Expedient Synthesis of Substituted Thieno[3,2-b]thiophenes and Selenopheno[3,2-b]selenophenes Through Cascade Cyclization of Alkynyl Diol Derivatives
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Methods (Chemistry)
3.2. General Procedures for the Preparation of Compounds 2a–2t
- 3,6-Dimethylthieno[3,2-b]thiophene (2a), Yellow solid (68 mg, 81% yield); Rf = 0.7 (Hexane); 1H NMR (500 MHz, CDCl3) δ 6.96 (s, 2H), 2.36 (s, 6H). 13C NMR (125 MHz, CDCl3) δ 140.0 (2C), 130.3 (2C), 121.8 (2C), 14.6 (2C). ESI-HRMS (m/z) [M + H]+ calcd. for C8H9S2+, 169.0140, found: 169.0138.
- 3-Ethyl-2,6-dimethylthieno[3,2-b]thiophene (2b), Yellow liquid (71 mg, 72% yield); Rf = 0.7 (Hexane); 1H NMR (400 MHz, CDCl3) δ 6.87 (s, 1H), 2.69 (q, J = 7.6 Hz, 2H), 2.48 (s, 3H), 2.34 (s, 3H), 1.27 (t, J = 7.6 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 139.3, 136.1, 133.9, 132.2, 129.9, 119.7, 20.9, 14.7, 14.1, 13.4. ESI-HRMS (m/z): [M]+ calcd. for C10H12S2+, 196.0374, found: 196.0368.
- 2-Ethyl-6-methyl-3-propylthieno[3,2-b]thiophene (2c), Brown liquid (66 mg, 59% yield); Rf = 0.7 (Hexane); 1H NMR (400 MHz, CDCl3) δ 6.87 (s, 1H), 2.86 (q, J = 7.5 Hz, 2H), 2.70–2.62 (m, 2H), 2.34 (s, 3H), 1.82–1.66 (m, 2H), 1.32 (t, J = 7.5 Hz, 3H), 0.98 (t, J = 7.4 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 142.5, 130.0, 129.9, 119.1, 29.6, 22.4, 22.3, 16.4, 14.7, 14.0. ESI-HRMS (m/z) [M]+ calcd. for C12H16S2+, 224.0688, found: 224.0679.
- 2,3,5,6-Tetramethylthieno[3,2-b]thiophene (2d), Yellow solid (77 mg, 79% yield); Rf = 0.7 (Hexane); MP: 136–137 °C. 1H NMR (500 MHz, CDCl3) δ 2.45 (s, 6H), 2.21 (s, 6H). 13C NMR (125 MHz, CDCl3) δ 136.1 (2C), 132.0 (2C), 125.3 (2C), 14.0 (2C), 12.5 (2C). ESI-HRMS (m/z) [M + K]+ calcd. for C10H12KS2+, 235.0012, found: 235.0022.
- 2-Ethyl-5,6-dimethyl-3-propylthieno[3,2-b]thiophene (2e), Brown liquid (87 mg, 73% yield); Rf = 0.7 (Hexane); 1H NMR (400 MHz, CDCl3) δ 2.83 (q, J = 7.5 Hz, 2H), 2.62–2.59 (m, 2H), 2.43 (s, 3H), 2.20 (s, 3H), 1.70 (q, J = 7.5 Hz, 2H), 1.30 (t, J = 7.5 Hz, 3H), 0.96 (t, J = 7.3 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 140.3, 136.7, 135.1, 132.2, 129.5, 125.38, 29.7, 22.3, 22.2, 16.5, 14.0, 14.0, 12.5. ESI-HRMS (m/z) [M + H]+ calcd. for C13H19S2+, 239.0923, found: 239.0921.
- 2,5-Diethyl-3,6-dimethylthieno[3,2-b]thiophene (2f), Yellow solid (83 mg, 74% yield); Rf = 0.7 (Hexane); MP: 79–81 °C. 1H NMR (500 MHz, CDCl3) δ 2.83 (q, J = 7.5 Hz, 4H), 2.23 (s, 6H), 1.30 (t, J = 7.6 Hz, 6H). 13C NMR (125 MHz, CDCl3) δ 139.9 (2C), 136.2 (2C), 124.5 (2C), 22.3 (2C), 16.0 (2C), 12.4 (2C). ESI-HRMS (m/z) [M + H]+ calcd. for C12H17S2+, 225.0766, found: 225.0766.
- 2,6-Diethyl-5-methyl-3-propylthieno[3,2-b]thiophene (2g), Brown liquid (79 mg, 63% yield); Rf = 0.7 (Hexane); 1H NMR (400 MHz, CDCl3) δ 2.83 (q, J = 7.5 Hz, 2H), 2.68–2.58 (m, 4H), 2.44 (s, 3H), 1.75–1.63 (m, 2H), 1.31–1.23 (m, 6H), 0.96 (t, J = 7.4 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 140.3, 135.7, 135.5, 131.8, 131.7, 129.4, 29.7, 22.3, 22.1, 20.9, 16.4, 14.0, 13.8, 13.4. ESI-HRMS (m/z) [M + H]+ calcd. for C14H21S2+, 253.1079, found: 253.1077.
- 2,5-Diisopropyl-3,6-dimethylthieno[3,2-b]thiophene (2h), Yellow solid (93 mg, 74% yield); Rf = 0.7 (Hexane); MP: 141–142 °C. 1H NMR (500 MHz, CDCl3) δ 3.35–3.29 (m, 2H), 2.25 (s, 3H), 1.33 (s, 6H), 1.32 (s, 6H). 13C NMR (125 MHz, CDCl3) δ 146.1 (2C), 135.9 (2C), 123.7 (2C), 28.9 (2C), 24.5 (4C), 12.6 (2C). ESI-HRMS (m/z) [M + H]+ calcd. for C14H21S2+, 253.1079, found: 253.1077.
- 2,5-Diethyl-3,6-dipropylthieno[3,2-b]thiophene (2i), Brown liquid (101 mg, 72% yield); Rf = 0.7 (Hexane); 1H NMR (500 MHz, CDCl3) δ 2.83 (q, J = 7.5 Hz, 4H), 2.64–2.58 (m, 4H), 1.76–1.64 (m, 4H), 1.29 (t, J = 7.5 Hz, 6H), 0.97 (t, J = 7.4 Hz, 6H). 13C NMR (125 MHz, CDCl3) δ 140.4 (2C), 135.7 (2C), 129.5 (2C), 29.7 (2C), 22.3 (2C), 22.2 (2C), 16.5 (2C), 14.1 (2C). ESI-HRMS (m/z) [M + H]+ calcd. for C16H25S2+, 281.1392, found: 281.1391.
- 2-Ethyl-5-isopropyl-6-methyl-3-propylthieno[3,2-b]thiophene (2j), Brown liquid (92 mg, 69% yield); Rf = 0.7 (Hexane); 1H NMR (500 MHz, CDCl3) δ 3.36–3.22 (m, 1H), 2.83 (q, J = 7.5 Hz, 2H), 2.64–2.60 (m, 2H), 2.23 (s, 3H), 1.71 (q, J = 7.5 Hz, 2H), 1.33–1.27 (m, 9H), 0.98 (t, J = 7.3 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 146.1, 140.4, 136.7, 135.0, 129.8, 123.4, 29.8, 28.9, 24.5 (2C), 22.3, 22.2, 16.6, 14.1, 12.6. ESI-HRMS (m/z) [M + H]+ calcd. for C15H23S2+, 267.1236, found: 267.1233.
- 1,2,3,4,6,7,8,9-Octahydrobenzo[b]benzo[4,5]thieno[2,3-d]thiophene (2k), Yellow solid (77 mg, 62% yield); Rf = 0.7 (Hexane); MP: 126–128 °C. 1H NMR (400 MHz, CDCl3) δ 2.88–2.85 (m, 4H), 2.67–2.63 (m, 4H), 1.97–1.82 (m, 8H). 13C NMR (100 MHz, CDCl3) δ 135.3 (2C), 134.9 (2C), 127.8 (2C), 26.0 (2C), 24.6 (2C), 23.5 (2C), 22.5 (2C). ESI-HRMS (m/z) [M + H]+ calcd. for C14H17S2+, 249.0766, found: 249.0767.
- 2-Propyl-1,2,3,4,6,7,8,9-octahydrobenzo[b]benzo[4,5]thieno[2,3-d]thiophene (2l), Yellow solid (103 mg, 71% yield); Rf = 0.7 (Hexane); MP: 99–101 °C. 1H NMR (400 MHz, CDCl3) δ 2.95–2.90 (m, 1H), 2.86–2.82 (m, 2H), 2.72–2.66 (m, 1H), 2.64–2.28 (m, 3H), 2.52–2.44 (m, 1H), 2.00–1.95 (m, 1H), 1.92–1.83 (m, 5H),1.52–1.37 (m, 5H), 0.94 (t, J = 6.4 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 135.3, 135.2, 127.9, 127.8, 38.1, 34.6, 32.3, 28.9, 26.0, 24.6, 24.3, 23.5, 22.5, 20.1, 14.2. ESI-HRMS (m/z) [M + H]+ calcd. for C17H23S2+, 291.1235, found: 291.1233.
- 2-(Tert-butyl)-1,2,3,4,6,7,8,9-octahydrobenzo[b]benzo[4,5]thieno[2,3-d]thiophene (2m), Yellow solid (112 mg, 74% yield); Rf = 0.7 (Hexane); MP: 136–138 °C. 1H NMR (400 MHz, CDCl3) δ 2.92–2.84 (m, 3H), 2.78–2.72 (m, 1H), 2.65–2.54 (m, 4H), 2.09–2.05 (m, 1H), 1.92–1.85 (m, 4H), 1.64–1.56 (m, 1H), 1.49–1.38 (m, 1H), 0.98 (s, 9H). 13C NMR (100 MHz, CDCl3) δ 136.2, 135.3, 135.2, 134.5, 127.9, 127.9, 45.5, 32.5, 27.6, 27.3 (3C), 26.0, 25.5, 24.6, 24.1, 23.5, 22.5. ESI-HRMS (m/z) [M + H]+ calcd. for C18H25S2+, 305.1392, found: 305.1391.
- 3-Methyl-6-(thiophen-2-yl)thieno[3,2-b]thiophene (2n), Black liquid (86 mg, 73% yield); Rf = 0.7 (Hexane); 1H NMR (400 MHz, CDCl3) δ 7.47 (s, 1H), 7.39–7.38 (m, 1H), 7.29–7.28 (m, 1H), 7.13–7.10 (m, 1H), 7.06 (s, 1H), 2.40 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 140.8, 137.5, 136.6, 130.0, 128.7, 127.7, 124.2, 123.8, 122.6, 121.0, 14.6. ESI-HRMS (m/z) [M + H]+ calcd. for C11H9S3+, 236.9861, found: 236.9861.
- 2-Methyl-5-(6-methylthieno[3,2-b]thiophen-3-yl)furan (2o), Yellow solid (66 mg, 56% yield); Rf = 0.7 (Hexane); MP: 114–116 °C. 1H NMR (400 MHz, CDCl3) δ 7.49 (s, 1H), 7.04 (s, 1H), 6.51 (s, 1H), 6.09 (s, 1H), 2.39 (s, 6H). 13C NMR (100 MHz, CDCl3) δ 151.7, 147.8, 140.6, 129.8, 125.6, 122.5, 118.9, 107.4, 106.8, 14.6, 13.6. ESI-HRMS (m/z) [M + H]+ calcd. for C12H11OS2+, 235.0246, found: 235.0247.
- 3-Methyl-6-(p-tolyl)thieno[3,2-b]thiophene (2p), Brown solid (73 mg, 68% yield); Rf = 0.5 (Hexane); MP: 135–137 °C. 1H NMR (400 MHz, CDCl3) δ 7.66 (s, 1H), 7.64 (s, 1H), 7.44 (s, 1H), 7.27 (d, J = 8.0 Hz, 2H), 7.04 (s, 1H), 2.40 (s, 6H). 13C NMR (125 MHz, CDCl3) δ 140.9, 137.4, 137.1, 135.1, 132.0, 130.0, 129.6 (2C), 126.3 (2C), 122.2, 121.1, 21.2, 14.6. ESI-HRMS (m/z) [M + H]+ calcd. for C14H13S2+, 213.0732, found: 213.0733.
- 2-Ethyl-6-methyl-3-phenylthieno[3,2-b]thiophene (2q), Yellow liquid (72 mg, 56% yield); Rf = 0.5 (Hexane); 1H NMR (400 MHz, CDCl3) δ 7.56–7.34 (m, 5H), 6.90 (s, 1H), 2.97 (q, J = 7.5 Hz, 2H), 2.38 (s, 3H), 1.33 (t, J = 7.5 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 144.1, 139.7, 136.3, 135.3, 130.8, 130.0, 128.7 (2C), 128.6 (2C), 127.4, 120.4, 23.0, 16.7, 14.7. ESI-HRMS (m/z) [M + H]+ calcd. for C15H15S2+, 259.0610, found: 259.0609.
- 3-(4-Methoxyphenyl)-6-phenylthieno[3,2-b]thiophene (2r), Yellow solid (111 mg, 69% yield); Rf = 0.5 (Hexane); MP: 143–145 °C. 1H NMR (400 MHz, CDCl3) δ 7.89–7.33 (m, 9H), 7.05–6.99 (m, 2H), 3.88 (s, 3H). 13C NMR (100 MHz, CDCl3) δ 159.2, 138.2, 138.1, 134.9, 134.6, 134.5, 128.9 (2C), 127.72 (2C), 127.70, 127.4, 126.5 (2C), 122.2, 120.9, 114.4 (2C), 55.3. ESI-HRMS (m/z) [M + H]+ calcd. for C19H15OS2+, 323.0559, found: 323.0556.
- 3-Benzyl-6-ethyl-2-phenylthieno[3,2-b]thiophene (2s), Yellow liquid (132 mg, 79% yield); Rf = 0.5 (Hexane); 1H NMR (400 MHz, CDCl3) δ 7.52–7.13 (m, 10H), 6.89 (s, 1H), 4.12 (s, 2H), 2.84–2.77 (m, 2H), 1.28–1.24 (m, 3H). 13C NMR (125 MHz, CDCl3) δ 149.4, 139.1, 139.1, 138.94, 136.1, 134.7, 129.3 (2C), 128.6 (2C), 128.6 (2C), 128.4 (2C), 128.2, 127.6, 126.3, 115.6, 34.2, 24.3, 15.7. ESI-HRMS (m/z) [M + H]+ calcd. for C21H19S2+, 335.0923, found: 335.0919.
- 3,6-Dibenzyl-2-phenylthieno[3,2-b]thiophene (2t), Yellow liquid (145 mg, 77% yield); Rf = 0.5 (Hexane); 1H NMR (500 MHz, CDCl3) δ 7.51–7.27 (m, 9H), 7.25–7.15 (m, 6H), 6.91 (s, 1H), 4.14 (s, 2H), 4.11 (s, 2H). 13C NMR (125 MHz, CDCl3) δ 145.9, 140.1, 139.7, 139.5, 138.8, 136.1, 133.6, 134.6, 129.3 (2C), 128.6 (2C), 128.6 (2C), 128.5 (2C), 128.4 (2C), 128.2, 127.7 (2C), 126.6, 126.3, 117.5, 37.1, 34.1. ESI-HRMS (m/z) [M]+ calcd. for C26H20S2+, 396.1001, found: 396.0998.
3.3. General Procedures for the Preparation of Compounds 3a–3b
- 3,6-Dimethylselenopheno[3,2-b]selenophene (3a), Yellow solid (87 mg, 69% yield); Rf = 0.7 (Hexane); MP: 96–98 °C. 1H NMR (400 MHz, CDCl3) δ 7.47 (s, 2H), 2.37 (s, 6H). 13C NMR (100 MHz, CDCl3) δ 141.6 (2C), 135.2 (2C), 123.6 (2C), 17.2 (2C). ESI-HRMS (m/z) [M + H]+ calcd. for C8H9Se2+, 252.9148, found: 252.9158.
- 2,3,5,6-Tetramethylselenopheno[3,2-b]selenophene (3b), Brown solid (85 mg, 64% yield); Rf = 0.7 (Hexane); MP: 101–103 °C. 1H NMR (400 MHz, CDCl3) δ 2.51 (s, 6H), 2.16 (s, 6H). 13C NMR (100 MHz, CDCl3) δ 137.6 (2C), 135.8 (2C), 130.2 (2C), 16.2 (2C), 14.5 (2C). ESI-HRMS (m/z) [M + H]+ calcd. for C10H13Se2+, 280.9461, found: 280.9459.
3.4. Synthesis of 2,5-Diiodo-3,6-dimethylthieno[3,2-b]thiophene 4a
- 2,5-Diiodo-3,6-dimethylthieno[3,2-b]thiophene (4a), White solid (512 mg, 61% yield); Rf = 0.7 (Hexane); 1H NMR (400 MHz, CDCl3) δ 2.26 (s, 1H). 13C NMR (100 MHz, CDCl3) δ 140.9 (2C), 134.2 (2C), 76.0 (2C), 16.9 (2C).
3.5. Synthesis of ((3,6-Dimethylthieno[3,2-b]thiophene-2,5-diyl)bis(ethyne-2,1-diyl))bis(trimethylsilane) 4b
- ((3,6-Dimethylthieno[3,2-b]thiophene-2,5-diyl)bis(ethyne-2,1-diyl))bis(trimethylsilane) (4b), Yellow solid (67 mg, 78% yield); MP:157–158 °C. Rf = 0.7 (Hexane); 1H NMR (400 MHz, CDCl3) δ 2.35 (s, 6H), 0.27 (s, 18H). 13C NMR (100 MHz, CDCl3) δ 138.0 (2C), 135.7 (2C), 121.2 (2C), 103.5 (2C), 97.6 (2C), 14.0 (2C), 0.0 (6C). ESI-HRMS (m/z) [M + Na]+ calcd. for C18H24NaS2Si2+, 383.0750, found: 383.0752.
3.6. Synthesis of 2,5-Diethynyl-3,6-dimethylthieno[3,2-b]thiophene 4c
- 2,5-Diethynyl-3,6-dimethylthieno[3,2-b]thiophene (4c), White solid (46 mg, 92% yield); Rf = 0.5 (Hexane); MP:123–124 °C. 1H NMR (400 MHz, CDCl3) δ 3.62 (s, 2H), 2.39 (s, 6H). 13C NMR (100 MHz, CDCl3) δ 138.1 (2C), 136.2 (2C), 120.2 (2C), 85.5 (4C), 13.9 (2C). ESI-HRMS (m/z) [M + Na]+ calcd. for C24H16NaS2+, 238.9960, found: 238.9951.
3.7. Synthesis of 3,6-Dimethyl-2,5-bis(phenylethynyl)thieno[3,2-b]thiophene 4d
- 3,6-Dimethyl-2,5-bis(phenylethynyl)thieno[3,2-b]thiophene (4d), Yellow solid (49 mg, 56% yield); Rf = 0.7 (Hexane); MP:137–139 °C. 1H NMR (400 MHz, CDCl3) δ 7.57–7.52 (m, 4H), 7.40–7.33 (m, 6H), 2.46 (s, 6H). 13C NMR (100 MHz, CDCl3) δ 138.5 (2C), 134.9 (2C), 131.3 (4C), 128.4 (2C), 128.4 (4C), 122.9 (2C), 121.0 (2C), 97.5 (2C), 82.9 (2C), 14.1 (2C). ESI-HRMS (m/z) [M + Na]+ calcd. for C24H16NaS2+, 391.0586, found: 391.0580.
3.8. Synthesis of 3,6-Dimethyl-2,5-diphenylthieno[3,2-b]thiophene 4e
- 3,6-Dimethyl-2,5-diphenylthieno[3,2-b]thiophene (4e), Yellow solid (67 mg, 68% yield); Rf = 0.7 (Hexane); MP:168–170 °C. 1H NMR (400 MHz, CDCl3) δ 7.53 (d, J = 7.3 Hz, 4H), 7.45 (t, J = 7.6 Hz, 4H), 7.36 (d, J = 7.9 Hz, 2H), 2.44 (s, 6H). 13C NMR (100 MHz, CDCl3) δ 139.1 (2C), 138.1 (2C), 135.1 (2C), 129.1 (4C), 128.6 (4C), 127.4 (2C), 125.8 (2C), 14.0 (2C). ESI-HRMS (m/z) [M + H]+ calcd. for C20H17S2+, 321.0766, found: 321.0761.
3.9. Synthesis of 2,5-Diiodo-2,5-dimethylhex-3-yne 5b
- 2,5-Diiodo-2,5-dimethylhex-3-yne (5b), Yellow liquid (141 mg, 78% yield); Rf = 0.6 (Hexane/EtOAc = 30:1); 1H NMR (400 MHz, CDCl3) δ 1.36 (s, 12H). 13C NMR (100 MHz, CDCl3) δ 113.0 (2C), 91.2 (2C), 28.9 (42C). ESI-HRMS (m/z) [M + Na]+ calcd. for C8H12NaI2+, 384.8921, found: 384.8926.
3.10. Synthesis of 2,4-Diphenylthiophene 5d
- 2,4-Diphenylthiophene (5d), Yellow solid (20.6 mg, 35% yield); Rf = 0.5 (Hexane); 1H NMR (400 MHz, CDCl3) δ 7.67–7.61 (m, 4H), 7.60 (s, 1H), 7.44–7.39 (m, 5H), 7.33–7.31 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 145.0, 143.1, 135.9, 134.3, 128.9 (2C), 128.8 (2C), 127.7, 127.3, 126.3 (2C), 125.8 (2C), 122.3, 119.7. ESI-HRMS (m/z) [M + H]+ calcd. for C16H13S+, 237.0732, found: 237.0734.
3.11. Synthesis of 3,6-Dimethylthieno[3,2-b]thiophene-2,5-d2 2a-D
- 3,6-Dimethylthieno[3,2-b]thiophene-2,5-d2 (2a-D), Yellow solid (68 mg, 81% yield); Rf = 0.7 (Hexane); 1H NMR (400 MHz, CDCl3) δ 6.96 (s, 1.68H), 2.36 (s, 6H). 13C NMR (100 MHz, CDCl3) δ 140.0 (2C), 130.3 (2C), 121.8 (2C), 14.6 (2C). 2H NMR (77 MHz, CH2Cl2) δ 6.96 (s, 2D).
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cinar, M.E.; Ozturk, T. Thienothiophenes, Dithienothiophenes, and Thienoacenes: Syntheses, Oligomers, Polymers, and Properties. Chem. Rev. 2015, 115, 3036–3140. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhu, X. Thieno[3,4-b]thiophene-Based Novel Small-Molecule Optoelectronic Materials. Acc. Chem. Res. 2017, 50, 1342–1350. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, A.; Aslam, S.; Ahmad, M.; Nazir, M.S.; Farooq, A.; Sultan, S. Recent Synthetic Approaches towards Thienothiophenes: A Potential template for Biologically Active Compounds. Mol. Divers 2024, 28, 1793–1821. [Google Scholar] [CrossRef] [PubMed]
- Litvinov, V.P.; Gol’dfarb, Y.A.L. The Chemistry of Thienothiophenes and Related Systems. Adv. Heterocycl. Chem. 1976, 19, 123–214. [Google Scholar] [CrossRef]
- Podlesný, J.J.; Bureš, F. Thienothiophene Scaffolds as Building Blocks for (Opto)Electronics. Organics 2022, 3, 446–469. [Google Scholar] [CrossRef]
- Isci, R.; Varzeghani, A.R.; Kaya, K.; Sütay, B.; Tekin, E.; Ozturk, T. Triphenylamine/Tetraphenylethylene Substituted 4-Thieno[3,2-b]thiophen-3-ylbenzonitriles: Synthesis, Photophysical-Electronic Properties, and Applications. ACS Sustain. Chem. Eng. 2022, 10, 1605–1615. [Google Scholar] [CrossRef]
- Mishra, A. Material Perceptions and Advances in Molecular Heteroacenes for Organic Oolar cells. Energy Environ. Sci. 2020, 13, 4738–4793. [Google Scholar] [CrossRef]
- Bronstein, H.; Chen, Z.; Ashraf, R.S.; Zhang, W.; Du, J.; Durrant, J.R.; Tuladhar, P.S.; Song, K.; Watkins, S.E.; Geerts, Y.; et al. Thieno[3,2-b]thiophene−Diketopyrrolopyrrole-Containing Polymers for High-Performance Organic Field-Effect Transistors and Organic Photovoltaic Devices. J. Am. Chem. Soc. 2011, 133, 3272–3275. [Google Scholar] [CrossRef]
- McCulloch, I.; Heeney, M.; Chabinyc, M.L.; DeLongchamp, D.; Kline, R.J.; Cölle, M.; Duffy, W.; Fischer, D.; Gundlach, D.; Hamadani, B.; et al. Semiconducting Thienothiophene Copolymers: Design, Synthesis, Morphology, and Performance in Thin-Film Organic Transistors. Adv. Mater. 2009, 21, 1091–1109. [Google Scholar] [CrossRef]
- Fong, H.H.; Pozdin, V.A.; Amassian, A.; Malliaras, G.G.; Smilgies, D.M.; He, M.Q.; Gasper, S.; Zhang, F.; Sorensen, M. Tetrathienoacene Copolymers as High Mobility, Soluble Organic Semiconductors. J. Am. Chem. Soc. 2008, 130, 13202–13203. [Google Scholar] [CrossRef]
- Koh, K.; Wong-Foy, A.G.; Matzger, A.J.A. A Porous Coordination Copolymer with over 5000 m2/g BET Surface Area. J. Am. Chem. Soc. 2009, 131, 4184–4185. [Google Scholar] [CrossRef] [PubMed]
- Henssler, J.T.; Matzger, A.J. Facile and Scalable Synthesis of the Fused-Ring Heterocycles Thieno[3,2-b]thiophene and Thieno[3,2-b]furan. Org. Lett. 2009, 11, 3144–3147. [Google Scholar] [CrossRef] [PubMed]
- Fuller, L.S.; Iddon, B.; Smith, K.A. Thienothiophenes. Part 2.1 Synthesis, metallation and bromine→lithium exchange reactions of thieno[3,2-b]thiophene and its polybromo derivatives. J. Chem. Soc. Perkin Trans. 1 1997, 22, 3465–3470. [Google Scholar] [CrossRef]
- Mazaki, Y.; Kobayashi, K. Synthesis of tetrathieno-acene and pentathieno-acene: UV-spectral trend in a homologous series of thieno-acenes. Tetrahedron Lett. 1989, 30, 3315–3318. [Google Scholar] [CrossRef]
- Litvinov, V.P. The Chemistry of Thienothiophenes. Adv. Heterocycl. Chem. 2006, 90, 125–203. [Google Scholar] [CrossRef]
- Rutherford, D.R.; Sille, J.K.; Elliott, C.M.; Reichert, V.R. Poly(2,5-ethynylenethiophenediylethynylenes), related heteroaromatic analogs, and poly(thieno[3,2-b]thiophenes): Synthesis and thermal and electrical properties. Macromolecules 1992, 25, 2294–2306. [Google Scholar] [CrossRef]
- Teste, J.; Lozac’h, N. Sulfuration of Organic Compounds. IX. Sulfuration of Alcohols and Acetylenic Glycols. Bull. Soc. Chim. Fr. 1955, 442. [Google Scholar]
- Choi, K.S.; Saeada, K.; Dong, H.; Hoshino, M.; Nakayama, J. A One-Pot Synthesis of Substituted Thieno[3,2-b]thiophenens and Selenolo[3,2-b]-selenophenes. Heterocycles 1994, 38, 143–149. [Google Scholar]
- Chen, Z.; Huang, J.; Zhang, W.; Zhou, Y.; Wei, X.; Wei, J.; Zheng, Y.; Wang, L.; Yu, G. Tunable charge-transport polarity in thienothiophene–bisoxoindolinylidene-benzodifurandione copolymers for high-performance field-effect transistors. J. Mater. Chem. C 2022, 10, 2671–2680. [Google Scholar] [CrossRef]
- Marco, A.B.; Gindre, D.; Iliopoulos, K.; Franco, S.; Andreu, R.; Canevet, D.; Sallé, M. (Super)gelators derived from push–pull chromophores: Synthesis, gelling properties and second harmonic generation. Org. Biomol. Chem. 2018, 16, 2470–2478. [Google Scholar] [CrossRef]
- Leriche, P.; Raimundo, J.-M.; Turbiez, M.; Monroche, V.; Allain, M.; Sauvage, F.-C.; Roncali, J.; Frère, P.; Skabarad, P.J. Linearly extended tetrathiafulvalene analogues with fused thiophene units as π-conjugated spacers. J. Mater. Chem. 2003, 13, 1324–1332. [Google Scholar] [CrossRef]
- Zhang, G.; Yi, H.; Chen, H.; Bian, C.; Liu, C.; Lei, A. Trisulfur Radical Anion as the Key Intermediate for the Synthesis of Thiophene via the Interaction between Elemental Sulfur and NaOtBu. Org. Lett. 2014, 16, 6156–6159. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Yan, C.; Yan, D.; Zhuang, R. Metal-Free C–S Bond Formation in Elemental Sulfur and Cyclobutanol Derivatives: The Synthesis of Substituted Thiophenes. Org. Lett. 2022, 24, 5309–5313. [Google Scholar] [CrossRef]
- Li, J.; Wang, P.; Dong, J.; Xie, Z.; Tan, X.; Zhou, L.; Ai, L.; Li, B.; Wang, Y.; Dong, H. A Domino Protocol toward High-performance Unsymmetrical Dibenzo[d,d′]thieno[2,3-b;4,5-b′]dithiophenes Semiconductors. Angew. Chem. Int. Ed. 2024, 63, e202400803. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Qu, Z.; Ji, X.; Deng, G. Three-component bis-heterocycliation for synthesis of 2-aminobenzo[4,5]thieno[3,2-d]thiazoles. Org. Chem. Front. 2019, 6, 1146–1150. [Google Scholar] [CrossRef]
- Li, J.H.; Huang, Q.; Wang, S.Y.; Ji, S.J. Hedychins A and B, 6,7-Dinorlabdane Diterpenoids with a Peroxide Bridge from Hedychium forrestii. Org. Lett. 2018, 20, 704–4708. [Google Scholar] [CrossRef]
- Li, J.; Huang, Q.; Rao, W.; Wang, S.Y.; Ji, S.J. A Trisulfur Radical anion (S3˙−) involved Sulfur insertion Reaction of 1,3-Enynes: Sulfide Sources Control Chemoselective Synthesis of 2,3,5-Trisubstituted Thiophenes and 3-Thienyl disulfides. Chem. Commun. 2019, 55, 7808–7811. [Google Scholar] [CrossRef]
- Chen, L.; Min, H.; Zeng, W.; Zhu, X.; Liang, Y.; Deng, G.; Yang, Y. Transition-Metal-Free Sulfuration/Annulation of Alkenes: Economical Access to Thiophenes Enabled by the Cleavage of Multiple C–H Bonds. Org. Lett. 2018, 20, 7392–7395. [Google Scholar] [CrossRef]
- Song, P.; Rao, W.; Chivers, T.; Wang, S. Applications of trisulfide radical anion S3− in organic synthesis. Org. Chem. Front. 2023, 10, 3378–3400. [Google Scholar] [CrossRef]
- Hou, X.; Liu, H.; Huang, H. Iron-catalyzed fluoroalkylative alkylsulfonylation of alkenes via radical-anion relay. Nat. Commun. 2024, 15, 1480. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, W.; Ma, J.; Li, J.; Meng, Q.; Shen, C.; Zeng, X. Syn-Selective Chlorosulfonylation of Alkynes via a Copper-Powder-Initiated Atom Transfer Radical Addition Reaction and Mechanistic Studies. Org. Lett. 2023, 25, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zeng, X. Metal–Free Radical Thiocyanatosulfonation of Terminal Alkynes in Aqueous Medium. Org. Lett. 2021, 23, 3326–3330. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, M.; Jiang, X. Dithionite-Involved Multicomponent Coupling for Alkenyl and Alkyl Tertiary Sulfones. Org. Lett. 2021, 23, 4657–4661. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Zhou, Z.; Zhao, F.; Mao, G.; Deng, G.; Huang, H. Deoxygenative C–S Bond Coupling with Sulfinates via Nickel/Photoredox Dual Catalysis. Org. Lett. 2022, 24, 1865–1870. [Google Scholar] [CrossRef]
- Wu, Y.; Li, C.; Wei, Z.; Liao, W. Multicomponent Cyclization with an Inorganic Sulfur Dioxide Surrogate: Straightforward Construction of Difluorinated Benzosultams. Org. Lett. 2022, 24, 9112–9117. [Google Scholar] [CrossRef]
- Xiao, F.; Xie, H.; Liu, S.; Deng, G. Iodine-Catalyzed Regioselective Sulfenylation of Indoles with Sodium Sulfinates. Adv. Synth. Catal. 2014, 356, 364–368. [Google Scholar] [CrossRef]
- Liao, W.; Lin, S.; Kuo, Y.; Liang, C. Site-Selective Acylation of Phenols Mediated by a Thioacid Surrogate through Sodium Thiosulfate Catalysis. Org. Lett. 2022, 24, 4207–4211. [Google Scholar] [CrossRef]
- Liu, B.; Chu, X.; Liu, H.; Yin, L.; Wang, S.Y.; Ji, S.J. Aqueous Reaction of Alcohols, Organohalides, and Odorless Sodium Thiosulfate under Transition-Metal-Free Conditions: Synthesis of Unsymmetrical Aryl Sulfides via Dual C–S Bond Formation. J. Org. Chem. 2017, 82, 10174–10180. [Google Scholar] [CrossRef]
- Ma, X.; Yu, J.; Yan, R.; Yan, M.; Xu, Q. Promoting Effect of Crystal Water Leading to Catalyst-Free Synthesis of Heteroaryl Thioether from Heteroaryl Chloride, Sodium Thiosulfate Pentahydrate, and Alcohol. J. Org. Chem. 2019, 84, 11294–11300. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Ji, X.; Liu, Q.; Chen, L.; Huang, Y.; Li, Y. Transition Metal-Free Synthesis of Substituted Isothiazoles via Three-Component Annulation of Alkynones, Xanthate and NH4I. Adv. Syn. Catal. 2021, 363, 1059–1068. [Google Scholar] [CrossRef]
- He, R.; Liu, Y.; Feng, Y.; Chen, L.; Huang, Y.; Xie, F.; Li, Y. Access to Thienopyridine and Thienoquinoline Derivatives via Site-Selective C–H Bond Functionalization and Annulation. Org. Lett. 2022, 24, 3167–3172. [Google Scholar] [CrossRef]
- Huang, G.; Li, J.; Li, J.R.; Li, J.M.; Sun, M.; Zhou, P.; Chen, L.; Huang, Y.; Jiang, S.; Li, Y. Access to Substituted Thiophenes through Xanthate-Mediated Vinyl C(sp2)-Br Bond Cleavage and Heterocyclization of Bromoenynes. J. Org. Chem. 2020, 85, 13037–13049. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, Y.; Chen, Z.; Li, J.M.; Ji, X.; Chen, L.; Huang, Y.; Liu, Q.; Li, Y. Synthesis of Substituted Thiophenes through Dehydration and Heterocyclization of Alkynols. J. Org. Chem. 2022, 87, 3555–3566. [Google Scholar] [CrossRef]
- Li, J.J. Zaitsev’s elimination rule. In Name Reactions; Springer: Cham, Switzerland, 2014; pp. 650–651. ISBN 978-3-319-03979-4. [Google Scholar] [CrossRef]
- Xiong, H.; Lin, Q.; Lu, Y.; Zheng, D.; Li, Y.; Wang, S.; Xie, W.; Li, C.; Zhang, X.; Lin, Y.; et al. General room-temperature Suzuki–Miyaura polymerization for organic electronics. Nat. Mater. 2024, 23, 695–702. [Google Scholar] [CrossRef] [PubMed]
- Vanderspikken, J.; Liu, Z.; Wu, X.; Beckers, O.; Moro, S.; Quill, T.J.; Liu, Q.; Goossens, A.; Marks, A.; Weaver, K.; et al. On the Importance of Chemical Precision in Organic Electronics: Fullerene Intercalation in Perfectly Alternating Conjugated Polymers. Adv. Func. Mater. 2023, 33, 2309403. [Google Scholar] [CrossRef]
- Darabi, H.R.; Aghapoor, K.; Mohsenzadeh, F. Development of a Synthesis of Diphenylthiophenes via a One-Pot Reaction of Phenylacetylene and Sulfur. Phosphorus Sulfur Silicon Relat. Elem. 2005, 180, 2483–2489. [Google Scholar] [CrossRef]
- Salamanca, V.; Albéniz, A.C. Deuterium Exchange between Arenes and Deuterated Solvents in the Absence of a Transition Metal: Synthesis of D-Labeled Fluoroarenes. Eur. J. Org. Chem. 2020, 22, 3206–3212. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Ji, X.; He, R.; Liu, Y.; Chen, Z.; Huang, Y.; Liu, Q.; Li, Y. Synthesis of Deuterated (E)-Alkene through Xanthate-Mediated Hydrogen–Deuterium Exchange Reactions. Org. Lett. 2021, 23, 7412–7417. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.; Zhao, W.; Sivaguru, P.; Zanoni, G.; Wang, Y.; Anderson, E.A.; Bi, X. Synthetic exploration of sulfinyl radicals using sulfinyl sulfones. Nat. Commun. 2021, 12, 5244. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Sivaguru, P.; Wang, Z. Exploring the synthetic application of sulfinyl radicals. Org. Chem. Front. 2022, 9, 6063–6076. [Google Scholar] [CrossRef]
- Lu, Q.; Zhang, J.; Zhao, G.; Qi, Y.; Wang, H.; Lei, A. Dioxygen-Triggered Oxidative Radical Reaction: Direct Aerobic Difunctionalization of Terminal Alkynes toward β-Keto Sulfones. J. Am. Chem. Soc. 2013, 135, 11481–11484. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Song, Q.; Feng, C.; Wang, Z.; Zhao, W.; Ning, Y.; Wu, Y. The Sulfinylsulfonation of alkynes for β-Sulfinyl alkenylsulfone. Chem. Asian J. 2022, 17, e202200299. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Zhang, J.; Wei, F.; Qi, Y.; Wang, H.; Liu, Z.; Lei, A. Aerobic Oxysulfonylation of Alkenes Leading to Secondary and Tertiary β-Hydroxysulfones. Angew. Chem. Int. Ed. 2013, 52, 7156–7159. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Xia, Y. Gas-Phase Reactivity of Peptide Thiyl (RS•), Perthiyl (RSS•), and Sulfinyl (RSO•) Radical Ions Formed from Atmospheric Pressure Ion/Radical Reactions. J. Am. Soc. Mass Spectrom. 2013, 24, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Su, F.; Chen, S.; Mo, X.; Wu, K.; Wu, J.; Lin, W.; Lin, Z.; Lin, J.; Zhang, H.; Wen, T. Trisulfur radical anion-triggered stitching thienannulation: Rapid access to largely π-extended thienoacenes. Chem. Sci. 2020, 11, 1503–1509. [Google Scholar] [CrossRef] [PubMed]
- Christidis, P.C.; Rentzeperis, P.J. Experimental charge density in polythionate anions: II. X-ray study of the electron density distribution in potassium tetrathionate, K2S4O6. Z. Für Krist. 1989, 188, 31–42. [Google Scholar] [CrossRef]
- Kurihara, M.; Shigehisa, H. Halocyclization of Alkynoic Thioester and Oxidative Aromatization in One-Pot. J. Org. Chem. 2024, 89, 9700–9704. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, Y.; Nie, J.; Xie, S.; Peng, X.; Hong, H.; Chen, X.; Chen, L.; Li, Y. Aromatization of cyclic hydrocarbons via thioether elimination reaction. Chem. Commun. 2023, 59, 11232–11235. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; He, R.; Liu, J.; Liu, Y.; Chen, L.; Huang, Y.; Li, Y. Selective Synthesis of Substituted Pyridines and Pyrimidines through Cascade Annulation of Isopropene Derivatives. Org. Lett. 2022, 24, 1620–1625. [Google Scholar] [CrossRef]
- Princival, J.L.; Ferreira, J.G. CeCl3-mediated Addition of Acetylenic Bis-lithium Salts to Aldehydes and Ketones: An Efficient route to Bis-substituted Alkyne Diols. Tetrahedron Lett. 2017, 58, 3525–3528. [Google Scholar] [CrossRef]
- Kong, H.; Jung, Y.K.; Cho, N.S.; Kang, I.; Park, J.; Cho, S.; Shim, H. New Semiconducting Polymers Containing 3,6-Dimethyl (thieno[3,2-b]-thiophene or Selenopheno[3,2-b]selenophene) for Organic Thin-Film Transistors. Chem Mater. 2009, 21, 2650–2660. [Google Scholar] [CrossRef]
- Sato, M.; Kubota, Y.; Tanemura, A.; Maruyama, G.; Fujihara, T.; Nakayama, J.; Takayanagi, T.; Takahashi, K.; Unoura, K. Synthesis and Some Properties of Bis(ruthenocenyl)thiophene Derivatives Possible Spin-Coupling in the Two-Electron Oxidized Species of Dinuclear Ruthenocenes Bridged by Thiophene Derivatives. Eur. J. Inorg. Chem. 2006, 22, 4577–4588. [Google Scholar] [CrossRef]
Entry | S Sources | Solvents | Additives (mmol) | Yields (%) (b) |
---|---|---|---|---|
1 | S8 | NMP | 21 | |
2 | EtOCS2K | NMP | trace | |
3 | Thiourea | NMP | 16 | |
4 | K2S | NMP | trace | |
5 | Na2S·9H2O | NMP | trace | |
6 | Na2S2O3 | NMP | 31 | |
7 (c) | Na2S2O3 | NMP | 33 | |
8 | S8 | NMP | I2 (0.5) | 63 |
9 | Na2S2O3 | NMP | I2 (0.5) | 79 |
10 | Na2S2O3 | NMP | NH4I (0.5) | 13 |
11 | Na2S2O3 | NMP | HCl (1 M, 0.5 mL) | 57 |
12 | Na2S2O3 | NMP | I2 (0.25) | 61 |
13 | Na2S2O3 | NMP | I2 (0.75) | 77 |
14 | Na2S2O3 | DMSO | I2 (0.5) | 12 |
15 | Na2S2O3 | DMF | I2 (0.5) | 45 |
16 | Na2S2O3 | DMAc | I2 (0.5) | 61 |
17 | Na2S2O3 | AcOH | I2 (0.5) | trace |
18 (d) | Na2S2O3 | NMP | I2 (0.5) | 82 |
19 (e) | Na2S2O3 | NMP | I2 (0.5) | 55 |
20 (f) | Na2S2O3 | NMP | I2 (0.5) | 81 |
21 (g) | Na2S2O3 | NMP | I2 (0.5) | 80 |
22 (h) | Na2S2O3 | NMP | I2 (0.5) | 78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Zhang, X.; He, Z.; Zhao, M.; Chen, L.; Li, Y.; Luo, X. Expedient Synthesis of Substituted Thieno[3,2-b]thiophenes and Selenopheno[3,2-b]selenophenes Through Cascade Cyclization of Alkynyl Diol Derivatives. Molecules 2024, 29, 5507. https://doi.org/10.3390/molecules29235507
Feng Y, Zhang X, He Z, Zhao M, Chen L, Li Y, Luo X. Expedient Synthesis of Substituted Thieno[3,2-b]thiophenes and Selenopheno[3,2-b]selenophenes Through Cascade Cyclization of Alkynyl Diol Derivatives. Molecules. 2024; 29(23):5507. https://doi.org/10.3390/molecules29235507
Chicago/Turabian StyleFeng, Yingqi, Xuelin Zhang, Ziqing He, Miaoshan Zhao, Lu Chen, Yibiao Li, and Xiai Luo. 2024. "Expedient Synthesis of Substituted Thieno[3,2-b]thiophenes and Selenopheno[3,2-b]selenophenes Through Cascade Cyclization of Alkynyl Diol Derivatives" Molecules 29, no. 23: 5507. https://doi.org/10.3390/molecules29235507
APA StyleFeng, Y., Zhang, X., He, Z., Zhao, M., Chen, L., Li, Y., & Luo, X. (2024). Expedient Synthesis of Substituted Thieno[3,2-b]thiophenes and Selenopheno[3,2-b]selenophenes Through Cascade Cyclization of Alkynyl Diol Derivatives. Molecules, 29(23), 5507. https://doi.org/10.3390/molecules29235507