Synthesis, Cytotoxicity and Antiproliferative Effect of New Pyrrole Hydrazones
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.1.1. Synthesis of N-Pyrrolylcarbohydrazide (1)
2.1.2. Synthesis of Pyrrole Hydrazones (1A–D)
2.2. Biological Study
2.2.1. Safety Test (Cytotoxicity/Phototoxicity)
2.2.2. Antiproliferative Activity Assay
2.2.3. Annexin V-FITC/PI Flow Cytometry Assay
2.2.4. Cell Cycle Analysis
3. Discussion
4. Materials and Methods
4.1. Synthesis
4.1.1. Synthesis of Intermediate Ethyl Ester of the N-Pyrrolylcarboxylic Acid
4.1.2. Synthesis of N-Pyrrolylcarbohydrazide (1)
4.1.3. Synthesis of Hydrazones (1A–D)
- Ethyl-5-(4-chlorophenyl)-1-(1-hydrazinyl-1-oxo-3-phenylpropan-2-yl)-2-methyl-1H-pyrrole-3-carboxylate (1): m.p. 170–173 °C; yield 78%; Rf 0.60; IR: 3305, 3204 (NH), 2978 (CH3), 2870 (CH2), 1686 (C=O), 1637 (Amide I), 1571 (Amide II), 1241 (C-O), 820 (p-disubstituted C6H4). 1H-NMR (CDCl3): 1.26 (t, J = 7.1 Hz, 3 H), 2.57 (s, 3 H), 3.04–3.10 (m, 1 H), 3.52–3.57 (m, 3 H), 4.18–4.24 (q, J = 7.1 Hz, 2 H), 4.70–4.74 (m, 1 H), 6.29 (s, 1 H), 6.32–6.43 (m, 2 H), 6.63–6.66 (m, 2 H), 7.06–7.19 (m, 6 H). 13C-NMR (CDCl3): 13.4 (1C, C(14)), 14.5 (1C, C(17)), 36.1 (1C, C(11)), 59.8 (1C, C(16)), 60.3 (1C, C(8)), 110.7 (1C, C(9)), 114.6 (1C, C(12)), 127.0 (3C, C(2), C(6), C(4′)), 128.5 (2C, C(2′), C(6′)), 128.7 (2C, C(3′), C(5′)), 129.1 (2C, C(3), C(5)), 129.9 (1C, C(1)), 131.0 (1C, C(4)), 134.3 (1C, C(7)), 135.7 (1C, C(1′)), 136.6 (1C, C(10)), 165.1 (1C, C(15)), 170.4 (1C, C(13)). HPLC-MS: Mmexact [g/mol] calcul. 425.15, [M+nH]+ observed 426.05; tR [min] 9.272; Chromatographic purity: 95%.
- Diethyl(E)-5-((2-(2-(5-(4-chlorophenyl)-3-(ethoxycarbonyl)-2-methyl-1H-pyrrol-1-yl)-3-phenylpropanoyl)hydrazineylidene)methyl)-3-methyl-1H-pyrrole-2,4-dicarboxylate (1A): m.p. 109–112 °C; yield 87%; Rf 0.44; IR: 3440 (NH), 2979 (CH3), 2871 (CH2), 1698 (C=O), 1603 (Amide I), 1527 (Amide II), 1243 (C-O), 818 (p-disubstituted C6H4). 1H-NMR (CDCl3): 1.21–1.34 (m, 9H), 2.43 (ds, 3H), 2.62 (ds, 3H), 3.07–3.09 (m, 1H), 3.42–3.61 (m, 1H), 4.16–4.30 (m, 6H), 4.86–4.90 (m, 1H), 6.48 (s, 1H), 6.59–6.82 (m, 4H), 6.99–7.19 (m, 5H), 8.60 (brs, 1H), 9.06 (brs, 1H), 10.54 (brs, 1H). 13C-NMR (CDCl3): 11.8 (1C, C(26)), 14.3 (1C, C(14)), 14.3–14.4 (3C, C(17), C(25), C(29)), 36.3 (1C, C(11)), 59.9–60.8 (3C, C(16), C(24), C(28)), 117.7 (1C, C(8)), 122.4 (1C, C(9)), 128.5 (2C, C(22), C(12)), 128.6 (3C, C(2), C(6), C(4′)), 128.7 (5C, C(20), C(2′), C(3′), C(5′), C(6′)), 129.0 (3C, C(3), C(5), C(21)), 130.9 (3C, C(19), C(1), C(4)), 136.2 (2C, C(7), C(1′)), 140.0 (1C, C(18)), 160.7 (1C, C(10)), 165.0 (1C, C(27)), 165.1 (2C, C(15), C(23)), 166.6 (1C, C(13)). HPLC-MS: Mmexact [g/mol] calcul. 660.24, [M+nH]+ observed 661.20, [M+Na]+ observed 683.15; tR [min] 13.782; Chromatographic purity: 95%.
- Ethyl(E)-5-(4-chlorophenyl)-1-(1-(2-((4-(ethoxycarbonyl)-3,5-dimethyl-1H-pyrrol-2-yl)methylene)hydrazineyl)-1-oxo-3-phenylpropan-2-yl)-2-methyl-1H-pyrrole-3-carboxylate (1B): m.p. 129–132 °C; yield 84%; Rf 0.70; IR: 3420 (NH), 2978 (CH3), 2930 (CH2), 1698 (C=O), 1614 (Amide I), 1526 (Amide II), 1244 (C-O), 819 (p-disubstituted C6H4). 1H-NMR (CDCl3): 1.21–1.30 (m, 6H), 1.98–2.56 (m, 9H), 3.00–3.06 (m, 1H), 3.40–3.57 (m, 1H), 4.17–4.21 (m, 4H), 4.86–4.90 (m, 1H), 6.28 (s, 1H), 6.32–7.01 (m, 4H), 7.04–7.19 (m, 5H), 7.85 (s, 1H), 8.93 (brs, 1H), 10.13 (brs, 1H). 13C-NMR (CDCl3): 10.9 (1C, C(26)), 14.2 (1C, C(14)), 14.4 (1C, C(27)), 14.5 (2C, C(17), C(25)), 36.1 (1C, C(11)), 59.4–60.5 (2C, C(16), C(24)), 112.0 (1C, C(8)), 121.8 (1C, C(9)), 127.0 (2C, C(21), C(12)), 128.5 (1C, C(22)), 128.6 (3C, C(2), C(6), C(4′)), 128.7 (2C, C(2′), C(6′)), 128.9 (2C, C(3′), C(5′)), 129.2 (2C, C(3), C(5)), 130.8 (3C, C(19), C(1), C(4)), 134.5 (1C, C(1′)), 136.3 (2C, C(7), C(20)), 138.5 (1C, C(18)), 141.0 (1C, C(10)), 165.2 (2C, C(15), C(23)), 165.4 (1C, C(13)). HPLC-MS: Mmexact [g/mol] calcul. 602.23, [M+nH]+ observed 603.05, [M+Na]+ observed 625.20; tR [min] 13.002; Chromatographic purity: 95%.
- Ethyl(E)-4-((2-(2-(5-(4-chlorophenyl)-3-(ethoxycarbonyl)-2-methyl-1H-pyrrol-1-yl)-3-phenylpropanoyl)hydrazineylidene)methyl)-3,5-dimethyl-1H-pyrrole-2-carboxylate (1C): m.p. > 230 °C; yield 81%; Rf 0.63; IR: 3218 (NH), 2977 (CH3), 1694 (C=O), 1608 (Amide I), 1568 (Amide II), 1244 (C-O), 822 (p-disubstituted C6H4). 1H-NMR (DMSO-d6): 1.20–1.30 (m, 6 H), 2.05, 2.10 (ds, 3 H), 2.37–2.57 (m, 6 H), 3.31–3.45 (m, 2 H), 4.12–4.24 (m, 4 H), 5.03, 5.05 and 5.85, 5.87 (dd, 1 H), 6.20 (s, 1 H), 6.70–6.90 (m, 4 H), 7.07–7.35 (m, 5 H), 8.06, 8.38 (ds, 1 H), 11.02, 11.23 (ds, 1 H), 11.64, 11.69 (ds, 1 H). 13C-NMR (DMSO-d6): 11.2 (1C, C(26)), 12.1 (1C, C(14)), 12.7 (1C, C(27)), 14.8 (2C, C(17), C(25)), 39.3 (1C, C(11)), 59.3–59.8 (2C, C(16), C(24)), 115.6 (1C, C(8)), 116.0 (1C, C(9)), 118.1 (1C, C(21)), 127.0 (1C, C(12)), 127.1 (1C, C(22)), 127.4 (3C, C(2), C(6), C(4′)), 128.5–128.6 (2C, C(2′), C(6′)), 128.7–128.8 (2C, C(3′), C(5′)), 129.2 (2C, C(3), C(5)), 131.7 (1C, C(19)), 132.9 (1C, C(1)), 133.1 (1C, C(4)), 134.0 (1C, C(1′)), 135.6 (1C, C(7)), 136.0 (1C, C(20)), 136.9 (1C, C(18)), 142.2 (1C, C(10)), 161.1 (1C, C(15)), 164.9 (1C, C(23)), 169.6 (1C, C(13)). HPLC-MS: Mmexact [g/mol] calcul. 602.23, [M+nH]+ observed 603.10, [M+Na]+ observed 625.20; tR [min] 12.395; Chromatographic purity: 95%.
- Ethyl(E)-5-(4-chlorophenyl)-1-(1-(2-((4-(ethoxycarbonyl)-2,5-dimethyl-1H-pyrrol-3-yl)methylene)hydrazineyl)-1-oxo-3-phenylpropan-2-yl)-2-methyl-1H-pyrrole-3-carboxylate (1D): m.p. > 230 °C; yield 82%; Rf 0.45; IR: 3331 (NH), 2980 (CH3), 2906 (CH2), 1681 (C=O), 1607 (Amide I), 1541 (Amide II), 1247 (C-O), 817 (p-disubstituted C6H4). 1H-NMR (CDCl3): 1.15–1.34 (m, 6H), 1.75–1.99 (m, 3H), 2.36–2.42 (m, 3H), 2.62–2.80 (m, 3H), 3.04–3.31 (m, 2H), 4.18–4.26 (m, 4H), 4.88, 4.90 and 5.67, 5.69 (dd, 1H), 6.27 (ds, 1H), 6.53–6.71 (m, 4H), 6.99–7.19 (m, 5H), 8.37 (s, 1H), 8.60 (m, 1H), 9.19 (m, 1H). 13C-NMR (CDCl3): 14.4 (2C, C(17), C(25)), 14.5 (3C, C(26), C(14), C(27)), 37.5 (1C, C(11)), 59.8 (2C, C(16), C(24)), 110.0 (1C, C(8)), 126.9 (2C, C(9), C(21)), 128.2 (2C, C(12), C(22)), 128.3 (3C, C(2), C(6), C(4′)), 128.5 (4C, C(2′), C(6′), C(3′), C(5′)), 128.6 (2C, C(3), C(5)), 128.8 (1C, C(19)), 129.0 (2C, C(1), C(4)), 131.0 (3C, C(1′), C(7), C(20)), 131.5 (1C, C(18)), 134.1 (1C, C(10)), 165.1 (1C, C(15)), 165.9 (1C, C(23)), 170.0 (1C, C(13)). HPLC-MS: Mmexact [g/mol] calcul. 602.23, [M+nH]+ observed 603.10, [M+Na]+ observed 625.15; tR [min] 10.198; Chromatographic purity: 98%.
4.2. Biological Assay
4.2.1. Cell Culture and Reagents
4.2.2. Safety Test
4.2.3. Antiproliferative Activity
4.2.4. Annexin V-FITC/PI Flow Cytometry Assay
4.2.5. Cell Cycle Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wei, H.; Cao, Y.; Zhao, C.H.; Shao, Z.H.; Huo, X.; Pan, J.; Zhuang, R. Design, synthesis, and anticancer evaluation of alkynylated pyrrole derivatives. Chem. Biol. Drug Des. 2024, 103, 14484. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, S. Epidemiology of Cancer. Clin. Chem. 2024, 70, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Chunarkar-Patil, P.; Kaleem, M.; Mishra, R.; Ray, S.; Ahmad, A.; Verma, D.; Bhayye, S.; Dubey, R.; Singh, H.N.; Kumar, S. Anticancer Drug Discovery Based on Natural Products: From Computational Approaches to Clinical Studies. Biomedicines 2024, 12, 201. [Google Scholar] [CrossRef]
- Mansour, R.; Al-Ani, A.; Al-Hussaini, M. Modifiable risk factors for cancer in the middle East and North Africa: A scoping review. BMC Public Health 2024, 24, 223. [Google Scholar] [CrossRef]
- Astrain-Redin, N.; Sanmartin, C.; Sharma, A.K.; Plano, D. From Natural Sources to Synthetic Derivatives: The Allyl Motif as a Powerful Tool for Fragment-Based Design in Cancer Treatment. J. Med. Chem. 2023, 66, 3703–3731. [Google Scholar] [CrossRef]
- Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int. J. Mol. Sci. 2020, 21, 3233. [Google Scholar] [CrossRef]
- Koley, M.; Han, J.; Soloshonok, V.A.; Mojumder, S.; Javahershenas, R.; Makarem, A. Latest developments in coumarin-based anticancer agents: Mechanism of action and structure–activity relationship studies. RSC Med. Chem. 2024, 15, 10–54. [Google Scholar] [CrossRef]
- Lu, D.-Y.; Xu, B.; Lu, T.-R. Anticancer Drug Development: Evaluative Architecture. Lett. Drug Des. Discov. 2024, 21, 836–846. [Google Scholar] [CrossRef]
- Mazaa, L.; Salgado, A.; Kouznetsov, V.; Meléndez, C. Pyrrolo [2,1-a] isoquinoline scaffolds for developing anti-cancer agents. RSC Adv. 2024, 14, 1710–1728. [Google Scholar] [CrossRef]
- Petri, L.G.; Spano, V.; Spatola, R.; Holl, R.; Raimondi, M.V.; Barraja, P.; Montalbano, A. Bioactive pyrrole-based compounds with target selectivity. Eur. J. Med. Chem. 2020, 208, 112783. [Google Scholar] [CrossRef] [PubMed]
- Mal, D.; Shome, B.; Dinda, B. Pyrrole and Its Derivatives. In Heterocycles in Natural Product Synthesis; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 187–220. [Google Scholar] [CrossRef]
- Ganesh, B.; Raj, A.; Aruchamy, B.; Nanjan, P.; Drago, C.; Ramani, P. Pyrrole: A Decisive Scaffold for the Development of Therapeutic Agents and Structure-Activity Relationship. ChemMedChem 2024, 19, e202300447. [Google Scholar] [CrossRef] [PubMed]
- Ivan, B.-C.; Barbuceanu, S.-F.; Hotnog, C.M.; Anghel, A.I.; Ancuceanu, R.V.; Mihaila, M.A.; Brasoveanu, L.I.; Shova, S.; Draghici, C.; Olaru, O.T.; et al. New Pyrrole Derivatives as Promising Biological Agents: Design, Synthesis, Characterization, In Silico, and Cytotoxicity Evaluation. Int. J. Mol. Sci. 2022, 23, 8854. [Google Scholar] [CrossRef] [PubMed]
- Tamiaki, H.; Kichishima, S. Chlorophyll Pigments and Their Synthetic Analogs. Plant Cell Physiol. 2024, pcae094. [Google Scholar] [CrossRef] [PubMed]
- Bavadi, M.; Niknam, K.; Shahraki, O. Novel pyrrole derivatives bearing sulfonamide groups: Synthesis in vitro cytotoxicity evaluation, molecular docking and DFT study. J. Mol. Struct. 2017, 1146, e242–e253. [Google Scholar] [CrossRef]
- Petković, M.; Kotur-Stevuljević, J.; Jovanović, P.; Jovanović, M.; Mitrović, N.; Simić, M.; Tasić, G.; Savić, V. Synthesis and in vitro study of redox properties of pyrrole and halogenated pyrrole derivatives. J. Serbian Chem. Soc. 2024, 82. [Google Scholar] [CrossRef]
- Verma, G.; Marella, A.; Shaquiquzzaman, M.; Akhtar, M.; Ali, M.R.; Alam, M.M. A review exploring biological activities of hydrazones. J. Pharm. Bioallied Sci. 2014, 6, 69–80. [Google Scholar] [CrossRef]
- Narang, R.; Narasimhan, B.; Sharma, S. A Review on Biological Activities and Chemical Synthesis of Hydrazide Derivatives. Curr. Med. Chem. 2012, 19, 569–612. [Google Scholar] [CrossRef]
- Kumar, P.; Narasimhan, B. Hydrazides/Hydrazones as Antimicrobial and Anticancer Agents in the New Millennium. Mini Rev. Med. Chem. 2013, 13, 971–987. [Google Scholar] [CrossRef]
- Popiołek, Ł. Updated Information on Antimicrobial Activity of Hydrazide–Hydrazones. Int. J. Mol. Sci. 2021, 22, 9389. [Google Scholar] [CrossRef]
- Murugappan, S.; Dastari, S.; Jungare, K.; Barve, N.M.; Shankaraiah, N. Hydrazide-hydrazone/hydrazone as enabling linkers in anti-cancer drug discovery: A comprehensive review. J. Mol. Struct. 2024, 1307, 138012. [Google Scholar] [CrossRef]
- Mali, S.N.; Thorat, B.R.; Gupta, D.R.; Pandey, A. Mini-Review of the Importance of Hydrazides and Their Derivatives—Synthesis and Biological Activity. Eng. Proc. 2021, 11, 21. [Google Scholar] [CrossRef]
- Socea, L.-I.; Barbuceanu, S.-F.; Pahontu, E.M.; Dumitru, A.-C.; Nitulescu, G.M.; Sfetea, R.C.; Apostol, T.-V. Acylhydrazones and Their Biological Activity: A Review. Molecules 2022, 27, 8719. [Google Scholar] [CrossRef] [PubMed]
- Lessigiarska, I.; Nankov, A.; Bocheva, A.; Pajeva, I.; Bijev, A. 3D-QSAR and preliminary evaluation of anti-inflammatory activity of series of N-pyrrolylcarboxylic acids. Il Farm. 2005, 60, 209–218. [Google Scholar] [CrossRef]
- Bijev, A.; Vladimirova, S.; Prodanova, P. New Pyrrole Hydrazones Synthesized and Evaluated In Vitro as Potential Tuberculostatics. Lett. Drug Des. Discov. 2009, 6, 508–517. [Google Scholar] [CrossRef]
- Minchev, I.; Vladimirova, S.; Vezenkov, L.; Bijev, A.; Moussis, V.; Nikolaeva-Glomb, L.; Tsikaris, V.; Czeuz, M.; Galabov, A. Design, synthesis and biological evaluation of Antipicornaviral pyrrole-containing peptidomimetics. Protein Pept. Lett. 2007, 14, 917–922. [Google Scholar] [CrossRef]
- Fik-Jaskółka, M.A.; Mkrtchyan, A.F.; Saghyan, A.S.; Palumbo, R.; Belter, A.; Hayriyan, L.A.; Simonyan, H.; Roviello, V.; Roviello, G.N. Biological macromolecule binding and anticancer activity of synthetic alkyne-containing L-phenylalanine derivatives. Amino Acids 2020, 52, 755–769. [Google Scholar] [CrossRef]
- Jorda, R.; Magar, P.; Hendrychová, D.; Pauk, K.; Dibus, M.; Pilařová, E.; Imramovský, A.; Kryštof, V. Novel modified leucine and phenylalanine dipeptides modulate viability and attachment of cancer cells. Eur. J. Med. Chem. 2020, 188, 112036. [Google Scholar] [CrossRef]
- Xu, S.; Sun, L.; Dick, A.; Zalloum, W.A.; Huang, T.; Meuser, M.E.; Zhang, X.; Tao, Y.; Cherukupalli, S.; Ding, D.; et al. Design, synthesis, and mechanistic investigations of phenylalanine derivatives containing a benzothiazole moiety as HIV-1 capsid inhibitors with improved metabolic stability. Eur. J. Med. Chem. 2022, 227, 113903. [Google Scholar] [CrossRef]
- Moise, M.; Sunel, V.; Profire, L.; Popa, M.; Desbrieres, J.; Peptu, C. Synthesis and Biological Activity of Some New 1,3,4-Thiadiazole and 1,2,4-Triazole Compounds Containing a Phenylalanine Moiety. Molecules 2009, 14, 2621–2631. [Google Scholar] [CrossRef]
- Qiu, M.; Jiang, J.; Jiang, W.; Zhang, W.; Jiang, Y.; Xin, F.; Jiang, M. The biosynthesis of L-phenylalanine-derived compounds by engineered microbes. Biotechnol. Adv. 2024, 77, 108448. [Google Scholar] [CrossRef] [PubMed]
- Zlatanova, H.; Vladimirova, S.; Kostadinov, I.; Delev, D.; Kostadinova, I. Experimental Evaluation of the Analgesic Activity of 2-(3-Diethylcarbamoyl-2-Methyl-5-Phenyl-Pyrrol-1-yl)-3-Phenyl-Propionic Acid. Int. J. Pharm. Clin. Res. 2016, 8, 1483–1488. Available online: www.ijpcr.com (accessed on 15 November 2016).
- Tzankova, D.; Vladimirova, S.; Aluani, D.; Yordanov, Y.; Peikova, L.; Georgieva, M. Synthesis, in vitro safety and antioxidant activity of new pyrrole hydrazones. Acta Pharm. 2020, 70, 303–324. [Google Scholar] [CrossRef] [PubMed]
- Tzankova, D.; Vladimirova, S.; Stefanova, D.; Peikova, L.; Kondeva-Burdina, M.; Georgieva, M. Evaluation of the in vitro neurotoxic and neuroprotective effects at cellular and subcellular levels of newly synthesized N-pyrrolyl hydrazones. Farmacia 2022, 70, 872–879. [Google Scholar] [CrossRef]
- Nocheva, H.; Vladimirova, S.; Tzankova, D.; Peikova, L.; Georgieva, M. Analgesic properties of newly synthesized N-pyrrolyl hydrazide hydrazones. Trop. J. Pharm. Res. 2023, 22, 121–127. [Google Scholar] [CrossRef]
- Vladimirova, S.; Bijev, A. An access to new N-pyrrolylcarboxylic acids as potential COX-2 inhibitors via Paal-Knorr cyclization. Heterocycl. Commun. 2014, 20, 111–115. [Google Scholar] [CrossRef]
- Bijev, A. Synthesis and preliminary screening of carbohydrazides and hydrazones of pyrrole as potential tuberculostatics. Arzneimittelforschung 2006, 56, 96–103. [Google Scholar] [CrossRef]
- Gossauer, A. Die Chemie der Pyrrole; Springer: Berlin/Heidelberg, Germany, 1974; pp. 289–300. [Google Scholar] [CrossRef]
- Pietenpol, J.; Stewart, Z. Cell cycle checkpoint signaling: Cell cycle arrest versus apoptosis. Toxicology 2002, 181, 475–481. [Google Scholar] [CrossRef]
- Kalal, B.; Upadhya, D.; Pai, V. Chemotherapy Resistance Mechanisms in Advanced Skin Cancer. Oncol. Rev. 2017, 11, 326. [Google Scholar] [CrossRef]
- Patel, M.; Eckburg, A.; Gantiwala, S.; Hart, Z.; Dein, J.; Lam, K.; Neelu, P. Resistance to Molecularly Targeted Therapies in Melanoma. Cancers 2021, 13, 1115. [Google Scholar] [CrossRef]
- Planting, A.; Burg, V.; Goey, S.; Schellens, J.; Vecht, C.H.; Boer-Dennert, M.; Stoter, G.; Verweij, J. Phase II study of a short course of weekly high-dose cisplatin combined with long-term oral etoposide in metastatic malignant melanoma. Eur. J. Cancer 1996, 32, 2026–2028. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Ahmad, A.; Reddy, R.; Carrao, A.; Dawn, A.; Kumari, H. Modifying and Taming Photoactive Compounds Using Synthetic Macrocycles as Supramolecular Hosts. ChemistrySelect 2023, 8, e202300894. [Google Scholar] [CrossRef]
- Miolo, G.; Marzano, C.; Gandin, V.; Palozzo, A.; Dalzoppo, D.; Salvador, A.; Caffieri, S. Photoreactivity of 5-Fluorouracil under UVB Light: Photolysis and Cytotoxicity Studies. Chem. Res. Toxicol. 2011, 24, 1319–1326. [Google Scholar] [CrossRef] [PubMed]
- Greco, G.; Ulfo, L.; Turrini, E.; Marconi, A.; Costantini, P.; Marforio, T.; Mattioli, E.; Di Giosia, M.; Danielli, A.; Fimognari, C. Light-Enhanced Cytotoxicity of Doxorubicin by Photoactivation. Cells 2023, 12, 392. [Google Scholar] [CrossRef] [PubMed]
- Tzankova, D.; Kuteva, H.; Mateev, E.; Stefanova, D.; Dzhemadan, A.; Yordanov, Y.; Mateeva, A.; Tzankova, V.; Kondeva-Burdina, M.; Zlatkov, A.; et al. Synthesis, DFT Study, and In Vitro Evaluation of Antioxidant Properties and Cytotoxic and Cytoprotective Effects of New Hydrazones on SH-SY5Y Neuroblastoma Cell Lines. Pharmaceuticals 2023, 16, 1198. [Google Scholar] [CrossRef]
- Ibrahim, H.; Abou-Seri, S.; Ismail, N.; Elaasser, M.; Aly, M.; Abdel-Aziz, H. Bis-isatin hydrazones with novel linkers: Synthesis and biological evaluation as cytotoxic agents. Eur. J. Med. Chem. 2016, 108, 415–422. [Google Scholar] [CrossRef]
- Long, L.; Zhang, H.; Zhou, Z.; Duan, L.; Fan, D.; Wang, R.; Xu, S.; Qiao, D.; Zhu, W. Pyrrole-containing hybrids as potential anticancer agents: An insight into current developments and structure-activity relationships. Eur. J. Med. Chem. 2024, 273, 116470. [Google Scholar] [CrossRef]
- Yang, T.; Lee, C.; Huang, W.; Lee, A. Structural optimization and evaluation of novel 2-pyrrolidone-fused (2-oxoindolin-3-ylidene) methylpyrrole derivatives as potential VEGFR-2/PDGFRβ inhibitors. Chem. Cent. J. 2017, 11, 72. [Google Scholar] [CrossRef]
- Persico, M.; Galatello, P.; Ferraro, M.; Irace, C.; Piccolo, M.; Abduvakhidov, A.; Tkachuk, O.; d’Aulisio Garigliota, M.; Campiglia, P.; Iannece, P.; et al. Tetrasubstituted Pyrrole Derivative Mimetics of Protein–Protein Interaction Hot-Spot Residues: A Promising Class of Anticancer Agents Targeting Melanoma Cells. Molecules 2023, 28, 4161. [Google Scholar] [CrossRef]
- Chen, T.; Cho, H.; Wang, W.; Nguyen, J.; Jhaveri, N.; Rosenstein-Sisson, R.; Hofman, F.; Schönthal, A. A novel temozolomide analog, NEO212, with enhanced activity against MGMT-positive melanoma in vitro and in vivo. Cancer Lett. 2015, 358, 144–151. [Google Scholar] [CrossRef]
- Clemente, N.; Ferrara, B.; Gigliotti, C.; Boggio, E.; Capucchio, M.; Biasibetti, E.; Schiffer, D.; Mellai, M.; Annovazzi, L.; Cangemi, L.; et al. Solid Lipid Nanoparticles Carrying Temozolomide for Melanoma Treatment. Preliminary In Vitro and In Vivo Studies. Int. J. Mol. Sci. 2018, 19, 255. [Google Scholar] [CrossRef] [PubMed]
- Borenfreund, E.; Puerner, J.A. Toxicity determined in vitro by morphological alterations and Neutral Red absorption. Toxicol. Lett. 1985, 24, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Spielmann, H.; Balls, M.; Dupuis, J.; Pape, W.J.W.; Pechovitch, G.; de Silva, O. The international EU/COLIPA in vitro phototoxicity validation study: Results of Phase II (blind trial). Part I: The 3T3 NRU phototoxicity test. Toxicol. In Vitr. 1998, 12, 305–327. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef] [PubMed]
Aldehyde A | Aldehyde B | Aldehyde C | Aldehyde D |
---|---|---|---|
Compounds | Mean CC50 ± SD (μM) | PIF * | |
---|---|---|---|
−Irr | +Irr | ||
1 | 52.29 ± 2.63 | 55.83 ± 4.49 | 0.94 |
1A | 3140.9 ± 167.34 | 2839.49 ± 123.89 | 1.11 |
1B | 2182.68 ± 153.8 | 2265.47 ± 55.39 | 0.96 |
1C | 1667.01 ± 41.52 | 1750.95 ± 31.68 | 0.95 |
1D | 3799.84 ± 184.8 | 3374.23 ± 129.79 | 1.13 |
Chlorpromazine ** | 65.78 ± 2.64 | 9.13 ± 0.72 | 7.21 |
Compounds | Mean IC50 ± SD (μM) | SI * | |
---|---|---|---|
HaCaT | SH-4 | ||
1 | 9.64 ± 0.58 | 6.86 ± 0.6 | 1.41 |
1A | 503.11 ± 31.08 | 269.55 ± 13.53 | 1.87 |
1B | 544.36 ± 26.8 | 258.27 ± 16.07 | 2.11 |
1C | 171.12 ± 4.09 | 44.63 ± 3.51 | 3.83 |
1D | 11.03 ± 0.42 | 8.72 ± 0.6 | 1.26 |
Cisplatin ** | 8.64 ± 0.42 | 22.78 ± 1.47 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vladimirova, S.; Hristova, R.; Iliev, I. Synthesis, Cytotoxicity and Antiproliferative Effect of New Pyrrole Hydrazones. Molecules 2024, 29, 5499. https://doi.org/10.3390/molecules29235499
Vladimirova S, Hristova R, Iliev I. Synthesis, Cytotoxicity and Antiproliferative Effect of New Pyrrole Hydrazones. Molecules. 2024; 29(23):5499. https://doi.org/10.3390/molecules29235499
Chicago/Turabian StyleVladimirova, Stanislava, Rossitsa Hristova, and Ivan Iliev. 2024. "Synthesis, Cytotoxicity and Antiproliferative Effect of New Pyrrole Hydrazones" Molecules 29, no. 23: 5499. https://doi.org/10.3390/molecules29235499
APA StyleVladimirova, S., Hristova, R., & Iliev, I. (2024). Synthesis, Cytotoxicity and Antiproliferative Effect of New Pyrrole Hydrazones. Molecules, 29(23), 5499. https://doi.org/10.3390/molecules29235499