Chemical and Bioactive Evaluation of Essential Oils from Edible and Aromatic Mediterranean Lamiaceae Plants
Abstract
:1. Introduction
2. Results and Discussion
2.1. Composition in Volatile Compounds
2.2. Antioxidant Activity
2.3. Cytotoxicity Potential
2.4. Anti-Inflammatory Activity
2.5. Antimicrobial Activity
3. Materials and Methods
3.1. Sample Preparation
3.2. Volatile Compounds
3.3. Bioactivity Evaluation
3.3.1. Antioxidant Activity
3.3.2. Cytotoxicity Activity
3.3.3. Anti-Inflammatory Activity
3.3.4. Antimicrobial Activity
3.4. Statistical Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karpiński, T.M. Essential Oils of Lamiaceae Family Plants as Antifungals. Biomolecules 2020, 10, 103. [Google Scholar] [CrossRef]
- Kozłowska, M.; Laudy, A.E.; Przybył, J.; Ziarno, M.; Majewska, E. Chemical composition and antibacterial activity of some medicinal plants from lamiaceae family. Acta Pol. Pharm. 2015, 72, 757–767. [Google Scholar] [PubMed]
- Ramos da Silva, L.R.; Ferreira, O.O.; Cruz, J.N.; de Jesus Pereira Franco, C.; Oliveira dos Anjos, T.; Cascaes, M.M.; Almeida da Costa, W.; Helena de Aguiar Andrade, E.; Santana de Oliveira, M. Lamiaceae Essential Oils, Phytochemical Profile, Antioxidant, and Biological Activities. Evid.-Based Complement. Altern. Med. 2021, 2021, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Stefanaki, A.; van Andel, T. Mediterranean Aromatic Herbs and Their Culinary Use. In Aromatic Herbs in Food; Elsevier: Amsterdam, The Netherlands, 2021; pp. 93–121. [Google Scholar]
- Xavier, V.; Spréa, R.; Finimundy, T.C.; Heleno, S.A.; Amaral, J.S.; Barros, L.; Ferreira, I.C.F.R. Terpenes. In Natural Secondary Metabolites: From Nature, through Science, to Industry; Carocho, M., Heleno, S.A., Barros, L., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 107–156. ISBN 978-3-031-18587-8. [Google Scholar]
- Jackson-Davis, A.; White, S.; Kassama, L.S.; Coleman, S.; Shaw, A.; Mendonca, A.; Cooper, B.; Thomas-Popo, E.; Gordon, K.; London, L. A Review of Regulatory Standards and Advances in Essential Oils as Antimicrobials in Foods. J. Food Prot. 2023, 86, 100025. [Google Scholar] [CrossRef] [PubMed]
- Ju, J.; Chen, X.; Xie, Y.; Yu, H.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Application of Essential Oil as a Sustained Release Preparation in Food Packaging. Trends Food Sci. Technol. 2019, 92, 22–32. [Google Scholar] [CrossRef]
- Sharma, S.; Cheng, S.-F.; Bhattacharya, B.; Chakkaravarthi, S. Efficacy of Free and Encapsulated Natural Antioxidants in Oxidative Stability of Edible Oil: Special Emphasis on Nanoemulsion-Based Encapsulation. Trends Food Sci. Technol. 2019, 91, 305–318. [Google Scholar] [CrossRef]
- Sharma, S.; Mulrey, L.; Byrne, M.; Jaiswal, A.K.; Jaiswal, S. Encapsulation of Essential Oils in Nanocarriers for Active Food Packaging. Foods 2022, 11, 2337. [Google Scholar] [CrossRef] [PubMed]
- Garzoli, S.; Petralito, S.; Ovidi, E.; Turchetti, G.; Laghezza Masci, V.; Tiezzi, A.; Trilli, J.; Cesa, S.; Casadei, M.A.; Giacomello, P.; et al. Lavandula x Intermedia Essential Oil and Hydrolate: Evaluation of Chemical Composition and Antibacterial Activity before and after Formulation in Nanoemulsion. Ind. Crops Prod. 2020, 145, 112068. [Google Scholar] [CrossRef]
- Seow, Y.X.; Yeo, C.R.; Chung, H.L.; Yuk, H.-G. Plant Essential Oils as Active Antimicrobial Agents. Crit. Rev. Food Sci. Nutr. 2014, 54, 625–644. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef]
- Diass, K.; Brahmi, F.; Mokhtari, O.; Abdellaoui, S.; Hammouti, B. Biological and Pharmaceutical Properties of Essential Oils of Rosmarinus officinalis L. and Lavandula officinalis L. Mater. Today Proc. 2021, 45, 7768–7773. [Google Scholar] [CrossRef]
- Guzmán, E.; Lucia, A. Essential Oils and Their Individual Components in Cosmetic Products. Cosmetics 2021, 8, 114. [Google Scholar] [CrossRef]
- Ebadollahi, A.; Ziaee, M.; Palla, F. Essential Oils Extracted from Different Species of the Lamiaceae Plant Family as Prospective Bioagents against Several Detrimental Pests. Molecules 2020, 25, 1556. [Google Scholar] [CrossRef] [PubMed]
- Mączka, W.; Twardawska, M.; Grabarczyk, M.; Wińska, K. Carvacrol—A Natural Phenolic Compound with Antimicrobial Properties. Antibiotics 2023, 12, 824. [Google Scholar] [CrossRef]
- Caputo, L.; Amato, G.; de Bartolomeis, P.; De Martino, L.; Manna, F.; Nazzaro, F.; De Feo, V.; Barba, A.A. Impact of Drying Methods on the Yield and Chemistry of Origanum vulgare L. Essential Oil. Sci. Rep. 2022, 12, 3845. [Google Scholar] [CrossRef] [PubMed]
- Elshafie, H.; Armentano, M.; Carmosino, M.; Bufo, S.; De Feo, V.; Camele, I. Cytotoxic Activity of Origanum vulgare L. on Hepatocellular Carcinoma Cell Line HepG2 and Evaluation of Its Biological Activity. Molecules 2017, 22, 1435. [Google Scholar] [CrossRef] [PubMed]
- Rathod, N.B.; Kulawik, P.; Ozogul, F.; Regenstein, J.M.; Ozogul, Y. Biological Activity of Plant-Based Carvacrol and Thymol and Their Impact on Human Health and Food Quality. Trends Food Sci. Technol. 2021, 116, 733–748. [Google Scholar] [CrossRef]
- Mauriello, E.; Ferrari, G.; Donsì, F. Effect of Formulation on Properties, Stability, Carvacrol Release and Antimicrobial Activity of Carvacrol Emulsions. Colloids Surf. B Biointerfaces 2021, 197, 111424. [Google Scholar] [CrossRef]
- Rúa, J.; del Valle, P.; de Arriaga, D.; Fernández-Álvarez, L.; García-Armesto, M.R. Combination of Carvacrol and Thymol: Antimicrobial Activity Against Staphylococcus Aureus and Antioxidant Activity. Foodborne Pathog. Dis. 2019, 16, 622–629. [Google Scholar] [CrossRef]
- Günes-Bayir, A.; Kiziltan, H.S.; Kocyigit, A.; Güler, E.M.; Karataş, E.; Toprak, A. Effects of Natural Phenolic Compound Carvacrol on the Human Gastric Adenocarcinoma (AGS) Cells in Vitro. Anti-Cancer Drugs 2017, 28, 522–530. [Google Scholar] [CrossRef]
- Ed-Dra, A.; Nalbone, L.; Filali, F.R.; Trabelsi, N.; El Majdoub, Y.O.; Bouchrif, B.; Giarratana, F.; Giuffrida, A. Comprehensive Evaluation on the Use of Thymus vulgaris Essential Oil as Natural Additive against Different Serotypes of Salmonella Enterica. Sustainability 2021, 13, 4594. [Google Scholar] [CrossRef]
- Galovičová, L.; Borotová, P.; Valková, V.; Vukovic, N.L.; Vukic, M.; Štefániková, J.; Ďúranová, H.; Kowalczewski, P.Ł.; Čmiková, N.; Kačániová, M. Thymus vulgaris Essential Oil and Its Biological Activity. Plants 2021, 10, 1959. [Google Scholar] [CrossRef] [PubMed]
- Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and Antifungal Activities of Thymol: A Brief Review of the Literature. Food Chem. 2016, 210, 402–414. [Google Scholar] [CrossRef]
- Escobar, A.; Pérez, M.; Romanelli, G.; Blustein, G. Thymol Bioactivity: A Review Focusing on Practical Applications. Arab. J. Chem. 2020, 13, 9243–9269. [Google Scholar] [CrossRef]
- Nikolić, M.; Glamočlija, J.; Ferreira, I.C.F.R.; Calhelha, R.C.; Fernandes, Â.; Marković, T.; Marković, D.; Giweli, A.; Soković, M. Chemical Composition, Antimicrobial, Antioxidant and Antitumor Activity of Thymus serpyllum L., Thymus Algeriensis Boiss. and Reut and Thymus vulgaris L. Essential Oils. Ind. Crops Prod. 2014, 52, 183–190. [Google Scholar] [CrossRef]
- de Oliveira, J.R.; de Jesus Viegas, D.; Martins, A.P.R.; Carvalho, C.A.T.; Soares, C.P.; Camargo, S.E.A.; Jorge, A.O.C.; de Oliveira, L.D. Thymus vulgaris L. Extract Has Antimicrobial and Anti-Inflammatory Effects in the Absence of Cytotoxicity and Genotoxicity. Arch. Oral Biol. 2017, 82, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.F.; Durço, A.O.; Rabelo, T.K.; Barreto, R.d.S.; Guimarães, A.G. Effects of Carvacrol, Thymol and Essential Oils Containing Such Monoterpenes on Wound Healing: A Systematic Review. J. Pharm. Pharmacol. 2019, 71, 141–155. [Google Scholar] [CrossRef]
- Milovanovic, S.; Markovic, D.; Mrakovic, A.; Kuska, R.; Zizovic, I.; Frerich, S.; Ivanovic, J. Supercritical CO2—Assisted Production of PLA and PLGA Foams for Controlled Thymol Release. Mater. Sci. Eng. C 2019, 99, 394–404. [Google Scholar] [CrossRef]
- Spisni, E.; Petrocelli, G.; Imbesi, V.; Spigarelli, R.; Azzinnari, D.; Donati Sarti, M.; Campieri, M.; Valerii, M.C. Antioxidant, Anti-Inflammatory, and Microbial-Modulating Activities of Essential Oils: Implications in Colonic Pathophysiology. Int. J. Mol. Sci. 2020, 21, 4152. [Google Scholar] [CrossRef]
- Amina, B.; Soumeya, B.; Salim, B.; Mahieddine, B.; Sakina, B.; Chawki, B.; Francesca, N.; Marzia, V.; Carmine, N.; Luigi, D.B. Chemical Profiling, Antioxidant, Enzyme Inhibitory and in Silico Modeling of Rosmarinus officinalis L. and Artemisia Herba Alba Asso. Essential Oils from Algeria. S. Afr. J. Bot. 2022, 147, 501–510. [Google Scholar] [CrossRef]
- Yang, P.; Jia, M.; Zhu, L. Acaricidal Activity of the Essential Oil from Senecio Cannabifolius and Its Constituents Eucalyptol and Camphor on Engorged Females and Larvae of Rhipicephalus Microplus (Acari: Ixodidae). Exp. Appl. Acarol. 2021, 83, 411–426. [Google Scholar] [CrossRef]
- Kim, T.; Song, B.; Cho, K.S.; Lee, I.-S. Therapeutic Potential of Volatile Terpenes and Terpenoids from Forests for Inflammatory Diseases. Int. J. Mol. Sci. 2020, 21, 2187. [Google Scholar] [CrossRef] [PubMed]
- Ağuş, H.; Yilmaz, S.; Şengoz, C. Crosstalk between Autophagy and Apoptosis Induced by Camphor inSchizosaccharomyces Pombe. Turk. J. Biol. 2019, 43, 382–390. [Google Scholar] [CrossRef]
- El Euch, S.K.; Hassine, D.B.; Cazaux, S.; Bouzouita, N.; Bouajila, J. Salvia Officinalis Essential Oil: Chemical Analysis and Evaluation of Anti-Enzymatic and Antioxidant Bioactivities. S. Afr. J. Bot. 2019, 120, 253–260. [Google Scholar] [CrossRef]
- Khedher, M.R.B.; Khedher, S.B.; Chaieb, I.; Tounsi, S.; Hammami, M. Chemical Composition and Biological Activities of Salvia Officinalis Essential Oil from Tunisia. EXCLI J. 2017, 16, 160–173. [Google Scholar] [PubMed]
- Laothaweerungsawat, N.; Sirithunyalug, J.; Chaiyana, W. Chemical Compositions and Anti-Skin-Ageing Activities of Origanum vulgare L. Essential Oil from Tropical and Mediterranean Region. Molecules 2020, 25, 1101. [Google Scholar] [CrossRef] [PubMed]
- Mancini, E.; Senatore, F.; Del Monte, D.; De Martino, L.; Grulova, D.; Scognamiglio, M.; Snoussi, M.; De Feo, V. Studies on Chemical Composition, Antimicrobial and Antioxidant Activities of Five Thymus vulgaris L. Essential Oils. Molecules 2015, 20, 12016–12028. [Google Scholar] [CrossRef] [PubMed]
- El Kharraf, S.; El-Guendouz, S.; Farah, A.; Bennani, B.; Mateus, M.C.; El Hadrami, E.M.; Miguel, M.G. Hydrodistillation and Simultaneous Hydrodistillation-Steam Distillation of Rosmarinus officinalis and Origanum Compactum: Antioxidant, Anti-Inflammatory, and Antibacterial Effect of the Essential Oils. Ind. Crops Prod. 2021, 168, 113591. [Google Scholar] [CrossRef]
- Oualdi, I.; Diass, K.; Azizi, S.; Dalli, M.; Touzani, R.; Gseyra, N.; Yousfi, E.B. Rosmarinus officinalis Essential Oils from Morocco: New Advances on Extraction, GC/MS Analysis, and Antioxidant Activity. Nat. Prod. Res. 2022, 37, 2003–2008. [Google Scholar] [CrossRef]
- Hlwatika, C.N.M.; Bhat, R.B. An Ecological Interpretation of the Difference in Leaf Anatomy and Its Plasticity in Contrasting Tree Species in Orange Kloof, Table Mountain, South Africa. Ann. Bot. 2002, 89, 109–114. [Google Scholar] [CrossRef]
- Gonzalez-Burgos, E.; Gomez-Serranillos, M.P. Terpene Compounds in Nature: A Review of Their Potential Antioxidant Activity. CMC 2012, 19, 5319–5341. [Google Scholar] [CrossRef]
- Han, X.; Parker, T.L. Anti-Inflammatory, Tissue Remodeling, Immunomodulatory, and Anticancer Activities of Oregano (Origanum vulgare) Essential Oil in a Human Skin Disease Model. Biochim. Open 2017, 4, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Dolghi, A.; Coricovac, D.; Dinu, S.; Pinzaru, I.; Dehelean, C.A.; Grosu, C.; Chioran, D.; Merghes, P.E.; Sarau, C.A. Chemical and Antimicrobial Characterization of Mentha Piperita L. and Rosmarinus officinalis L. Essential Oils and In Vitro Potential Cytotoxic Effect in Human Colorectal Carcinoma Cells. Molecules 2022, 27, 6106. [Google Scholar] [CrossRef]
- Abdelli, W.; Bahri, F.; Romane, A.; Höferl, M.; Wanner, J.; Schmidt, E.; Jirovetz, L. Chemical Composition and Anti-Inflammatory Activity of Algerian Thymus vulgaris Essential Oil. Nat. Prod. Commun. 2017, 12, 1934578X1701200. [Google Scholar] [CrossRef]
- Carbone, C.; Martins-Gomes, C.; Caddeo, C.; Silva, A.M.; Musumeci, T.; Pignatello, R.; Puglisi, G.; Souto, E.B. Mediterranean Essential Oils as Precious Matrix Components and Active Ingredients of Lipid Nanoparticles. Int. J. Pharm. 2018, 548, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, H.A.; Eldeeb, H.M.; Khan, R.A.; Al-Omar, M.S.; Mohammed, S.A.A.; Sajid, M.S.M.; Aly, M.S.A.; Ahmad, A.M.; Abdellatif, A.A.H.; Eid, S.Y.; et al. Sage, Salvia Officinalis L., Constituents, Hepatoprotective Activity, and Cytotoxicity Evaluations of the Essential Oils Obtained from Fresh and Differently Timed Dried Herbs: A Comparative Analysis. Molecules 2021, 26, 5757. [Google Scholar] [CrossRef]
- Tosun, A.; Khan, S.; Kim, Y.; Calín-Sánchez, A.; Hysenaj, X.; Carbonell-Barrachina, A. Essential Oil Composition and Anti-Inflammatory Activity of Salvia officinalis L (Lamiaceae) in Murin Macrophages. Trop. J. Pharm. Res. 2014, 13, 937. [Google Scholar] [CrossRef]
- Simirgiotis, M.J.; Burton, D.; Parra, F.; López, J.; Muñoz, P.; Escobar, H.; Parra, C. Antioxidant and Antibacterial Capacities of Origanum vulgare L. Essential Oil from the Arid Andean Region of Chile and Its Chemical Characterization by GC-MS. Metabolites 2020, 10, 414. [Google Scholar] [CrossRef]
- Kosakowska, O.; Węglarz, Z.; Pióro-Jabrucka, E.; Przybył, J.L.; Kraśniewska, K.; Gniewosz, M.; Bączek, K. Antioxidant and Antibacterial Activity of Essential Oils and Hydroethanolic Extracts of Greek Oregano (O. vulgare L. Subsp. Hirtum (Link) Ietswaart) and Common Oregano (O. vulgare L. Subsp. Vulgare). Molecules 2021, 26, 988. [Google Scholar] [CrossRef]
- Borugă, O.; Jianu, C.; Mişcă, C.; Goleţ, I.; Gruia, A.; Horhat, F. Thymus vulgaris Essential Oil: Chemical Composition and Antimicrobial Activity. J. Med. Life 2014, 7, 56–60. [Google Scholar]
- De Martino, L.; De Feo, V.; Nazzaro, F. Chemical Composition and in Vitro Antimicrobial and Mutagenic Activities of Seven Lamiaceae Essential Oils. Molecules 2009, 14, 4213–4230. [Google Scholar] [CrossRef] [PubMed]
- Nieto, G. Biological Activities of Three Essential Oils of the Lamiaceae Family. Medicines 2017, 4, 63. [Google Scholar] [CrossRef] [PubMed]
- Waller, S.B.; Cleff, M.B.; Serra, E.F.; Silva, A.L.; Gomes, A.d.R.; de Mello, J.R.B.; de Faria, R.O.; Meireles, M.C.A. Plants from Lamiaceae Family as Source of Antifungal Molecules in Humane and Veterinary Medicine. Microb. Pathog. 2017, 104, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Sprea, R.M.; Fernandes, L.H.M.; Pires, T.C.S.P.; Calhelha, R.C.; Rodrigues, P.J.; Amaral, J.S. Volatile Compounds and Biological Activity of the Essential Oil of Aloysia Citrodora Paláu: Comparison of Hydrodistillation and Microwave-Assisted Hydrodistillation. Molecules 2023, 28, 4528. [Google Scholar] [CrossRef] [PubMed]
- Xavier, V.; Finimundy, T.C.; Heleno, S.A.; Amaral, J.S.; Calhelha, R.C.; Vaz, J.; Pires, T.C.S.P.; Mediavilla, I.; Esteban, L.S.; Ferreira, I.C.F.R.; et al. Chemical and Bioactive Characterization of the Essential Oils Obtained from Three Mediterranean Plants. Molecules 2021, 26, 7472. [Google Scholar] [CrossRef]
Origanum vulgare L. | |||||
---|---|---|---|---|---|
Number | Compound | RT (min) | LRI a | LRI b | Relative % c |
1 | α-Pinene | 8.458 | 926 | 932 | 0.076 ± 0.001 |
2 | Camphene | 9.123 | 940 | 946 | 0.048 ± 0.003 |
3 | β-Pinene | 10.138 | 985 | 974 | 0.012 ± 0.001 |
4 | o-Cymene | 12.798 | 1018 | 1022 | 0.53 ± 0.02 |
5 | γ-Terpinene | 14.461 | 1052 | 1054 | 0.82 ± 0.03 |
6 | Terpinolene | 16.876 | 1102 | 1088 | 4.4 ± 0.2 |
7 | Thymol | 25.61 | 1287 | 1289 | 0.013 ± 0.0001 |
8 | Carvacrol | 26.975 | 1318 | 1298 | 85.78 ± 0.02 |
9 | Caryophyllene oxide | 37.336 | 1568 | 1582 | 0.64 ± 0.04 |
Total identified (%) | 92.3 ± 0.2 | ||||
Monoterpenes | 5.9 ± 0.3 | ||||
Oxygenated monoterpenes | 85.8 ± 0.02 | ||||
Oxygenated sesquiterpenes | 0.64 ± 0.04 | ||||
Not identified | 7.7 ± 0.2 | ||||
Rosmarinus officinalis L. | |||||
Number | Compound | RT (min) | LRI a | LRI b | Relative % c |
1 | Santolina triene | 7.95 | 915 | 908 | 0.1 ± 0.01 |
2 | α-Pinene | 8.69 | 930 | 932 | 24.1 ± 0.2 |
3 | Camphene | 9.26 | 943 | 946 | 3.95 ± 0.01 |
4 | Dehydrosabinene | 9.4 | 946 | 956 | 0.17 ± 0.01 |
5 | β-Pinene | 10.42 | 968 | 974 | 0.32 ± 0.01 |
6 | β-Myrcene | 11.4 | 989 | 991 | 8.1 ± 0.3 |
7 | o-Cymene | 12.83 | 1019 | 1022 | 1.28 ± 0.01 |
8 | ρ-Cymene | 12.99 | 1022 | 1023 | 0.6 ± 0.001 |
9 | Eucalyptol | 13.39 | 1030 | 1031 | 34 ± 1 |
10 | γ-Terpinene | 14.46 | 1052 | 1060 | 0.49 ± 0.01 |
11 | Terpinolene | 15.7 | 1078 | 1088 | 0.21 ± 0.01 |
12 | Camphor | 18.75 | 1141 | 1142 | 5.9 ± 0.05 |
13 | α-Terpineol | 21.41 | 1195 | 1189 | 2.15 ± 0.01 |
14 | Verbenone | 21.81 | 1204 | 1204 | 9.4 ± 0.1 |
15 | Bornyl acetate | 25.14 | 1277 | 1284 | 1.23 ± 0.01 |
16 | Methyleugenol | 30.37 | 1396 | 1402 | 0.22 ± 0.01 |
Total identified (%) | 91.9 ± 0.1 | ||||
Monoterpenes | 39.2 ± 0.6 | ||||
Oxygenated monoterpenes | 52.7 ± 1.1 | ||||
Not identified | 8.1 ± 0.1 | ||||
Salvia officinalis L. | |||||
Number | Compound | RT (min) | LRI a | LRI b | Relative % c |
1 | α-Pinene | 8.475 | 926 | 932 | 3.3 ± 0.1 |
2 | Camphene | 9.175 | 941 | 946 | 4.4 ± 0.5 |
3 | β-Pinene | 10.383 | 967 | 974 | 0.79 ± 0.02 |
4 | β-Myrcene | 11.188 | 984 | 991 | 0.53 ± 0.04 |
5 | Eucalyptol | 13.253 | 1027 | 1031 | 17 ± 2 |
6 | Thujone | 17.103 | 1107 | 1103 | 24 ± 1 |
7 | β-Thujone | 17.804 | 1121 | 1114 | 4.8 ± 0.3 |
8 | Camphor | 18.994 | 1146 | 1142 | 29 ± 1 |
9 | Isoborneol | 20.079 | 1168 | 1157 | 5.0 ± 0.4 |
10 | α-Terpineol | 21.129 | 1190 | 1189 | 0.46 ± 0.04 |
11 | Bornyl acetate | 25.102 | 1276 | 1284 | 0.8 ± 0.1 |
12 | β-Caryophyllene | 30.72 | 1404 | 1419 | 0.466 ± 0.002 |
13 | Humulene | 32.225 | 1441 | 1454 | 0.69 ± 0.03 |
Total identified (%) | 91.24 ± 0.05 | ||||
Monoterpenes | 9.02 ± 0.66 | ||||
Oxygenated monoterpenes | 81 ± 5 | ||||
Sesquiterpenes | 1.16 ± 0.03 | ||||
Not identified | 8.76 ± 0.14 | ||||
Thymus vulgaris L. | |||||
Number | Compound | RT (min) | LRI a | LRI b | Relative % c |
1 | α-Pinene | 8.475 | 926 | 932 | 0.012 ± 0.001 |
2 | Camphene | 9.14 | 940 | 946 | 0.005 ± 0.0002 |
3 | β-Pinene | 11.24 | 985 | 974 | 0.17 ± 0.01 |
4 | o-Cymene | 13.13 | 1026 | 1022 | 25.324 ± 0.04 |
5 | ρ-Cymene | 13.218 | 1028 | 1023 | 14 ± 1 |
6 | Limonene | 13.28 | 1029 | 1024 | 0.18 ± 0.01 |
7 | Eucalyptol | 13.341 | 1030 | 1031 | 0.648 ± 0.03 |
8 | γ-Terpinene | 14.461 | 1052 | 1054 | 0.278 ± 0.002 |
9 | Camphor | 18.591 | 1138 | 1141 | 0.26 ± 0.004 |
10 | Thymol methyl ether | 22.739 | 1223 | 12,132 | 0.609 ± 0.01 |
11 | Methyl carvacrol | 23.142 | 1231 | 1241 | 0.54 ± 0.01 |
12 | Thymol | 26.31 | 1296 | 1289 | 41 ± 1 |
13 | Carvacrol | 26.52 | 1300 | 1298 | 5.1 ± 0.2 |
14 | γ-Muurolene | 34.676 | 1496 | 1478 | 0.1 ± 0.01 |
15 | Caryophyllene oxide | 37.371 | 1558 | 1582 | 1.4 ± 0.1 |
16 | δ-Cadinol | 39.769 | 1613 | 1638 | 0.213 ± 0.01 |
Total identified (%) | 90.3 ± 0.4 | ||||
Monoterpenes | 39.7 ± 1.1 | ||||
Oxygenated monoterpenes | 47.74 ± 0.52 | ||||
Sesquiterpenes | 0.10 ± 0.01 | ||||
Oxygenated sesquiterpenes | 1.61 ± 0.11 | ||||
Others (%) | 1.15 ± 0.02 | ||||
Not identified | 9.7 ± 0.4 |
Antioxidant Activity | ||
---|---|---|
RP | DPPH | |
O. vulgare | 1.69 ± 0.07 c | 9.2 ± 0.6 d |
R. officinalis | 2.79 ± 0.02 b | 55.9 ± 0.5 a |
S. officinalis | 6.50 ± 0.23 a | 39.92 ± 1.21 b |
T. vulgaris | 1.63 ± 0.04 c | 10.68 ± 0.31 c |
E223 | 0.053 ± 0.002 | 0.043 ± 0.004 |
E302 | 0.020 ± 0.003 | 0.009 ± 0.001 |
BHT | 0.045 ± 0.001 | 0.071 ± 0.004 |
Tumoral Cell Lines (GI50 Values; µg/mL) | Non-Tumoral Culture (GI50 Values; µg/mL) | ||||
---|---|---|---|---|---|
AGS | CaCo-2 | MCF7 | NCI-H460 | VERO | |
O. vulgare | 48 ± 4 c | 45 ± 4 c | 45 ± 4 d | 84 ± 3 c | >400 a |
R. officinalis | 60 ± 3 c | 221 ± 11 a | 202 ± 14 b | 306 ± 11 a | >400 a |
S. officinalis | 236 ± 14 a | 147 ± 16 b | 249 ± 21 a | 305 ± 19 a | 243 ± 21 b |
T. vulgaris | 175 ± 11 b | 156 ± 10 b | 159 ± 13 c | 243 ± 16 b | 243 ± 11 b |
Ellipticine (µM) | 0.9 ± 0.1 | 0.8 ± 0.1 | 1.020 ± 0.004 | 1.01 ± 0.01 | 0.6 ± 0.1 |
Anti-Inflammatory | |
---|---|
(GI50 Values; µg/mL) | |
RAW264.7 | |
O. vulgare | 13.3 ± 0.5 b |
R. officinalis | 58.1 ± 1 a |
S. officinalis | 9.5 ± 0.1 c |
T. vulgaris | 8 ± 1 d |
Dexametasone (µM) | 16 ± 1 |
Antibacterial Activity | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
O. vulgare | T. vulgaris | S. officinalis | R. officinalis | Positive Control | ||||||||||
Streptomycin 1 mg/mL | Methicillin 1 mg/mL | Ampicillin 10 mg/mL | ||||||||||||
MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | MIC | MBC | |
Gram-negative bacteria | ||||||||||||||
Escherichia coli | 0.1 | 0.08 | 0.3 | 0.31 | 2.5 | 2.5 | 2.5 | 2.5 | 0.01 | 0.01 | n.t. | n.t. | 0.2 | 0.15 |
Pseudomonas aeruginosa | 2.5 | 2.5 | >2.5 | 2.5 | >2.5 | 2.5 | >2.5 | 2.5 | 0.06 | 0.06 | n.t. | n.t. | 0.6 | 0.63 |
Salmonella enterica | 0.2 | 0.16 | 0.6 | 1.25 | 2.5 | 2.5 | 2.5 | 2.5 | 0.01 | 0.01 | n.t. | n.t. | 0.2 | 0.15 |
Yersinia enterocolitica | 0.2 | 0.3 | 0.3 | 0.6 | 2.5 | 2.5 | 2.5 | 2.5 | 0.01 | 0.01 | n.t. | n.t. | 0.2 | 0.15 |
Gram-positive bacteria | ||||||||||||||
Bacillus cereus | 0.2 | 2.5 | 0.6 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 0.01 | 0.01 | n.t. | n.t. | n.t. | n.t. |
Listeria monocytogenes | 0.1 | 2.5 | 0.6 | 2.5 | 1.25 | 2.5 | 2.5 | 2.5 | 0.01 | 0.01 | n.t. | n.t. | 0.2 | 0.15 |
Staphylococcus aureus | 0.3 | 0.63 | 1.3 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 0.01 | 0.01 | 0.01 | 0.01 | 0.2 | 0.15 |
Antifungal Activity | ||||||||||||||
Ketaconazole 1 mg/mL | ||||||||||||||
MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | MIC | MFC | |||||
Aspergillus brasiliensis | 0.1 | 0.31 | 0.3 | 0.31 | 0.31 | 0.63 | 0.31 | 0.63 | 0.06 | 0.13 | ||||
Aspergillus fumigatus | 0.1 | 0.31 | 0.1 | 0.31 | 0.08 | 0.31 | 0.08 | 0.31 | 0.5 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spréa, R.M.; Caleja, C.; Finimundy, T.C.; Calhelha, R.C.; Pires, T.C.S.P.; Amaral, J.S.; Prieto, M.A.; Ferreira, I.C.F.R.; Pereira, E.; Barros, L. Chemical and Bioactive Evaluation of Essential Oils from Edible and Aromatic Mediterranean Lamiaceae Plants. Molecules 2024, 29, 2827. https://doi.org/10.3390/molecules29122827
Spréa RM, Caleja C, Finimundy TC, Calhelha RC, Pires TCSP, Amaral JS, Prieto MA, Ferreira ICFR, Pereira E, Barros L. Chemical and Bioactive Evaluation of Essential Oils from Edible and Aromatic Mediterranean Lamiaceae Plants. Molecules. 2024; 29(12):2827. https://doi.org/10.3390/molecules29122827
Chicago/Turabian StyleSpréa, Rafael M., Cristina Caleja, Tiane C. Finimundy, Ricardo C. Calhelha, Tânia C. S. P. Pires, Joana S. Amaral, Miguel A. Prieto, Isabel C. F. R. Ferreira, Eliana Pereira, and Lillian Barros. 2024. "Chemical and Bioactive Evaluation of Essential Oils from Edible and Aromatic Mediterranean Lamiaceae Plants" Molecules 29, no. 12: 2827. https://doi.org/10.3390/molecules29122827
APA StyleSpréa, R. M., Caleja, C., Finimundy, T. C., Calhelha, R. C., Pires, T. C. S. P., Amaral, J. S., Prieto, M. A., Ferreira, I. C. F. R., Pereira, E., & Barros, L. (2024). Chemical and Bioactive Evaluation of Essential Oils from Edible and Aromatic Mediterranean Lamiaceae Plants. Molecules, 29(12), 2827. https://doi.org/10.3390/molecules29122827