominas, M.G. Effect of packaging material headspace, oxygen and light transmission, temperature and storage time on quality characteristics of extra virgin olive oil. Food Control 2010, 21, 412–418. [Google Scholar] [CrossRef]
- Paiva-Martins, F.; Santos, V.; Mangericão, H.; Gordon, M.H. Effects of copper on the antioxidant activity of olive polyphenols in bulk oil and oil-in-water emulsions. J. Agric. Food Chem. 2006, 54, 3738–3743. [Google Scholar] [CrossRef]
- Esposto, S.; Selvaggini, R.; Taticchi, A.; Veneziani, G.; Sordini, B.; Servili, M. Quality evolution of extra-virgin olive oils according to their chemical composition during 22 months of storage under dark conditions. Food Chem. 2020, 311, 126044. [Google Scholar] [CrossRef]
- Ali, M.Y.; Sina, A.A.I.; Khandker, S.S.; Neesa, L.; Tanvir, E.M.; Kabir, A.; Khalil, M.I.; Gan, S.H. Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A review. Foods 2020, 10, 45. [Google Scholar] [CrossRef]
- Brkić Bubola, K.; Koprivnjak, O.; Sladonja, B.; Belobrajić, I. Influence of storage temperature on quality parameters, phenols and volatile compounds of Croatian virgin olive oils. Grasas Aceites 2014, 65, e034. [Google Scholar] [CrossRef]
- Mousavi, S.; Mariotti, R.; Stanzione, V.; Pandolfi, S.; Mastio, V.; Baldoni, L.; Cultrera, N.G.M. Evolution of extra virgin olive oil quality under different storage conditions. Foods 2021, 10, 1945. [Google Scholar] [CrossRef]
- Di Stefano, V.; Melilli, M.G. Effect of storage on quality parameters and phenolic content of Italian extra-virgin olive oils. Nat. Prod. Res. 2020, 34, 78–86. [Google Scholar] [CrossRef]
- Cámara, M.; Del Valle, M.; Torija, M.E.; Castilho, C. Fatty acid composition of tomato pomace. Acta Hortic. 2001, 542, 175–181. [Google Scholar] [CrossRef]
- Saini, R.K.; Zamany, A.J.; Keum, Y.S. Ripening improves the content of carotenoid, α-tocopherol, and polyunsaturated fatty acids in tomato (Solanum lycopersicum L.) fruits. 3 Biotech 2017, 7, 43. [Google Scholar] [CrossRef]
- Hrncirik, K.; Fritsche, S. Comparability and reliability of different techniques for the determination of phenolic compounds in virgin olive oil. Eur. J. Lipid Sci. Technol. 2004, 106, 540–549. [Google Scholar] [CrossRef]
- Walker, R.B.; Everette, J.D.; Bryant, Q.M.; Green, A.M.; Abbey, Y.A.; Wangila, G.W. Reactivity of various compound classes towards the Folin-Ciocalteu reagent. AIP Conf. Proc. 2010, 1229, 16–22. [Google Scholar] [CrossRef]
- Jerman Klen, T.; Golc Wondra, A.; Vrhovšek, U.; Mozetič Vodopivec, B. Phenolic profiling of olives and olive oil process-derived matrices using UPLC-DAD-ESI-QTOF-HRMS analysis. J. Agric. Food Chem. 2015, 63, 3859–3872. [Google Scholar] [CrossRef]
- Ozdal, T.; Capanoglu, E.; Altay, F. A review on protein-phenolic interactions and associated changes. Food Res. Int. 2013, 51, 954–970. [Google Scholar] [CrossRef]
- De Toffoli, A.; Monteleone, E.; Bucalossi, G.; Veneziani, G.; Fia, G.; Servili, M.; Zanoni, B.; Pagliarini, E.; Gallina Toschi, T.; Dinnella, C. Sensory and chemical profile of a phenolic extract from olive mill waste waters in plant-base food with varied macro-composition. Food Res. Int. 2019, 119, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Brenes, M.; García, A.; García, P.; Garrido, A. Acid hydrolysis of secoiridoid aglycons during storage of virgin olive oil. J. Agric. Food Chem. 2001, 49, 5609–5614. [Google Scholar] [CrossRef] [PubMed]
- Nayak, J.; Pal, P. Transforming waste cheese-whey into acetic acid through a continuous membrane-integrated hybrid process. Ind. Eng. Chem. Res. 2013, 52, 2977–2984. [Google Scholar] [CrossRef]
- Labuckas, D.O.; Maestri, D.M.; Perelló, M.; Martínez, M.L.; Lamarque, A.L. Phenolics from walnut (Juglans regia L.) kernels: Antioxidant activity and interactions with proteins. Food Chem. 2008, 107, 607–612. [Google Scholar] [CrossRef]
- Yildirim-Elikoglu, S.; Erdem, Y.K. Interactions between milk proteins and polyphenols: Binding mechanisms, related changes, and the future trends in the dairy industry. Food Rev. Int. 2018, 34, 665–697. [Google Scholar] [CrossRef]
- Lukić, I.; Horvat, I.; Godena, S.; Krapac, M.; Lukić, M.; Vrhovsek, U.; Brkić Bubola, K. Towards understanding the varietal typicity of virgin olive oil by correlating sensory and compositional analysis data: A case study. Food Res. Int. 2018, 112, 78–89. [Google Scholar] [CrossRef]
- Malheiro, R.; Casal, S.; Rodrigues, N.; Renard, C.M.; Pereira, J.A. Volatile changes in cv. verdeal transmontana olive oil: From the drupe to the table, including storage. Food Res. Int. 2018, 106, 374–382. [Google Scholar] [CrossRef]
- Cavalli, J.F.; Fernandez, X.; Lizzani-Cuvelier, L.; Loiseau, A.M. Characterization of volatile compounds of French and Spanish virgin olive oils by HS-SPME: Identification of quality-freshness markers. Food Chem. 2004, 88, 151–157. [Google Scholar] [CrossRef]
- Luna, G.; Aparicio, R. Characterisation of monovarietal virgin olive oils. Eur. J. Lipid Sci. Technol. 2002, 104, 614–627. [Google Scholar] [CrossRef]
- Morales, M.T.; Luna, G.; Aparicio, R. Comparative study of virgin olive oil sensory defects. Food Chem. 2005, 91, 293–301. [Google Scholar] [CrossRef]
- Angerosa, F.; Servili, M.; Selvaggini, R.; Taticchi, A.; Esposto, S.; Montedoro, G. Volatile compounds in virgin olive oil: Occurrence and their relationship with the quality. J. Chromatogr. A 2004, 1054, 17–31. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, S.; Cin, V.D.; Fei, Z.; Li, H.; Bliss, P.; Taylor, M.G.; Klee, H.J.; Tieman, D.M. Flavour compounds in tomato fruits: Identification of loci and potential pathways affecting volatile composition. J. Exp. Bot. 2009, 60, 325–337. [Google Scholar] [CrossRef] [PubMed]
- Distefano, M.; Mauro, R.P.; Page, D.; Giuffrida, F.; Bertin, N.; Leonardi, C. Aroma volatiles in tomato fruits: The role of genetic, preharvest and postharvest factors. Agronomy 2022, 12, 376. [Google Scholar] [CrossRef]
- Kelebek, H.; Kesen, S.; Sonmezdag, A.S.; Cetiner, B.; Kola, O.; Selli, S. Characterization of the key aroma compounds in tomato pastes as affected by hot and cold break process. J. Food Meas. Charact. 2018, 12, 2461–2474. [Google Scholar] [CrossRef]
- Andrewes, P.; Busch, J.L.H.C.; De Joode, T.; Groenewegen, A.; Alexandre, H. Sensory properties of virgin olive oil polyphenols: Identification of deacetoxy-ligstroside aglycon as a key contributor to pungency. J. Agric. Food Chem. 2003, 51, 1415–1420. [Google Scholar] [CrossRef]
- Campestre, C.; Angelini, G.; Gasbarri, C.; Angerosa, F. The compounds responsible for the sensory profile in monovarietal virgin olive oils. Molecules 2017, 22, 1833. [Google Scholar] [CrossRef]
- Beltrán, G.; Uceda, M.; Jimenez, A.; Aguilera, M.P. Olive oil extractability index as a parameter for olive cultivar characterisation. J. Sci. Food Agric. 2003, 83, 503–506. [Google Scholar] [CrossRef]
- IOC (International Olive Council). Determination of Free Fatty Acids, Cold Method; COI/T.20/Doc. No. 34; IOC: Madrid, Spain, 2017. [Google Scholar]
- IOC (International Olive Council). Determination of Peroxide Value; COI/T.20/Doc. No. 35; IOC: Madrid, Spain, 2017. [Google Scholar]
- IOC (International Olive Council). Spectrophotometric Investigation in the Ultraviolet; COI/T.20/Doc. No. 19; IOC: Madrid, Spain, 2019. [Google Scholar]
- IOC (International Olive Council). Determination of Fatty Acid Methyl Esters by Gas Chromatography; COI/T.20/Doc. No. 33; IOC: Madrid, Spain, 2017. [Google Scholar]
- Lukić, I.; Žanetić, M.; Jukić Špika, M.; Lukić, M.; Koprivnjak, O.; Brkić Bubola, K. Complex interactive effects of ripening degree, malaxation duration and temperature on Oblica cv. virgin olive oil phenols, volatiles and sensory quality. Food Chem. 2017, 232, 610–620. [Google Scholar] [CrossRef]
- Koprivnjak, O.; Škevin, D.; Valić, S.; Majetić, V.; Petričević, S.; Ljubenkov, I. The antioxidant capacity and oxidative stability of virgin olive oil enriched with phospholipids. Food Chem. 2008, 111, 121–126. [Google Scholar] [CrossRef]
- Minguez-Mosquera, M.I.; Rejano-Navarro, L.; Gandul-Rojas, B.; SanchezGomez, A.H.; Garrido-Fernandez, J. Color-pigment correlation in virgin olive oil. J. Am. Oil Chem. Soc. 1991, 68, 332–336. [Google Scholar] [CrossRef]
- Brkić Bubola, K.; Koprivnjak, O.; Sladonja, B.; Škevin, D.; Belobrajić, I. Chemical and sensorial changes in Croatian monovarietal olive oils during ripening. Eur. J. Lipid Sci. Technol. 2012, 114, 1400–1408. [Google Scholar] [CrossRef]
- Brkić Bubola, K.; Koprivnjak, O.; Sladonja, B.; Lukić, I. Volatile Compounds and Sensory Profiles of Monovarietal Virgin Olive Oil from Buža, Črna and Rosinjola Cultivars in Istria (Croatia). Food Technol. Biotechnol. 2012, 50, 192–198. [Google Scholar]
- Brkić Bubola, K.; Lukić, M.; Lukić, I.; Koprivnjak, O. Effect of different clarification methods on volatile aroma compound composition of virgin olive oil. Food Technol. Biotechnol. 2019, 57, 503–512. [Google Scholar] [CrossRef] [PubMed]
- IOC (International Olive Council). Sensory Analysis of Olive Oil—Method for the Organoleptic Assessment of Virgin Olive Oil; COI/T.20/Doc. No. 15; IOC: Madrid, Spain, 2018. [Google Scholar]
- ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. ISO: Geneva, Switzerland, 2017.
- IOC (International Olive Council). Guide for the Selection, Training and Quality Control of Virgin Olive Oil Tasters—Qualifications of Tasters, Panel Leaders and Trainers; COI/T.20/Doc. No. 14; IOC: Madrid, Spain, 2021. [Google Scholar]
- IOC (International Olive Council). Internal Quality Control Guidelines for Sensory Laboratories; COI/T.20/Doc. No. 17; IOC: Madrid, Spain, 2023. [Google Scholar]
Storage Time (Months) | Temp | Samples | FFA (%) | PV (meqO2/kg) | K232 | K268 | ΔK |
---|---|---|---|---|---|---|---|
0 | EVOO | 0.13 ± 0.00 | 9.07 ± 0.09 | 1.90 ± 0.09 | 0.13 ± 0.00 | 0.00 ± 0.00 | |
1 | RT | EVOO | 0.11 ± 0.00 ab | 7.33 ± 0.07 a | 2.10 ± 0.03 a | 0.13 ± 0.01 | 0.00 ± 0.00 |
EVOO + T | 0.12 ± 0.01 a | 6.68 ± 0.06 b | 2.04 ± 0.02 b | 0.12 ± 0.00 | 0.00 ± 0.00 | ||
4 °C | EVOO | 0.11 ± 0.01 b | 6.41 ± 0.04 c | 2.03 ± 0.02 b | 0.14 ± 0.01 | 0.00 ± 0.00 | |
EVOO + T | 0.11 ± 0.01 b | 6.14 ± 0.06 d | 2.01 ± 0.01 b | 0.12 ± 0.00 | 0.00 ± 0.00 | ||
3 | RT | EVOO | 0.13 ± 0.00 b | 9.61 ± 0.09 a | 2.46 ± 0.01 a | 0.13 ± 0.01 b | 0.00 ± 0.00 |
EVOO + T | 0.15 ± 0.01 a | 8.66 ± 0.03 b | 2.14 ± 0.03 b | 0.13 ± 0.00 b | 0.00 ± 0.00 | ||
4 °C | EVOO | 0.12 ± 0.00 b | 8.29 ± 0.12 c | 2.09 ± 0.07 b | 0.18 ± 0.02 a | 0.00 ± 0.00 | |
EVOO + T | 0.13 ± 0.00 b | 7.03 ± 0.03 d | 2.02 ± 0.08 b | 0.14 ± 0.00 b | 0.00 ± 0.00 | ||
6 | RT | EVOO | 0.18 ± 0.01 b | 11.39 ± 0.05 a | 3.00 ± 0.09 a | 0.26 ± 0.03 a | 0.00 ± 0.00 |
EVOO + T | 0.22 ± 0.02 a | 8.52 ± 0.18 b | 2.19 ± 0.04 b | 0.18 ± 0.01 b | 0.00 ± 0.00 | ||
4 °C | EVOO | 0.16 ± 0.01 b | 8.35 ± 0.08 b | 2.17 ± 0.01 b | 0.14 ± 0.01 b | 0.00 ± 0.00 | |
EVOO + T | 0.18 ± 0.00 b | 7.50 ± 0.03 c | 2.09 ± 0.05 b | 0.14 ± 0.01 b | 0.00 ± 0.00 | ||
EVOO * | ≤0.80 | ≤20.0 | ≤2.50 | ≤0.22 | ≤0.01 |
Storage Time (Months) | Temp | Samples | Myristic (C 14:0) | Palmitic (C 16:0) | Palmitoleic (C 16:1) | Heptadecanoic (C 17:0) | Heptadecenoic (C 17:1) | Stearic (C 18:0) | Oleic (C 18:1) |
---|---|---|---|---|---|---|---|---|---|
0 | EVOO | 0.01 ± 0.00 | 14.84 ± 0.28 | 1.64 ± 0.04 | 0.06 ± 0.00 | 0.15 ± 0.00 | 1.77 ± 0.02 | 70.25 ± 0.17 | |
1 | RT | EVOO | 0.01 ± 0.00 | 14.98 ± 0.18 a | 1.67 ± 0.04 | 0.05 ± 0.01 | 0.16 ± 0.03 | 1.77 ± 0.02 | 70.03 ± 0.29 |
EVOO + T | 0.02 ± 0.01 | 15.02 ± 0.04 a | 1.70 ± 0.00 | 0.06 ± 0.02 | 0.13 ± 0.02 | 1.91 ± 0.24 | 69.94 ± 0.25 | ||
4 °C | EVOO | 0.01 ± 0.00 | 14.95 ± 0.01 a | 1.67 ± 0.02 | 0.07 ± 0.01 | 0.13 ± 0.02 | 1.77 ± 0.00 | 69.87 ± 0.02 | |
EVOO + T | 0.01 ± 0.00 | 14.63 ± 0.01 b | 1.68 ± 0.05 | 0.06 ± 0.00 | 0.13 ± 0.00 | 1.84 ± 0.05 | 70.23 ± 0.16 | ||
3 | RT | EVOO | 0.01 ± 0.00 | 14.55 ± 0.24 a | 1.61 ± 0.03 | 0.05 ± 0.00 | 0.14 ± 0.00 | 1.78 ± 0.02 | 70.60 ± 0.14 b |
EVOO + T | 0.01 ± 0.00 | 14.32 ± 0.07 ab | 1.58 ± 0.02 | 0.05 ± 0.00 | 0.13 ± 0.00 | 1.80 ± 0.01 | 70.74 ± 0.04 ab | ||
4 °C | EVOO | 0.01 ± 0.00 | 13.97 ± 0.22 b | 1.59 ± 0.00 | 0.06 ± 0.00 | 0.13 ± 0.00 | 1.80 ± 0.00 | 70.98 ± 0.18 a | |
EVOO + T | 0.01 ± 0.00 | 14.72 ± 0.16 a | 1.63 ± 0.03 | 0.06 ± 0.00 | 0.14 ± 0.00 | 1.78 ± 0.01 | 70.38 ± 0.17 b | ||
6 | RT | EVOO | 0.01 ± 0.00 | 14.45 ± 0.08 a | 1.58 ± 0.02 | 0.05 ± 0.00 | 0.14 ± 0.00 | 1.79 ± 0.01 ab | 70.78 ± 0.03 bc |
EVOO + T | 0.01 ± 0.00 | 14.61 ± 0.31 a | 1.61 ± 0.04 | 0.06 ± 0.00 | 0.14 ± 0.00 | 1.78 ± 0.01 b | 70.58 ± 0.28 c | ||
4 °C | EVOO | 0.01 ± 0.00 | 13.85 ± 0.02 b | 1.63 ± 0.00 | 0.05 ± 0.00 | 0.14 ± 0.00 | 1.79 ± 0.00 b | 71.12 ± 0.00 ab | |
EVOO + T | 0.01 ± 0.00 | 13.65 ± 0.16 b | 1.58 ± 0.04 | 0.05 ± 0.00 | 0.14 ± 0.00 | 1.80 ± 0.01 a | 71.28 ± 0.16 a | ||
EVOO * | ≤0.03 | 7.50–20.00 | 0.30–3.50 | ≤0.40 | ≤0.60 | 0.50–5.00 | 55.00–83.00 | ||
Storage Time (months) | Temp | Samples | Linoleic (C 18:2) | Linolenic (C18:3) | Arachidic (C 20:0) | Eicosenoic (C 20:1) | Behenic (C 22:0) | Eicosenoic Acid (C 22:1) | Lignoceric (C 24:0) |
0 | EVOO | 9.68 ± 0.10 | 0.83 ± 0.01 | 0.32 ± 0.01 | 0.30 ± 0.01 | 0.10 ± 0.00 | 0.00 ± 0.00 | 0.05 ± 0.00 | |
1 | RT | EVOO | 9.70 ± 0.10 | 0.83 ± 0.00 ab | 0.32 ± 0.02 b | 0.32 ± 0.01 | 0.11 ± 0.02 | 0.00 ± 0.00 | 0.05 ± 0.01 |
EVOO + T | 9.68 ± 0.10 | 0.80 ± 0.03 b | 0.32 ± 0.01 ab | 0.29 ± 0.03 | 0.09 ± 0.01 | 0.00 ± 0.00 | 0.05 ± 0.01 | ||
4 °C | EVOO | 9.84 ± 0.07 | 0.87 ± 0.03 a | 0.31 ± 0.00 b | 0.35 ± 0.03 | 0.10 ± 0.01 | 0.00 ± 0.00 | 0.05 ± 0.00 | |
EVOO + T | 9.76 ± 0.05 | 0.84 ± 0.01 ab | 0.35 ± 0.02 a | 0.29 ± 0.03 | 0.10 ± 0.00 | 0.00 ± 0.00 | 0.05 ± 0.00 | ||
3 | RT | EVOO | 9.63 ± 0.07 | 0.82 ± 0.01 | 0.34 ± 0.00 | 0.31 ± 0.02 | 0.10 ± 0.01 | 0.00 ± 0.00 | 0.05 ± 0.01 |
EVOO + T | 9.70 ± 0.02 | 0.83 ± 0.01 | 0.34 ± 0.00 | 0.33 ± 0.01 | 0.11 ± 0.00 | 0.00 ± 0.00 | 0.05 ± 0.00 | ||
4 °C | EVOO | 9.77 ± 0.05 | 0.83 ± 0.01 | 0.34 ± 0.00 | 0.33 ± 0.00 | 0.11 ± 0.00 | 0.00 ± 0.00 | 0.06 ± 0.00 | |
EVOO + T | 9.67 ± 0.00 | 0.82 ± 0.00 | 0.33 ± 0.01 | 0.30 ± 0.01 | 0.11 ± 0.00 | 0.00 ± 0.00 | 0.05 ± 0.01 | ||
6 | RT | EVOO | 9.63 ± 0.05 b | 0.79 ± 0.00 | 0.33 ± 0.01 | 0.29 ± 0.00 b | 0.10 ± 0.00 ab | 0.00 ± 0.00 | 0.05 ± 0.00 |
EVOO + T | 9.63 ± 0.04 b | 0.80 ± 0.01 | 0.33 ± 0.01 | 0.30 ± 0.01 b | 0.10 ± 0.00 ab | 0.00 ± 0.00 | 0.05 ± 0.01 | ||
4 °C | EVOO | 9.82 ± 0.01 a | 0.81 ± 0.00 | 0.33 ± 0.00 | 0.30 ± 0.01 b | 0.10 ± 0.00 b | 0.00 ± 0.00 | 0.05 ± 0.00 | |
EVOO + T | 9.84 ± 0.01 a | 0.82 ± 0.01 | 0.34 ± 0.01 | 0.32 ± 0.00 a | 0.11 ± 0.00 a | 0.00 ± 0.00 | 0.05 ± 0.01 | ||
EVOO * | 2.50–21.00 | ≤1.00 | ≤0.60 | ≤0.50 | ≤0.20 | / | ≤0.20 | ||
Storage Time (Months) | Temp | Samples | ∑SFA | ∑MUFA | ∑PUFA | Oleic/Linoleic Ratio (C18:1/C18:2) | |||
0 | EVOO | 17.1 ± 0.3 | 72.4 ± 0.1 | 10.5 ± 0.1 | 7.26 ± 0.06 | ||||
1 | RT | EVOO | 17.3 ± 0.1 ab | 72.2 ± 0.2 | 10.5 ± 0.1 ab | 7.22 ± 0.10 | |||
EVOO + T | 17.5 ± 0.2 a | 72.1 ± 0.3 | 10.5 ± 0.1 b | 7.22 ± 0.10 | |||||
4 °C | EVOO | 17.3 ± 0.0 ab | 72.0 ± 0.0 | 10.7 ± 0.0 a | 7.10 ± 0.05 | ||||
EVOO + T | 17.1 ± 0.1 b | 72.3 ± 0.1 | 10.6 ± 0.1 ab | 7.20 ± 0.05 | |||||
3 | RT | EVOO | 16.8 ± 0.2 ab | 72.8 ± 0.1 ab | 10.5 ± 0.1 | 7.32 ± 0.04 | |||
EVOO + T | 16.7 ± 0.1 ab | 72.8 ± 0.0 ab | 10.5 ± 0.0 | 7.29 ± 0.01 | |||||
4 °C | EVOO | 16.4 ± 0.2 b | 73.0 ± 0.2 a | 10.6 ± 0.1 | 7.27 ± 0.01 | ||||
EVOO + T | 17.1 ± 0.1 a | 72.5 ± 0.1 b | 10.5 ± 0.0 | 7.28 ± 0.01 | |||||
6 | RT | EVOO | 16.8 ± 0.1 a | 72.8 ± 0.1 b | 10.4 ± 0.1 b | 7.35 ± 0.03 a | |||
EVOO + T | 16.9 ± 0.3 a | 72.6 ± 0.2 b | 10.4 ± 0.1 b | 7.33 ± 0.01 a | |||||
4 °C | EVOO | 16.2 ± 0.0 b | 73.2 ± 0.0 a | 10.6 ± 0.0 a | 7.25 ± 0.01 b | ||||
EVOO + T | 16.0 ± 0.1 b | 73.3 ± 0.1 a | 10.7 ± 0.0 a | 7.24 ± 0.01 b |
Storage Time (Months) | Temp | Samples | Simple Phenols | Phenolic Acids | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Tyrosol | Hydroxytyrosol | Hydroxytyrosol Acetate | Vanillin | p-Coumaric Acid | Vanillic Acid | |||||
0 | EVOO | 4.01 ± 0.04 | 2.55 ± 0.09 | 0.12 ± 0.00 | 0.17 ± 0.00 | 1.63 ± 0.03 | 0.49 ± 0.00 | |||
1 | RT | EVOO | 3.39 ± 0.10 b | 2.23 ± 0.09 b | 0.10 ± 0.00 c | 0.15 ± 0.01 | 1.41 ± 0.08 b | 0.42 ± 0.03 b | ||
EVOO + T | 3.34 ± 0.25 b | 1.46 ± 0.20 c | 1.28 ± 0.09 a | 0.17 ± 0.01 | 1.56 ± 0.07 ab | 0.56 ± 0.02 a | ||||
4 °C | EVOO | 4.24 ± 0.03 a | 2.85 ± 0.11 a | 0.11 ± 0.00 c | 0.16 ± 0.01 | 1.60 ± 0.04 a | 0.48 ± 0.01 b | |||
EVOO + T | 3.87 ± 0.18 a | 2.19 ± 0.12 b | 0.40 ± 0.03 b | 0.16 ± 0.01 | 1.48 ± 0.08 ab | 0.43 ± 0.03 b | ||||
3 | RT | EVOO | 3.63 ± 0.25 a | 2.24 ± 0.07 a | 0.16 ± 0.01 c | 0.17 ± 0.02 | 1.64 ± 0.22 | 0.48 ± 0.03 a | ||
EVOO + T | 4.24 ± 0.17 a | 2.12 ± 0.16 a | 1.83 ± 0.12 a | 0.18 ± 0.02 | 1.51 ± 0.10 | 0.32 ± 0.01 b | ||||
4 °C | EVOO | 3.94 ± 0.09 a | 1.89 ± 0.12 a | 0.13 ± 0.02 c | 0.16 ± 0.03 | 1.68 ± 0.27 | 0.46 ± 0.06 a | |||
EVOO + T | 2.90 ± 0.35 b | 1.31 ± 0.21 b | 0.59 ± 0.10 b | 0.17 ± 0.01 | 1.49 ± 0.09 | 0.43 ± 0.04 a | ||||
6 | RT | EVOO | 4.15 ± 0.02 a | 2.99 ± 0.03 a | 0.13 ± 0.01 b | 0.15 ± 0.00 | 1.48 ± 0.03 b | 0.43 ± 0.01 a | ||
EVOO + T | 3.28 ± 0.17 b | 0.77 ± 0.03 c | 2.01 ± 0.08 a | 0.15 ± 0.01 | 1.79 ± 0.17 a | 0.19 ± 0.02 b | ||||
4 °C | EVOO | 4.02 ± 0.25 a | 2.88 ± 0.15 a | 0.11 ± 0.01 b | 0.15 ± 0.02 | 1.45 ± 0.05 b | 0.43 ± 0.03 a | |||
EVOO + T | 3.45 ± 0.21 b | 1.98 ± 0.22 b | 0.63 ± 0.03 b | 0.16 ± 0.01 | 1.38 ± 0.13 b | 0.43 ± 0.03 a | ||||
Storage Time (Months) | Temp | Samples | Flavonoids | Lignans | ||||||
Luteolin | Apigenin | Pinoresinol | Acetoxypinoresinol * | |||||||
0 | EVOO | 2.56 ± 0.03 | 0.53 ± 0.02 | 6.83 ± 0.05 | 11.8 ± 0.4 | |||||
1 | RT | EVOO | 1.98 ± 0.03 ab | 0.41 ± 0.01 b | 5.68 ± 0.29 b | 10.1 ± 0.5 b | ||||
EVOO + T | 1.59 ± 0.14 b | 0.65 ± 0.01 a | 6.77 ± 0.07 a | 12.0 ± 0.8 a | ||||||
4 °C | EVOO | 2.49 ± 0.34 a | 0.51 ± 0.09 ab | 6.89 ± 0.39 a | 11.5 ± 0.9 ab | |||||
EVOO + T | 2.06 ± 0.18 ab | 0.53 ± 0.05 ab | 6.42 ± 0.30 ab | 10.9 ± 0.5 ab | ||||||
3 | RT | EVOO | 2.40 ± 0.16 a | 0.49 ± 0.03 ab | 7.26 ± 0.73 a | 12.6 ± 0.9 | ||||
EVOO + T | 0.85 ± 0.15 c | 0.40 ± 0.03 b | 5.60 ± 0.07 b | 10.5 ± 0.2 | ||||||
4 °C | EVOO | 2.69 ± 0.12 a | 0.56 ± 0.02 a | 7.37 ± 0.64 a | 12.6 ± 1.7 | |||||
EVOO + T | 1.96 ± 0.15 b | 0.52 ± 0.06 a | 6.64 ± 0.60 ab | 11.3 ± 0.5 | ||||||
6 | RT | EVOO | 2.47 ± 0.10 a | 0.56 ± 0.03 a | 6.16 ± 0.12 a | 11.8 ± 0.3 a | ||||
EVOO + T | 0.44 ± 0.06 b | 0.36 ± 0.03 b | 5.12 ± 0.09 b | 8.39 ± 0.50 c | ||||||
4 °C | EVOO | 1.56 ± 0.95 ab | 0.49 ± 0.14 ab | 6.03 ± 0.24 a | 10.4 ± 0.5 b | |||||
EVOO + T | 1.80 ± 0.27 a | 0.52 ± 0.05 ab | 6.03 ± 0.42 a | 11.3 ± 0.5 ab | ||||||
Storage Time (Months) | Temp | Samples | Secoiridoids | |||||||
Oleuropein + Ligstroside Aglycones I & II * | Ligstroside Aglycon (Isomer II) * | Oleochantal (p-HPEA-EDA) * | Oleuropein Aglycone (Isomer I) * | Oleuropein Aglycone (Isomer II) * | Oleuropein Aglycone (Isomer III) * | Oleacein (3,4-DHPEA-EDA) * | ||||
0 | EVOO | 19.6 ± 1.0 | 11.1 ± 0.6 | 50.1 ± 1.6 | 44.9 ± 1.2 | 48.8 ± 0.9 | 13.8 ± 0.25 | 93.6 ± 3.0 | ||
1 | RT | EVOO | 14.7 ± 0.5 ab | 8.87 ± 0.79 | 39.4 ± 1.4 b | 35.7 ± 1.3 b | 40.2 ± 0.5 c | 11.8 ± 0.1 b | 75.0 ± 3.0 b | |
EVOO + T | 14.4 ± 1.8 b | 9.12 ± 0.43 | 34.3 ± 0.7 c | 26.4 ± 1.8 c | 50.1 ± 0.9 a | 15.4 ± 0.9 a | 28.3 ± 2.1 d | |||
4 °C | EVOO | 17.8 ± 1.1 a | 11.2 ± 1.4 | 46.3 ± 1.1 a | 42.3 ± 1.5 a | 47.1 ± 2.2 ab | 13.3 ± 1.5 ab | 85.6 ± 2.5 a | ||
EVOO + T | 15.6 ± 1.0 ab | 9.66 ± 0.59 | 39.0 ± 1.61 b | 33.8 ± 1.8 b | 44.1 ± 0.8 b | 13.1 ± 0.6 ab | 54.1 ± 3.4 c | |||
3 | RT | EVOO | 14.4 ± 3.2 | 11.1 ± 0.7 a | 39.5 ± 2.0 a | 35.3 ± 1.5 b | 39.8 ± 1.8 b | 12.8 ± 1.0 | 71.0 ± 3.5 a | |
EVOO + T | 13.0 ± 1.5 | 5.18 ± 1.19 b | 19.5 ± 0.5 c | 21.6 ± 1.8 c | 36.0 ± 1.2 b | 12.6 ± 1.1 | 9.51 ± 1.1 c | |||
4 °C | EVOO | 13.9 ± 1.2 | 12.8 ± 0.9 a | 40.3 ± 2.9 a | 42.3 ± 3.5 a | 38.0 ± 1.8 b | 11.0 ± 1.3 | 75.7 ± 5.1 a | ||
EVOO + T | 16.8 ± 1.8 | 9.82 ± 1.27 a | 32.7 ± 0.5 b | 38.0 ± 0.6 ab | 46.0 ± 2.6 a | 10.4 ± 0.6 | 45.9 ± 2.1 b | |||
6 | RT | EVOO | 12.6 ± 0.6 b | 10.8 ± 1.0 a | 40.0 ± 1.9 a | 33.7 ± 0.9 b | 39.5 ± 2.1 a | 12.8 ± 0.7 a | 71.5 ± 3.1 a | |
EVOO + T | 9.92 ± 0.53 c | 5.55 ± 0.66 b | 11.3 ± 2.4 c | 18.8 ± 1.0 c | 29.6 ± 1.1 b | 8.68 ± 0.54 b | 8.83 ± 1.21 c | |||
4 °C | EVOO | 13.3 ± 1.4 ab | 9.79 ± 1.00 a | 37.8 ± 0.5 ab | 40.7 ± 0.7 a | 34.7 ± 0.5 ab | 9.58 ± 0.71 b | 71.6 ± 0.2 a | ||
EVOO + T | 15.4 ± 0.5 a | 9.05 ± 0.55 a | 31.7 ± 4.1 b | 32.7 ± 1.1 b | 36.3 ± 4.3 a | 11.6 ± 1.0 a | 38.0 ± 2.2 b |
Storage Time (Months) | Temp | Samples | C5 Volatiles | |||||||
---|---|---|---|---|---|---|---|---|---|---|
3—Pentanone | 1-Pentene-3-one | (E)-2-Penten-1-ol | (Z)-2-Pentenal * | (E)-2-Pentenal | Total C5 Volatiles | |||||
0 | EVOO | 0.095 ± 0.002 | 1.24 ± 0.01 | 0.020 ± 0.002 | 0.031 ± 0.001 | 0.073 ± 0.000 | 1.45 ± 0.01 | |||
1 | RT | EVOO | 0.098 ± 0.002 a | 1.28 ± 0.01 a | 0.023 ± 0.000 a | 0.027 ± 0.001 a | 0.074 ± 0.002 a | 1.51 ± 0.01 a | ||
EVOO + T | 0.071 ± 0.001 b | 0.742 ± 0.000 d | 0.016 ± 0.000 b | 0.013 ± 0.000 c | 0.062 ± 0.003 b | 0.905 ± 0.003 d | ||||
4 °C | EVOO | 0.094 ± 0.003 a | 1.22 ± 0.01 b | 0.021 ± 0.000 a | 0.030 ± 0.001 a | 0.072 ± 0.000 a | 1.44 ± 0.01 b | |||
EVOO + T | 0.075 ± 0.001 b | 0.938 ± 0.013 c | 0.019 ± 0.001 b | 0.021 ± 0.001 b | 0.064 ± 0.001 b | 1.12 ± 0.02 c | ||||
6 | RT | EVOO | 0.083 ± 0.001 a | 0.851 ± 0.030 a | 0.045 ± 0.021 | 0.015 ± 0.001 a | 0.062 ± 0.000 a | 1.06 ± 0.05 a | ||
EVOO + T | 0.064 ± 0.001 b | 0.149 ± 0.003 c | 0.012 ± 0.000 | 0.003 ± 0.000 c | 0.039 ± 0.000 d | 0.266 ± 0.004 c | ||||
4 °C | EVOO | 0.074 ± 0.004 a | 0.907 ± 0.018 a | 0.053 ± 0.001 | 0.016 ± 0.000 a | 0.059 ± 0.000 b | 1.11 ± 0.021 a | |||
EVOO + T | 0.061 ± 0.002 b | 0.558 ± 0.009 b | 0.016 ± 0.002 | 0.008 ± 0.001 b | 0.046 ± 0.000 c | 0.690 ± 0.008 b | ||||
Storage Time (Months) | Temp | Samples | C6 Volatiles | |||||||
Hexanal | (E)-2-Hexenal | (Z)-2-Hexenal * | (E)-3-Hexenal * | (Z)-3-Hexenal * | Total C6 Aldehydes | |||||
0 | EVOO | 0.873 ± 0.001 | 44.6 ± 0.15 | 0.402 ± 0.004 | 0.140 ± 0.001 | 0.226 ± 0.002 | 46.2 ± 0.2 | |||
1 | RT | EVOO | 0.969 ± 0.016 a | 46.0 ± 0.7 a | 0.381 ± 0.028 ab | 0.135 ± 0.003 a | 0.171 ± 0.000 b | 47.7 ± 0.8 a | ||
EVOO + T | 0.759 ± 0.015 b | 35.8 ± 0.5 c | 0.325 ± 0.010 b | 0.106 ± 0.001 c | 0.104 ± 0.002 c | 37.1 ± 0.5 c | ||||
4 °C | EVOO | 0.929 ± 0.012 a | 43.8 ± 0.3 a | 0.417 ± 0.007 a | 0.142 ± 0.000 a | 0.237 ± 0.003 a | 45.5 ± 0.3 a | |||
EVOO + T | 0.814 ± 0.013 b | 39.0 ± 0.9 b | 0.352 ± 0.025 ab | 0.118 ± 0.001 b | 0.162 ± 0.004 b | 40.5 ± 0.9 b | ||||
6 | RT | EVOO | 1.043 ± 0.100 a | 35.6 ± 0.6 a | 0.197 ± 0.022 b | 0.063 ± 0.001 b | 0.044 ± 0.002 b | 36.9 ± 0.5 a | ||
EVOO + T | 0.742 ± 0.001 b | 19.3 ± 0.1 c | 0.164 ± 0.004 b | 0.050 ± 0.001 c | 0.018 ± 0.000 c | 20.2 ± 0.1 c | ||||
4 °C | EVOO | 0.794 ± 0.011 ab | 35.7 ± 0.9 a | 0.305 ± 0.001 a | 0.082 ± 0.002 a | 0.125 ± 0.010 a | 37.0 ± 0.9 a | |||
EVOO + T | 0.838 ± 0.082 ab | 29.8 ± 0.4 b | 0.208 ± 0.002 b | 0.064 ± 0.002 b | 0.061 ± 0.003 b | 31.0 ± 0.3 b | ||||
Storage Time (Months) | Temp | Samples | C6 Volatiles | |||||||
1-Hexanol | (E)-3-Hexen-1-ol | (Z)-3-Hexen-1-ol | (E)-2-Hexen-1-ol | (Z)-2-Hexen-1-ol | Total C6 Alcohols | Hexyl Acetate | Total C6 Volatiles | |||
0 | EVOO | 0.942 ± 0.006 | 0.021 ± 0.000 | 1.19 ± 0.01 | 1.18 ± 0.01 | 0.011 ± 0.000 | 3.34 ± 0.03 | 0.018 ± 0.011 | 49.6 ± 0.2 | |
1 | RT | EVOO | 0.969 ± 0.008 a | 0.021 ± 0.000 a | 1.22 ± 0.01 a | 1.22 ± 0.02 a | 0.011 ± 0.000 a | 3.44 ± 0.04 a | 0.011 ± 0.002 b | 51.1 ± 0.8 a |
EVOO + T | 0.759 ± 0.001 b | 0.017 ± 0.003 ab | 0.904 ± 0.004 d | 0.926 ± 0.027 c | 0.008 ± 0.001 b | 2.61 ± 0.03 d | 0.021 ± 0.000 a | 39.8 ± 0.5 c | ||
4 °C | EVOO | 0.921 ± 0.039 a | 0.020 ± 0.002 a | 1.18 ± 0.01 b | 1.16 ± 0.01 a | 0.010 ± 0.000 a | 3.29 ± 0.03 b | 0.012 ± 0.003 b | 48.8 ± 0.2 a | |
EVOO + T | 0.824 ± 0.016 b | 0.012 ± 0.000 b | 1.00 ± 0.00 c | 1.01 ± 0.02 b | 0.009 ± 0.000 a | 2.86 ± 0.04 c | 0.019 ± 0.000 a | 43.3 ± 0.9 b | ||
6 | RT | EVOO | 0.782 ± 0.026 a | 0.015 ± 0.000 a | 1.12 ± 0.03 ab | 0.999 ± 0.043 a | 0.006 ± 0.001 ab | 2.92 ± 0.10 a | 0.008 ± 0.002 | 39.8 ± 0.6 a |
EVOO + T | 0.630 ± 0.005 b | 0.012 ± 0.000 b | 0.855 ± 0.048 c | 0.778 ± 0.004 b | 0.014 ± 0.002 a | 2.29 ± 0.06 b | 0.018 ± 0.002 | 22.5 ± 0.2 c | ||
4 °C | EVOO | 0.801 ± 0.026 a | 0.015 ± 0.000 a | 1.15 ± 0.03 a | 1.06 ± 0.04 a | 0.005 ± 0.001 b | 3.03 ± 0.10 a | 0.009 ± 0.000 | 40.0 ± 1.0 a | |
EVOO + T | 0.702 ± 0.002 b | 0.013 ± 0.000 b | 1.003 ± 0.005 b | 0.862 ± 0.028 b | 0.003 ± 0.004 b | 2.58 ± 0.04 b | 0.016 ± 0.004 | 33.6 ± 0.3 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klisović, D.; Novoselić, A.; Brkić Bubola, K. Changes in the Composition, Antioxidant Activity, and Sensory Attributes of Olive Oil Used as a Storage Medium for Dried Tomato Preservation. Molecules 2024, 29, 5497. https://doi.org/10.3390/molecules29235497
Klisović D, Novoselić A, Brkić Bubola K. Changes in the Composition, Antioxidant Activity, and Sensory Attributes of Olive Oil Used as a Storage Medium for Dried Tomato Preservation. Molecules. 2024; 29(23):5497. https://doi.org/10.3390/molecules29235497
Chicago/Turabian StyleKlisović, Dora, Anja Novoselić, and Karolina Brkić Bubola. 2024. "Changes in the Composition, Antioxidant Activity, and Sensory Attributes of Olive Oil Used as a Storage Medium for Dried Tomato Preservation" Molecules 29, no. 23: 5497. https://doi.org/10.3390/molecules29235497
APA StyleKlisović, D., Novoselić, A., & Brkić Bubola, K. (2024). Changes in the Composition, Antioxidant Activity, and Sensory Attributes of Olive Oil Used as a Storage Medium for Dried Tomato Preservation. Molecules, 29(23), 5497. https://doi.org/10.3390/molecules29235497