Heteroepitaxial Growth of InBi(001)
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. MBE Growth
3.2. PSE Growth
3.3. Film Morphology
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, J.; Xu, S.Y.; Ni, N.; Mao, Z. Transport of Topological Semimetals. Annu. Rev. Mater. Res. 2019, 49, 207–252. [Google Scholar] [CrossRef]
- Fang, C.; Weng, H.; Dai, X.; Fang, Z. Topological nodal line semimetals. Chin. Phys. B 2016, 25, 117106. [Google Scholar] [CrossRef]
- Armitage, N.P.; Mele, E.J.; Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 2018, 90, 015001. [Google Scholar] [CrossRef]
- Xu, S.Y.; Belopolski, I.; Alidoust, N.; Neupane, M.; Bian, G.; Zhang, C.; Sankar, R.; Chang, G.; Yuan, Z.; Lee, C.C.; et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 2015, 349, 613–617. [Google Scholar] [CrossRef]
- Lv, B.Q.; Weng, H.M.; Fu, B.B.; Wang, X.P.; Miao, H.; Ma, J.; Richard, P.; Huang, X.C.; Zhao, L.X.; Chen, G.F.; et al. Experimental Discovery of Weyl Semimetal TaAs. Phys. Rev. X 2015, 5, 031013. [Google Scholar] [CrossRef]
- Liu, Z.K.; Zhou, B.; Zhang, Y.; Wang, Z.J.; Weng, H.M.; Prabhakaran, D.; Mo, S.K.; Shen, Z.X.; Fang, Z.; Dai, X.; et al. Discovery of a Three-Dimensional Topological Dirac Semimetal, Na3Bi. Science 2014, 343, 864–867. [Google Scholar] [CrossRef] [PubMed]
- Bansil, A.; Lin, H.; Das, T. Colloquium: Topol. Band Theory. Rev. Mod. Phys. 2016, 88, 021004. [Google Scholar] [CrossRef]
- Po, H.C.; Vishwanath, A.; Watanabe, H. Complete theory of symmetry-based indicators of band topology. Nat. Commun. 2017, 8, 50. [Google Scholar] [CrossRef] [PubMed]
- Landsteiner, K.; Liu, Y.; Sun, Y.W. Holographic topological semimetals. Sci. China-Phys. Mech. Astron. 2020, 63, 250001. [Google Scholar] [CrossRef]
- Cerjan, A.; Huang, S.; Wang, M.; Chen, K.P.; Chong, Y.; Rechtsman, M.C. Experimental realization of a Weyl exceptional ring. Nat. Photonics 2019, 13, 623–628. [Google Scholar] [CrossRef]
- Yan, M.; Huang, H.; Zhang, K.; Wang, E.; Yao, W.; Deng, K.; Wan, G.; Zhang, H.; Arita, M.; Yang, H.; et al. Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2. Nat. Commun. 2017, 8, 257. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wen, Y.; Tao, D.; Guan, K. Transforming Cooling Optimization for Green Data Center via Deep Reinforcement Learning. IEEE Trans. Cybern. 2020, 50, 2002–2013. [Google Scholar] [CrossRef] [PubMed]
- Koronen, C.; Ahman, M.; Nilsson, L.J. Data centres in future European energy systems-energy efficiency, integration and policy. Energy Effic. 2020, 13, 129–144. [Google Scholar] [CrossRef]
- Wang, Z.; Sun, Y.; Chen, X.Q.; Franchini, C.; Xu, G.; Weng, H.; Dai, X.; Fang, Z. Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 2012, 85, 195320. [Google Scholar] [CrossRef]
- Xiong, J.; Kushwaha, S.K.; Liang, T.; Krizan, J.W.; Hirschberger, M.; Wang, W.; Cava, R.J.; Ong, N.P. Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 2015, 350, 413–416. [Google Scholar] [CrossRef] [PubMed]
- Collins, J.L.; Tadich, A.; Wu, W.; Gomes, L.C.; Rodrigues, J.N.B.; Liu, C.; Hellerstedt, J.; Ryu, H.; Tang, S.; Mo, S.K.; et al. Electric-field-tuned topological phase transition in ultrathin Na3Bi. Nature 2018, 564, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Vandenberghe, W.G.; Fischetti, M.V. Imperfect two-dimensional topological insulator field-effect transistors. Nat. Commun. 2017, 8, 14184. [Google Scholar] [CrossRef] [PubMed]
- Vergniory, M.G.; Elcoro, L.; Felser, C.; Regnault, N.; Bernevig, B.A.; Wang, Z. A complete catalogue of high-quality topological materials. Nature 2019, 566, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Wu, M.; Liu, Y.; Yang, S.A. Electric control of topological phase transitions in Dirac semimetal thin films. Sci. Rep. 2015, 5, 14639. [Google Scholar] [CrossRef]
- Wang, Z.; Weng, H.; Wu, Q.; Dai, X.; Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B 2013, 88, 125427. [Google Scholar] [CrossRef]
- Liang, T.; Gibson, Q.; Ali, M.N.; Liu, M.; Cava, R.J.; Ong, N.P. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. Nat. Mater. 2015, 14, 280–284. [Google Scholar] [CrossRef] [PubMed]
- Lv, B.Q.; Xu, N.; Weng, H.M.; Ma, J.Z.; Richard, P.; Huang, X.C.; Zhao, L.X.; Chen, G.F.; Matt, C.E.; Bisti, F.; et al. Observation of Weyl nodes in TaAs. Nat. Phys. 2015, 11, 724–727. [Google Scholar] [CrossRef]
- Sadowski, J.; Domagala, J.Z.; Zajkowska, W.; Kret, S.; Seredynski, B.; Gryglas-Borysiewicz, M.; Ogorzalek, Z.; Bozek, R.; Pacuski, W. Structural Properties of TaAs Weyl Semimetal Thin Films Grown by Molecular Beam Epitaxy on GaAs(001) Substrates. Cryst. Growth Des. 2022, 22, 6039–6045. [Google Scholar] [CrossRef]
- Nelson, J.N.; Rice, A.D.; Kurleto, R.; Shackelford, A.; Sierzega, Z.; Hao, P.; Berggren, B.S.; Jiang, C.S.; Norman, A.G.; Holtz, M.E.; et al. Thin-film TaAs: Developing a platform for semimetal devices. Matter 2023, 6, 2886–2899. [Google Scholar] [CrossRef]
- Pacuski, W. Uniting Weyl semimetals and semiconductors in a family of arsenides. Matter 2023, 6, 2626–2627. [Google Scholar] [CrossRef]
- Yanez, W.; Ou, Y.; Xiao, R.; Ghosh, S.; Dwivedi, J.; Steinebronn, E.; Richardella, A.; Mkhoyan, K.A.; Samarth, N. Giant Dampinglike-Torque Efficiency in Naturally Oxidized Polycrystalline TaAs Thin Films. Phys. Rev. Appl. 2022, 18, 054004. [Google Scholar] [CrossRef]
- Ramankutty, S.V.; Henke, J.; Schiphorst, A.; Nutakki, R.; Bron, S.; Araizi-Kanoutas, G.; Mishra, S.K.; Li, L.; Huang, Y.; Kim, T.K.; et al. Electronic structure of the candidate 2D Dirac semimetal SrMnSb2: A combined experimental and theoretical study. Scipost Phys. 2018, 4, 010. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, T.; Zhou, L.; Straszheim, W.E.; Islam, F.; Jensen, B.A.; Tian, W.; Heitmann, T.; Rosenberg, R.A.; Wilde, J.M.; et al. Crystal growth, microstructure, and physical properties of SrMnSb2. Phys. Rev. B 2019, 99, 054435. [Google Scholar] [CrossRef]
- Liu, B.; Fu, Y.; Cheng, J.; Zhu, W.; He, J.; Liu, C.; Li, L.; Luo, Y. Physical Properties of Antiferromagnetic Dirac Semimetal SrMnSb2. J. Supercond. Nov. Magn. 2022, 35, 3263–3269. [Google Scholar] [CrossRef]
- Mousley, P.J.; Burrows, C.W.; Ashwin, M.J.; Sanchez, A.M.; Lazarov, V.K.; Bell, G.R. Growth and characterisation of MnSb(0001)/InGaAs(111)A epitaxial films. J. Cryst. Growth 2018, 498, 391–398. [Google Scholar] [CrossRef]
- Aldous, J.D.; Burrows, C.W.; Sanchez, A.M.; Beanland, R.; Maskery, I.; Bradley, M.K.; Dias, M.d.S.; Staunton, J.B.; Bell, G.R. Cubic MnSb: Epitaxial growth of a predicted room temperature half-metal. Phys. Rev. B 2012, 85, 060403. [Google Scholar] [CrossRef]
- Sie, E.J.; Nyby, C.M.; Pemmaraju, C.D.; Park, S.J.; Shen, X.; Yang, J.; Hoffmann, M.C.; Ofori-Okai, B.K.; Li, R.; Reid, A.H.; et al. An ultrafast symmetry switch in a Weyl semimetal. Nature 2019, 565, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Weber, C.P. Ultrafast investigation and control of Dirac and Weyl semimetals. J. Appl. Phys. 2021, 129, 070901. [Google Scholar] [CrossRef]
- Weber, C.P.; Berggren, B.S.; Masten, M.G.; Ogloza, T.C.; Deckoff-Jones, S.; Madéo, J.; Man, M.K.L.; Dani, K.M.; Zhao, L.; Chen, G.; et al. Similar ultrafast dynamics of several dissimilar Dirac and Weyl semimetals. J. Appl. Phys. 2017, 122, 223102. [Google Scholar] [CrossRef]
- Lee, M.C.; Sirica, N.; Teitelbaum, S.W.; Maznev, A.; Pezeril, T.; Tutchton, R.; Krapivin, V.; de la Pena, G.A.; Huang, Y.; Zhao, L.X.; et al. Direct Observation of Coherent Longitudinal and Shear Acoustic Phonons in TaAs Using Ultrafast X-ray Diffraction. Phys. Rev. Lett. 2022, 128, 155301. [Google Scholar] [CrossRef] [PubMed]
- Weber, C.P.; Masten, M.G.; Ogloza, T.C.; Berggren, B.S.; Man, M.K.L.; Dani, K.M.; Liu, J.; Mao, Z.; Klug, D.D.; Adeleke, A.A.; et al. Using coherent phonons for ultrafast control of the Dirac node of SrMnSb2. Phys. Rev. B 2018, 98, 155115. [Google Scholar] [CrossRef]
- Ekahana, S.A.; Wu, S.C.; Jiang, J.; Okawa, K.; Prabhakaran, D.; Hwang, C.C.; Mo, S.K.; Sasagawa, T.; Felser, C.; Yan, B.; et al. Observation of nodal line in non-symmorphic topological semimetal InBi. New J. Phys. 2017, 19, 065007. [Google Scholar] [CrossRef]
- Manasijevic, I.; Balanovic, L.; Grguric, T.H.; Minic, D.; Gorgievski, M. Study of microstructure and thermal properties of the low-melting Bi-In eutectic alloys. J. Therm. Anal. Calorim. 2019, 136, 643–649. [Google Scholar] [CrossRef]
- Keen, B.; Makin, R.; Stampe, P.A.; Kennedy, R.J.; Sallis, S.; Piper, L.J.; McCombe, B.; Durbin, S.M. Growth Parameters for Thin Film InBi Grown by Molecular Beam Epitaxy. J. Electron. Mater. 2014, 43, 914–920. [Google Scholar] [CrossRef]
- Dang, P.; Rouvimov, S.; Xing, H.G.; Jena, D. Magnetotransport and superconductivity in InBi films grown on Si(111) by molecular beam epitaxy. J. Appl. Phys. 2019, 126, 103901. [Google Scholar] [CrossRef]
- Hsu, C.H.; Huang, Z.Q.; Lin, C.Y.; Macam, G.M.; Huang, Y.Z.; Lin, D.S.; Chiang, T.C.; Lin, H.; Chuang, F.C.; Huang, L. Growth of a predicted two-dimensional topological insulator based on InBi-Si(111)-7 × 7. Phys. Rev. B 2018, 98, 121404. [Google Scholar] [CrossRef]
- Tanaka, M.; Harbison, J.; Park, M.; Park, Y.; Shin, T.; Rothberg, G. Epitaxial Orientation and Magnetic-Properties of Mnas Thin-Films Grown On (001) Gaas—Template Effects. Appl. Phys. Lett. 1994, 65, 1964–1966. [Google Scholar] [CrossRef]
- Mousley, P.J.; Burrows, C.W.; Ashwin, M.J.; Takahasi, M.; Sasaki, T.; Bell, G.R. In situ X-ray diffraction of GaAs/MnSb/Ga(In)As heterostructures. Phys. Status Solidi (B) 2017, 254, 1600503. [Google Scholar] [CrossRef]
- Kroupa, A.; Dinsdale, A.T.; Watson, A.; Vrestal, J.; Vízdal, J.; Zemanova, A. The development of the COST 531 lead-free solders thermodynamic database. JOM 2007, 59, 20–25. [Google Scholar] [CrossRef]
- Khatiri, A.; Ripalda, J.; Krzyzewski, T.; Bell, G.; McConville, C.; Jones, T. Atomic hydrogen cleaning of GaAs(001): A scanning tunnelling microscopy study. Surf. Sci. 2004, 548, L1–L6. [Google Scholar] [CrossRef]
- Bell, G.; McConville, C.; Jones, T. Plasmon excitations and the effects of surface preparation in n-type InAs(001) studied by electron energy loss spectroscopy. Appl. Surf. Sci. 1996, 104–105, 17–23. [Google Scholar] [CrossRef]
- Bomphrey, J.; Ashwin, M.; Jones, T.; Bell, G. The c(4 × 4)–a(1 × 3) surface reconstruction transition on InSb(001): Static versus dynamic conditions. Results Phys. 2015, 5, 154–155. [Google Scholar] [CrossRef]
- Joyce, B.A.; Neave, J.H.; Dobson, P.J.; Larsen, P.K. Analysis of reflection high-energy electron-diffraction data from reconstructed semiconductor surfaces. Phys. Rev. B 1984, 29, 814–819. [Google Scholar] [CrossRef]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002. [Google Scholar] [CrossRef]
- Kabalkina, S.S.; Kolobyanina, T.N.; Vereshchagin, L.F. Investigation of the Crystal Structure of the Antimony and Bismuth High Pressure Phases. Sov. J. Exp. Theor. Phys. 1970, 31, 259. [Google Scholar]
- Wang, R.; Grant, N. The crystal structure of In5Bi3. Z. Für Krist.-Cryst. Mater. 1969, 129, 244–251. [Google Scholar] [CrossRef]
- Cruceanu, E.; Miu, L.; Ivanciu, O. Single-crystal growth of In2Bi and In55Bi3 compounds. J. Cryst. Growth 1975, 28, 13–15. [Google Scholar] [CrossRef]
- Mudry, S.; Sklyarchuk, V.; Yakymovych, A.; Shtablavyi, I. The structure and viscosity features in In–Bi near-eutectic melts. Phys. Chem. Liq. 2007, 45, 675–681. [Google Scholar] [CrossRef]
- Maraşli, N.; Akbulut, S.; Ocak, Y.; Keşlioğlu, K.; Böyük, U.; Kaya, H.; Çadirli, E. Measurement of solid–liquid interfacial energy in the In–Bi eutectic alloy at low melting temperature. J. Phys. Condens. Matter 2007, 19, 506102. [Google Scholar] [CrossRef]
- Tsukamoto, S.; Honma, T.; Bell, G.; Ishii, A.; Arakawa, Y. Atomistic Insights for InAs Quantum Dot Formation on GaAs(001) using STM within a MBE Growth Chamber. Small 2006, 2, 386–389. [Google Scholar] [CrossRef]
MBE (thick films) | |||
---|---|---|---|
Sample | Substrate temp (°C) | Bi:In BEP ratio | Bi:In composition ratio |
1-A | 86 | 0.78 | ∼1.10 a |
1-B | 99 | 0.38 | 0.77 |
1-C | 96 | 0.94 | 1.23 |
PSE (ultra-thin films) | |||
Sample | Substrate temp (°C) | Bi:In Int. BEP ratio | Bi:In composition ratio |
2-A | 100 | 2.71 | 0.92 |
2-B | 81 | 1.30 | 1.09 |
Growth Stage | In (%) | Bi (%) | Sb (%) | Bi/In XPS | Bi/In BEP | (Å) |
---|---|---|---|---|---|---|
Pre-growth substrate | 55.6 | 0.0 | 44.4 | – | – | 4.58 |
1st deposition (10s Bi + 30s In) | 57.0 | 6.7 | 36.3 | 0.32 | 0.83 | 3.35 |
2nd deposition (20s Bi) | 53.6 | 13.6 | 32.8 | 0.65 | 2.50 | 4.51 |
3rd deposition (30s Bi + 30s In) | 51.0 | 22.0 | 27.0 | 0.92 | 2.63 | 4.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rehaag, T.J.; Bell, G.R. Heteroepitaxial Growth of InBi(001). Molecules 2024, 29, 2825. https://doi.org/10.3390/molecules29122825
Rehaag TJ, Bell GR. Heteroepitaxial Growth of InBi(001). Molecules. 2024; 29(12):2825. https://doi.org/10.3390/molecules29122825
Chicago/Turabian StyleRehaag, Thomas J., and Gavin R. Bell. 2024. "Heteroepitaxial Growth of InBi(001)" Molecules 29, no. 12: 2825. https://doi.org/10.3390/molecules29122825
APA StyleRehaag, T. J., & Bell, G. R. (2024). Heteroepitaxial Growth of InBi(001). Molecules, 29(12), 2825. https://doi.org/10.3390/molecules29122825