Detailed Studies on the Methoxylation and Subsequent Dealkylation of N,N-Diethylbenzenesulfonamide Using a Tailor-Made Electrosynthetic Reactor
Abstract
:1. Introduction
2. Results
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scott, K.A.; Njadarson, J.T. Analysis of US FDA-Approved Drugs Containing Sulfur Atoms. Top. Curr. Chem. 2018, 376, 5. [Google Scholar] [CrossRef] [PubMed]
- Mason, R.M. Ann. Studies on the Effect of Probenecid (‘Benemid’) in Gout. Rheum. Dis. 1954, 13, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Silverman, W.; Locovei, S.; Dahl, G. Probenecid, a gout remedy, inhibits pannexin 1 channels. Am. J. Physiol. Cell Physiol. 2008, 295, C761–C777. [Google Scholar] [CrossRef] [PubMed]
- Bechelli, L.P.; Ruffino-Netto, A.; Hetem, G. A double-blind controlled trial of pipotiazine, haloperidol and placebo in recently-hospitalized acute schizophrenic patients. Brazil. J. Med. Biol. Res. 1983, 16, 305–311. [Google Scholar]
- Reynolds, J.E. Anxiolytic sedatives, hypnotics and neuroleptics. In Martindale: The Extra Pharmacopoeia, 30th ed.; Pharmaceutical Press: London, UK, 1993; pp. 364–623. [Google Scholar]
- Vela, J.M.; Buschmann, H.; Holenz, J.; Párraga, A.; Torrens, A. Antidepressants, Antipsychotics, Anxiolytics: From Chemistry and Pharmacology to Clinical Application; Wiley-VCH: Weinheim, Germany, 2007; p. 520. [Google Scholar]
- Shimazawa, M.; Hara, H.; Watano, T.; Sukamoto, T. Effects of Ca2+ channel blockers on cortical hypoperfusion and expression of c-Fos-like immunoreactivity after cortical spreading depression in rats. Br. J. Pharmacol. 1995, 115, 1359–1368. [Google Scholar] [CrossRef] [PubMed]
- MacArthur, R. Darunavir: Promising initial results. Lancet 2007, 369, 1143–1144. [Google Scholar] [CrossRef] [PubMed]
- McKeage, K.; Perry, C.M.; Keam, S.J. Darunavir: A review of its use in the management of HIV infection in adults. Drugs 2009, 69, 477–503. [Google Scholar] [CrossRef]
- Eron, J.; Yeni, P.; Gathe, J.; Estrada, V.; DeJesus, E.; Staszewski, S.; Lackey, P.; Katlama, C.; Young, B.; Yau, L.; et al. The KLEAN study of fosamprenavir-ritonavir versus lopinavir-ritonavir, each in combination with abacavir-lamivudine, for initial treatment of HIV infection over 48 weeks: A randomised non-inferiority trial. Lancet 2006, 368, 476–482. [Google Scholar] [CrossRef]
- Spencer, A.G.; Labonte, E.D.; Rosenbaum, D.P.; Plato, C.F.; Carreras, C.W.; Leadbetter, M.R.; Kozuka, K.; Kohler, J.; Koo-McCoy, S.; He, L.; et al. Gastrointestinal Inhibition of Sodium-Hydrogen Exchanger 3 Reduces Phosphorus Absorption and Protects against Vascular Calcification in CKD. Sci. Transl. Med. 2014, 6, 227ra36. [Google Scholar]
- Pardanani, A.; Gotlib, J.R.; Jamieson, C.; Cortes, J.E.; Talpaz, M.; Stone, R.M.; Silverman, M.H.; Gilliland, D.G.; Shorr, J.; Tefferi, A.J. Safety and Efficacy of TG101348, a Selective JAK2 Inhibitor, in Myelofibrosis. Clin. Oncol. 2011, 29, 789–796. [Google Scholar] [CrossRef]
- Pardanani, A.; Hood, J.; Lasho, T.; Levine, R.L.; Martin, M.B.; Noronha, G.; Finke, C.; Mak, C.C.; Mesa, R.; Zhu, H.; et al. TG101209, a small molecule JAK2-selective kinase inhibitor potently inhibits myeloproliferative disorder-associated JAK2V617F and MPLW515L/K mutations. Leukemia 2007, 21, 1658–1668. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, S. Argatroban: A review of its use in the management of heparin-induced thrombocytopenia. Am. J. Cardiovasc. Drugs 2009, 9, 261–282. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.G.; Kim, J.J. Udenafil: Efficacy and tolerability in the management of erectile dysfunction. Therap. Adv. Urology 2013, 5, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Sugimoto, H.; Shichijo, M.; Iino, T.; Manabe, Y.; Watanabe, A.; Shimazaki, M.; Gantner, F.; Bacon, K.B. An orally bioavailable small molecule antagonist of CRTH2, ramatroban (BAY u3405), inhibits prostaglandin D2-induced eosinophil migration in vitro. J. Pharmacol. Exp. Ther. 2003, 305, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Royer, J.F.; Schratl, P.; Carrillo, J.J.; Jupp, R.; Barker, J.; Weyman-Jones, C.; Beri, R.; Sargent, C.; Schmidt, J.A.; Lang-Loidolt, D.; et al. A novel antagonist of prostaglandin D2 blocks the locomotion of eosinophils and basophils. Eur. J. Clin. Invest. 2008, 38, 663–671. [Google Scholar] [CrossRef]
- Smith, D.A.; Beaumont, K.; Maurer, T.S.; Di, L. Clearance in drug design: Miniperspective. J. Med. Chem. 2019, 62, 2245–2255. [Google Scholar] [CrossRef]
- Testa, B.; Pedretti, A.; Vistoli, G. Reactions and enzymes in the metabolism of drugs and other xenobiotics. J. Drug Discov. Today 2012, 17, 549–560. [Google Scholar] [CrossRef]
- Rose, J.; Castagnoli, N., Jr. The metabolism of tertiary amines. Med. Res. Rev. 1983, 3, 73–88. [Google Scholar] [CrossRef]
- Al-Gailany, K.A.S.; Houston, J.B.; Bridges, J.W. The role of substrate lipophilicity in determining type 1 microsomal P450 binding characteristics. Biochem. Pharmacol. 1978, 27, 783–788. [Google Scholar] [CrossRef]
- Lewis, D.F.V.; Dickins, M. Baseline lipophilicity relationships in human cytochromes P450 associated with drug metabolism. Drug Metab. Rev. 2003, 35, 1–18. [Google Scholar] [CrossRef]
- Cunningham, R.F.; Perel, J.M.; Israili, Z.H.; Dayton, P.G. Probenecid metabolism in vitro with rat, mouse, and human liver preparations. Studies of factors affecting the site of oxidation. Drug Metab. Dispos. 1977, 5, 205–210. [Google Scholar] [PubMed]
- Ku, H.Y.; Ahn, H.J.; Seo, K.A.; Kim, H.; Oh, M.; Bae, S.K.; Shin, J.G.; Shon, J.H.; Liu, K.H. The contributions of cytochromes P450 3A4 and 3A5 to the metabolism of the phosphodiesterase type 5 inhibitors sildenafil, udenafil, and vardenafil. Drug Metab. Dispos. 2008, 36, 986–990. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, F.; Pei, W.; Yang, M.; Wu, Y.; Ma, D.; Thang, F.; Wang, J. Selective cleavage of the N-propargyl group from sulfonamides and amides under ruthenium catalysis. Tetrahedron Lett. 2018, 59, 1902–1905. [Google Scholar] [CrossRef]
- Inagaki, F.; Hira, S.; Mukai, C. Silver (I)-Catalyzed Deprenylation of Allylsulfonamide Derivatives. Synlett 2017, 28, 2143–2146. [Google Scholar] [CrossRef]
- Moriyama, K.; Nakamure, Y.; Togo, H. Oxidative Debenzylation of N-Benzyl Amides and O-Benzyl Ethers Using Alkali Metal Bromide. Org. Lett. 2014, 16, 3812–3815. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, S.; Trudell, M.L. Novel N-dealkylation of N-alkyl sulfonamides and N,N-dialkyl sulfonamides with periodic acid catalyzed by chromium (III) acetate hydroxide. Synlett 2004, 11, 1901–1904. [Google Scholar] [CrossRef]
- Vidales, M.J.M.; Robles-Molina, J.; Dominíquez-Romero, J.C.; Canizares, P.; Sáez, C.; Molina-Díaz, A.; Rodrigo, M.A. Removal of sulfamethoxazole from waters and wastewaters by conductive-diamond electrochemical oxidation. J. Chem. Technol. Biotechnol. 2012, 87, 1441–1449. [Google Scholar] [CrossRef]
- Lahcen, A.A.; Amine, A. Mini-review: Recent advances in electrochemical determination of sulfonamides. Anal. Lett. 2018, 51, 424–441. [Google Scholar] [CrossRef]
- Viaud, P.; Coeffard, V.; Thobie-Gautier, C.; Beaudet, I.; Galland, N.; Quintard, J.-P.; Grognec, E.L. Electrochemical cleavage of sulfonamides: An efficient and tunable strategy to prevent β-fragmentation and epimerization. Org. Lett. 2012, 14, 942–945. [Google Scholar] [CrossRef]
- Iwasaki, T.; Matsumoto, K.; Matsuoka, M.; Takahashi, T.; Okumura, K. Detosylation of N-Tosyl Amino Acids and Peptides by Electrolytic Reduction. Bull. Chem. Soc. Jpn. 1973, 46, 852–855. [Google Scholar] [CrossRef]
- Oda, K.; Ohnuma, T.; Ban, Y. A facile removal of the arenesulfonyl group by electrochemical reduction of sulfonamides in a new cooperative system of anthracene and ascorbic acid: The control of crisscross annulation. J. Org. Chem. 1984, 49, 953–959. [Google Scholar] [CrossRef]
- Mairanowsky, V.G. Electro-Deprotection—Electrochemical Removal of Protecting Groups. Angew. Chem. Int. Ed. 1976, 15, 281–292. [Google Scholar] [CrossRef]
- Shono, T.; Matsumura, Y.; Tsubata, K. Electroorganic chemistry. 46. A new carbon-carbon bond forming reaction at the α-position of amines utilizing anodic oxidation as a key step. J. Am. Chem. Soc. 1981, 103, 1172–1176. [Google Scholar] [CrossRef]
- Banks, C.E.; Jones, A.M. The Shono-type electroorganic oxidation of unfunctionalised amides. Carbon–carbon bond formation via electrogenerated N-acyliminium ions. Beilstein J. Org. Chem. 2014, 10, 3056–3072. [Google Scholar]
- Rahman, M.H.; Bal, M.K.; Jones, A.M. Metabolism-inspired electrosynthesis. ChemElectroChem 2019, 6, 4093–4104. [Google Scholar] [CrossRef]
- Alfonso–Súarez, P.; Kolliopoulos, A.V.; Smith, J.P.; Banks, C.E.; Jones, A.M. An experimentalist’s guide to electrosynthesis: The Shono oxidation. Tetrahedron Lett. 2015, 56, 6863–6867. [Google Scholar] [CrossRef]
- Bal, M.K.; Banks, C.E.; Jones, A.M. Metabolism mimicry: An electrosynthetic method for the selective deethylation of tertiary benzamides. ChemElectroChem 2019, 6, 4284–4291. [Google Scholar] [CrossRef]
- Libendi, S.S.; Demizu, Y.; Matsumura, Y.; Onomura, O. High regioselectivity in electrochemical α-methoxylation of N-protected cyclic amines. Tetrahedron 2008, 64, 3935–3942. [Google Scholar] [CrossRef]
- Bodmann, K.; Bug, T.; Steinbeisser, S.; Kreuder, R.; Reiser, O. Electrochemical oxidation of 2-substituted piperidines as a key step towards the synthesis of hydroxylated γ-amino acids. Tetrahedron Lett. 2006, 47, 2061–2064. [Google Scholar] [CrossRef]
- Shono, T.; Matsumura, Y.; Tsubata, K.; Uchida, K.; Kanazawa, T.; Tsuda, K. Electroorganic chemistry. 81. Anodic oxidation of sulfonamides and amidophosphates. J. Org. Chem. 1984, 49, 3711–3716. [Google Scholar] [CrossRef]
- Golub, T.; Becker, J.Y. The effect of N-acyl and N-sulfonyl groups on the anodic methoxylation of piperidine derivatives. Electrochim. Acta 2015, 173, 408–415. [Google Scholar] [CrossRef]
- Wetzel, A.; Jones, A.M. Electrically Driven N(sp2)–C(sp2/3) Bond Cleavage of Sulfonamides. ACS Sustain. Chem. Eng. 2020, 8, 3487–3493. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, D.; Yin, Y.; Wang, Q. Using small molecules to enhance P450 OleT enzyme activity in situ. Chem. Eur. J. 2021, 27, 8940–8945. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.; Broda, E.; Snieckus, V. Directed ortho-Metalation–Cross-Coupling Strategies. One-Pot Suzuki Reaction to Biaryl and Heterobiaryl Sulfonamides. Org. Lett. 2011, 13, 3588–3591. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, A. Giles, M.; Ali., H.I.; Mohamady, S. Metal- and Catalyst-Free Synthesis of 2-Substituted-Phthalimides Using 2-(Arenesulfonyl)Phthalimide as Key Reagents. Eur. J. Org. Chem. 2023, 26, e202300207. [Google Scholar] [CrossRef]
- Zhiuang, Z.; Sun, Y.; Zhong, Y.; He, Q.; Zhang, X.; Yang, C. Visible-Light-Induced Decarboxylative Aminosulfonylation of (Hetero) aryl Carboxylic Oxime Esters. Org. Lett. 2024, 26, 713–718. [Google Scholar] [CrossRef]
- Hu, Z.; Fu, L.; Chen, P.; Cao, W.; Liu, G. Enantioselective Intermolecular Aminoalkynylation of Styrenes via Copper-Catalyzed Radical Relay. Org. Lett. 2021, 23, 129–134. [Google Scholar] [CrossRef]
- Anderson, E.; Biediger, R.J.; Chen, J.; Dupre, B.; Lory, P.; Market, R.V.; Monk, K.A.; Savage, M.M.; Tennyson, R.; Young, B. Modulators of CCR9 receptor and methods of use thereof. US Patent US 8178699, 15 May 2012. [Google Scholar]
- Mizukami, M.; Saito, H.; Higuchi, T.; Imai, M.; Bando, H.; Kawahara, N.; Nagumo, S. Facile synthesis of medium-sized cyclic amines based on Friedel–Crafts reaction via iminium cation by use of acetylene dicobalt complex. Tetrahedron Lett. 2007, 48, 7228–7231. [Google Scholar] [CrossRef]
- Komeyama, K.; Igawa, R.; Morimoto, T.; Takaki, K. Catalytic Cyclization of Alkenyl N,O-Acetals by Fe(OTf)3. Chem. Lett. 2009, 38, 724–725. [Google Scholar] [CrossRef]
Electrodes | Q [F/mol] | Solvent | Time [min] | Electrolyte | = 220 nm) | |||
---|---|---|---|---|---|---|---|---|
1 | 2a | 3 | Other b | |||||
RVC | 4.5 | CH3CN/MeOH 9:1 | 60 | TBAP | 28 | 43 | 13 | 16 |
graphite | 4.5 | MeOH | 60 | TBAP | - | 77 | 6 | 17 |
graphite | 4.5 | CH3CN/MeOH 9:1 | 60 | TBAP | 1 | 46 | 14 | 39 |
graphite | 4.5 | MeOH | 60 | Bu4NBF4 | 6 | 78 | 2 | 14 |
RVC | 4.5 | CH3CN/MeOH 9:1 | 60 | Bu4NBF4 | 77 | 16 | 1 | 6 |
graphite | 4.5 | CH3CN/MeOH 9:1 | 60 | Bu4NBF4 | 1 | 64 | 5 | 30 |
graphite | 11.25 | MeOH | 150 | Bu4NBF4 | - | 76 | 7 | 17 |
Electrical Input [mA] | Q [F/mol] | Solvent | Time [min] | Relative Quantity [%] by HPLC/UV = 220 nm) | |||
---|---|---|---|---|---|---|---|
1 | 2a | 3 | Other b | ||||
20 | 0.8 | MeOH | 10 | 74 | 24 | 2 | - |
20 | 2.3 | MeOH | 30 | 30 | 65 | 5 | - |
20 | 3.0 | MeOH | 40 | 20 | 76 | 4 | - |
20 | 4.5 | MeOH | 60 | 16 | 78 | 5 | 1 |
50 | 1.5 | MeOH | 8 | 58 | 40 | 2 | - |
50 | 4.5 | MeOH | 24 | 22 | 73 | 5 | - |
100 | 1.5 | MeOH | 4 | 63 | 34 | 3 | - |
100 | 4.5 | MeOH | 12 | 40 | 56 | 4 | - |
20 | 1.1 | MeOH/H2O 99:1 | 15 | 76 | 19 | 5 | - |
20 | 4.5 | MeOH/H2O 99:1 | 60 | 48 | 35 | 17 | - |
Q [F/mol] | Solvent | Time [h] | Relative Quantity [%] = 220 nm) | ||||
---|---|---|---|---|---|---|---|
1 | 2a/2b/2c | 3 | 5 | Other b | |||
4.5 | MeOH/H2O 95:5 | 1 | 17 | 71 (2a) | - | - | 12 |
4.5 | CH3CN/MeOH/H2O 85:10:5 | 1 | 10 | 81 (2a) | 9 | - | - |
4.5 | CH3CN/IPA/H2O 85:10:5 | 1 | - | - (2b) | 89 | - | 11 |
9.0 | CH3CN/t-BuOH/H2O 85:10:5 | 2 | - | - (2c) | 80 | - | 20 |
9.0 | CH3CN/IPA/H2O 89:10:1 | 2 | - | - (2b) | 27 | 72 | 1 |
Q [F/mol] | Time [h] | Conversion of 1 [%] | = 220 nm) | ||||
---|---|---|---|---|---|---|---|
1 | 2a | 3 | 5 | Other b | |||
1.5 | 1 | 47 | 53 | 47 | - | - | - |
3.0 | 2 | 94 | 4 | 92 | 2 | - | 2 |
4.5 | 3 | 96 | 6 c | 84 | 3 | - | 7 |
6.0 | 4 | 98 | 12 c | 71 | 3 | - | 14 |
7.5 | 5 | >99 | 18 c | 61 | 4 | 2 | 15 |
9.0 | 6 | >99 | 23 c | 51 | 4 | 3 | 19 |
12.0 | 8 | >99 | 31 c | 34 | 5 | 3 | 27 |
Q [F/mol] | Time [h] | Conversion of 1 [%] | = 220 nm) | ||||
---|---|---|---|---|---|---|---|
1 | 2c | 3 | 5 | Other b | |||
1.5 | 1 | 29 | 71 | - | 28 | - | 1 |
3.0 | 2 | 77 | 23 | - | 70 | 6 | 1 |
4.5 | 3 | 94 | 6 | - | 77 | 14 | 3 |
6.0 | 4 | 97 | 3 | - | 73 | 19 | 5 |
7.5 | 5 | >99 | - | - | 68 | 24 | 8 |
9.0 | 6 | >99 | - | - | 64 | 26 | 10 |
12.0 | 8 | >99 | - | - | 51 | 27 | 22 |
Q [F/mol] | Time [h] | Conversion of 1 [%] | |||||
---|---|---|---|---|---|---|---|
1 | 2b | 3 | 5 | Other b | |||
1.5 | 1 | 29 | 71 | 14 | 15 | - | - |
3.0 | 2 | 70 | 30 | 23 | 32 | 2 | 13 |
4.5 | 3 | 91 | 9 | 19 | 52 | 8 | 12 |
6.0 | 4 | 98 | 2 | 9 | 58 | 13 | 18 |
7.5 | 5 | 98 | 2 | 5 | 51 | 20 | 22 |
9.0 | 6 | >99 | 5c | 4 | 45 | 30 | 16 |
12.0 | 8 | >99 | 13c | 6 | 21 | 35 | 25 |
Solvent | Time [h] | Q [F/mol] | Electrolyte | Electrolyte Concentration (M) | Product | Isolated Yield [%] |
---|---|---|---|---|---|---|
MeOH | 6.7 | 10.0 | Bu4NBF4 | 0.600 | 2a | 55 |
CH3CN/t-BuOH/H2O 85:10:5 | 3 | 4.5 | TBAP | 0.167 | 3 | 62 |
5 | 25 | |||||
CH3CN/IPA/H2O 89:10:1 | 9 | 13.5 | TBAP | 0.167 | 5 | 41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Várda, E.F.; Gyűjtő, I.; Ender, F.; Csekő, R.; Balogh, G.T.; Volk, B. Detailed Studies on the Methoxylation and Subsequent Dealkylation of N,N-Diethylbenzenesulfonamide Using a Tailor-Made Electrosynthetic Reactor. Molecules 2024, 29, 5496. https://doi.org/10.3390/molecules29235496
Várda EF, Gyűjtő I, Ender F, Csekő R, Balogh GT, Volk B. Detailed Studies on the Methoxylation and Subsequent Dealkylation of N,N-Diethylbenzenesulfonamide Using a Tailor-Made Electrosynthetic Reactor. Molecules. 2024; 29(23):5496. https://doi.org/10.3390/molecules29235496
Chicago/Turabian StyleVárda, Ernák F., Imre Gyűjtő, Ferenc Ender, Richárd Csekő, György T. Balogh, and Balázs Volk. 2024. "Detailed Studies on the Methoxylation and Subsequent Dealkylation of N,N-Diethylbenzenesulfonamide Using a Tailor-Made Electrosynthetic Reactor" Molecules 29, no. 23: 5496. https://doi.org/10.3390/molecules29235496
APA StyleVárda, E. F., Gyűjtő, I., Ender, F., Csekő, R., Balogh, G. T., & Volk, B. (2024). Detailed Studies on the Methoxylation and Subsequent Dealkylation of N,N-Diethylbenzenesulfonamide Using a Tailor-Made Electrosynthetic Reactor. Molecules, 29(23), 5496. https://doi.org/10.3390/molecules29235496