Unlocking the Potential of Citrus medica L.: Antioxidant Capacity and Phenolic Profile across Peel, Pulp, and Seeds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antioxidant Capacity Assays
2.2. Phenolic Characteristics Assays
2.3. Determination of Individual Phenolic Compounds
2.3.1. Phenolic Acids
2.3.2. Flavonoids
3. Materials and Methods
3.1. Fruit Samples and Preparation
3.2. Chemicals and Reagents
3.3. Antioxidant Capacity Assays
3.3.1. β-Carotene Bleaching Assay
3.3.2. DPPH Free Radical Scavenging Assay
3.4. Assessment of the Phenolic Characteristics
3.4.1. Total Phenolic Content (TPC) Assessment Assay
3.4.2. Total Flavonoid Content (TFC) Assessment Assay
3.5. UHPLC-ToF-MS Conditions and Detection of Phenolic Compounds
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, V.; Kaur, R.; Aggarwal, P.; Singh, G. Underutilized Citrus Species: An Insight of Their Nutraceutical Potential and Importance for the Development of Functional Food. Sci. Hortic. 2022, 296, 110909. [Google Scholar] [CrossRef]
- Benedetto, N.; Carlucci, V.; Faraone, I.; Lela, L.; Ponticelli, M.; Russo, D.; Mangieri, C.; Tzvetkov, N.T.; Milella, L. An Insight into Citrus medica Linn.: A Systematic Review on Phytochemical Profile and Biological Activities. Plants 2023, 12, 2267. [Google Scholar] [CrossRef] [PubMed]
- Caputo, L.; Cornara, L.; Bazzicalupo, M.; De Francesco, C.; De Feo, V.; Trombetta, D.; Smeriglio, A. Chemical Composition and Biological Activities of Essential Oils from Peels of Three Citrus Species. Molecules 2020, 25, 1890. [Google Scholar] [CrossRef] [PubMed]
- Kalariya, M.V.; Prajapati, R.P.; Chavda, J.R. Pharmacological Potential of Citrus medica: A Review. Pharma Sci. Monit. 2019, 10, 66–81. [Google Scholar]
- Malleshappa, P.; Kumaran, R.C.; Venkatarangaiah, K.; Parveen, S. Peels of Citrus Fruits: A Potential Source of Anti-Inflammatory and Anti-Nociceptive Agents. Pharmacogn. J. 2018, 10, S172–S178. [Google Scholar] [CrossRef]
- Conforti, F.; Statti, G.A.; Tundis, R.; Loizzo, M.R.; Menichini, F. In Vitro Activities of Citrus medica L. Cv. Diamante (Diamante Citron) Relevant to Treatment of Diabetes and Alzheimer’s Disease. Phytother. Res. 2007, 21, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Menichini, F.; Tundis, R.; Loizzo, M.R.; Bonesi, M.; D’Angelo, D.; Lombardi, P.; Mastellone, V. Citrus medica L. Cv Diamante (Rutaceae) Peel Extract Improves Glycaemic Status of Zucker Diabetic Fatty (ZDF) Rats and Protects against Oxidative Stress. J. Enzym. Inhib. Med. Chem. 2016, 31, 1270–1276. [Google Scholar] [CrossRef]
- Nair, A.; Kurup Sr, R.; Nair, A.S.; Baby, S. Citrus Peels Prevent Cancer. Phytomedicine 2018, 50, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Fratianni, F.; Cozzolino, A.; De Feo, V.; Coppola, R.; Ombra, M.N.; Nazzaro, F. Polyphenols, Antioxidant, Antibacterial, and Biofilm Inhibitory Activities of Peel and Pulp of Citrus medica L., Citrus bergamia, and Citrus medica Cv. Salò Cultivated in Southern Italy. Molecules 2019, 24, 4577. [Google Scholar] [CrossRef]
- Venturini, N.; Barboni, T.; Curk, F.; Costa, J.; Paolini, J. Volatile and Flavonoid Composition of the Peel of Citrus medica L. Var. Corsican Fruit for Quality Assessment of Its Liqueur. Food Technol. Biotechnol. 2014, 52, 403–410. [Google Scholar] [CrossRef]
- Taghvaeefard, N.; Ghani, A.; Hosseinifarahi, M. Comparative Study of Phytochemical Profile and Antioxidant Activity of Flavedo from Two Iranian Citron Fruit (Citrus medica L.). J. Food Meas. Charact. 2021, 15, 2821–2830. [Google Scholar] [CrossRef]
- Okhli, S.; Mirzaei, H.; Hosseini, S.E. Antioxidant Activity of Citron Peel (Citrus medica L.) Essential Oil and Extract on Stabilization of Sunflower Oil. OCL 2020, 27, 32. [Google Scholar] [CrossRef]
- Belletti, N.; Lanciotti, R.; Patrignani, F.; Gardini, F. Antimicrobial Efficacy of Citron Essential Oil on Spoilage and Pathogenic Microorganisms in Fruit-Based Salads. J. Food Sci. 2008, 73, M331–M338. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; You, H.; Guo, Y.; Wei, Y.; Xia, P.; Yang, Z.; Ren, M.; Guo, H.; Han, R.; Yang, D. Essential Oils from Three Kinds of Fingered Citrons and Their Antibacterial Activities. Ind. Crops. Prod. 2020, 147, 112172. [Google Scholar] [CrossRef]
- Tundis, R.; Xiao, J.; Silva, A.S.; Carreiró, F.; Loizzo, M.R. Health-Promoting Properties and Potential Application in the Food Industry of Citrus medica L. and Citrus × clementina Hort. Ex Tan. Essential Oils and Their Main Constituents. Plants 2023, 12, 991. [Google Scholar] [CrossRef] [PubMed]
- Vitalini, S.; Iriti, M.; Ovidi, E.; Laghezza Masci, V.; Tiezzi, A.; Garzoli, S. Detection of Volatiles by HS-SPME-GC/MS and Biological Effect Evaluation of Buddha’s Hand Fruit. Molecules 2022, 27, 1666. [Google Scholar] [CrossRef] [PubMed]
- Menichini, F.; Loizzo, M.R.; Bonesi, M.; Conforti, F.; De Luca, D.; Statti, G.A.; de Cindio, B.; Menichini, F.; Tundis, R. Phytochemical Profile, Antioxidant, Anti-Inflammatory and Hypoglycemic Potential of Hydroalcoholic Extracts from Citrus medica L. Cv Diamante Flowers, Leaves and Fruits at Two Maturity Stages. Food Chem. Toxicol. 2011, 49, 1549–1555. [Google Scholar] [CrossRef]
- Rahaman, M.d.M.; Hossain, R.; Herrera-Bravo, J.; Islam, M.T.; Atolani, O.; Adeyemi, O.S.; Owolodun, O.A.; Kambizi, L.; Daştan, S.D.; Calina, D.; et al. Natural Antioxidants from Some Fruits, Seeds, Foods, Natural Products, and Associated Health Benefits: An Update. Food Sci. Nutr. 2023, 11, 1657–1670. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.M.; Roy, P.; Alam, M.; Hoque, M.M.; Zzaman, W. Antimicrobial Activity of Peels and Physicochemical Properties of Juice Prepared from Indigenous Citrus Fruits of Sylhet Region, Bangladesh. Heliyon 2022, 8, e09948. [Google Scholar] [CrossRef]
- Dadwal, V.; Joshi, R.; Gupta, M. A Comparative Metabolomic Investigation in Fruit Sections of Citrus medica L. and Citrus maxima L. Detecting Potential Bioactive Metabolites Using UHPLC-QTOF-IMS. Food Res. Int. 2022, 157, 111486. [Google Scholar] [CrossRef]
- Soares Mateus, A.R.; Barros, S.; Pena, A.; Sanches-Silva, A. The Potential of Citrus By-Products in the Development of Functional Food and Active Packaging. Adv. Food Nutr. Res. 2023, 107, 41–90. [Google Scholar] [CrossRef] [PubMed]
- Miller, H.E. A Simplified Method for the Evaluation of Antioxidants. J. Am. Oil Chem. Soc. 1971, 48, 91. [Google Scholar] [CrossRef]
- Moure, A.; Franco, D.; Sineiro, J.; Domínguez, H.; Núez, M.J.; Lema, J.M. Antioxidant Activity of Extracts from Gevuina avellana and Rosa rubiginosa Defatted Seeds. Food Res. Int. 2001, 34, 103–109. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology—Polyphenols and Flavonoids; Academic Press: New York, NY, USA, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Yoo, K.M.; Lee, C.H.; Lee, H.; Moon, B.K.; Lee, C.Y. Relative Antioxidant and Cytoprotective Activities of Common Herbs. Food Chem. 2008, 106, 929–936. [Google Scholar] [CrossRef]
- Mihaylova, D.; Dimitrova-Dimova, M.; Popova, A. Dietary Phenolic Compounds—Wellbeing and Perspective Applications. Int. J. Mol. Sci. 2024, 25, 4769. [Google Scholar] [CrossRef]
- Stompor, M. A Review on Sources and Pharmacological Aspects of Sakuranetin. Nutrients 2020, 12, 513. [Google Scholar] [CrossRef]
- Yao, L.; Liu, W.; Bashir, M.; Nisar, M.F.; Wan, C. Eriocitrin: A Review of Pharmacological Effects. Biomed. Pharmacother. 2022, 154, 113563. [Google Scholar] [CrossRef]
Portion of Citron | DPPH Radical Scavenging Assay | AAC | |
---|---|---|---|
IP (%) | μg TE/g FW | ||
Pulp | 18.38 ± 0.117 e | 254.9 ± 1.384 e | 168.2 ± 11.24 d |
Albedo | 3.808 ± 0.001 a | 83.60 ± 0.001 a | 37.09 ± 5.619 b |
Green Flavedo | 7.533 ± 0.117 d | 127.6 ± 1.384 d | 117.9 ± 3.746 c |
Yellow Flavedo | 10.51 ± 0.351 b | 162.9 ± 4.153 c | 111.3 ± 9.366 c |
Seeds | 5.464 ± 0.117 c | 104.2 ± 1.384 b | 19.87 ± 7.493 a |
Portion of Citron | Total Phenolic Content μg GAE/g FW | Total Flavonoids Content μg EE/g FW |
---|---|---|
Pulp | 564.5 ± 0.001 b | 432.9 ± 4.138 d |
Albedo | 447.1 ± 0.001 a | 339.3 ± 4.138 c |
Green Flavedo | 1010.3 ± 1.093 e | 146.1 ± 4.138 b |
Yellow Flavedo | 1198.8 ± 1.093 d | 149.1 ± 8.276 b |
Seeds | 713.6 ± 1.093 c | 26.18 ± 8.276 a |
Phenolic Acids | Pulp | Albedo | Green Flavedo | Yellow Flavedo | Seeds | LOD |
---|---|---|---|---|---|---|
Chlorogenic acid | n.d. | n.d. | n.d. | 5.54 ± 0.07 | n.d. | 0.5 |
o-coumaric acid | 12.01 ± 0.44 c | 37.54 ± 0.16 e | 23.21 ± 0.38 d | 9.52 ± 0.64 b | 0.89 ± 0.05 a | 0.5 |
p-coumaric acid | 1.73 ± 0.01 b | n.d. | 8.53 ± 0.02 d | 3.90 ± 0.32 c | 0.92 ± 0.06 a | 0.25 |
trans- ferulic acid | n.d. | n.d. | 2.22 ± 0.03 b | 1.28 ± 0.04 a | n.d. | 1 |
∑ | 13.74 | 37.54 | 33.96 | 20.24 | 1.81 |
Flavonoids | Pulp | Albedo | Green Flavedo | Yellow Flavedo | Seeds | LOD |
---|---|---|---|---|---|---|
Flavanones | ||||||
Eriocitrin | 353.78 ± 16.98 b | 110.29 ± 0.39 a | n.d. | n.d. | n.d. | 0.25 |
Hesperidin | 128.58 ± 3.78 c | 58.33 ± 2.24 b | n.d. | n.d. | 4.93 ± 0.03 a | 0.01 |
Eriodyctiol | n.d. | 0.29 ± 0.01 | n.d. | n.d. | n.d. | 0.025 |
Sakuranetin | n.d. | 0.14 ± 0.01 a | 30.62 ± 0.80 b | 47.64 ± 0.05 c | 0.08 ± 0.02 a | 0.05 |
∑ | 482.36 | 169.05 | 30.62 | 47.64 | 5.01 | |
Flavanols | ||||||
Rutin | 23.42 ± 0.99 c | 0.25 ± 0.01 a | 45.99 ± 2.02 e | 35.92 ± 2.51 d | 3.41 ± 0.06 b | 0.10 |
Quercetin | 1.12 ± 0.01 e | 0.06 ± 0.001 b | 0.16 ± 0.001 c | 0.32 ± 0.01 d | 0.03 ± 0.001 a | 0.05 |
Isoquercetin | 0.68 ± 0.05 b | n.d. | 1.42 ± 0.02 d | 1.29 ± 0.04 c | 0.11 ± 0.01 a | 0.025 |
Quercitrin | n.d. | n.d. | 0.35 ± 0.02 b | 0.12 ± 0.01 a | 0.60 ± 0.01 c | 0.10 |
∑ | 25.22 | 0.31 | 47.92 | 37.65 | 4.15 | |
Flavones | ||||||
Luteolin | n.d. | 0.04 ± 0.01 | n.d. | n.d. | n.d. | 0.01 |
∑Total Content | 507.58 | 169.4 | 78.54 | 85.29 | 9.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mateus, A.R.S.; Teixeira, J.D.; Barros, S.C.; Almeida, C.; Silva, S.; Sanches-Silva, A. Unlocking the Potential of Citrus medica L.: Antioxidant Capacity and Phenolic Profile across Peel, Pulp, and Seeds. Molecules 2024, 29, 3533. https://doi.org/10.3390/molecules29153533
Mateus ARS, Teixeira JD, Barros SC, Almeida C, Silva S, Sanches-Silva A. Unlocking the Potential of Citrus medica L.: Antioxidant Capacity and Phenolic Profile across Peel, Pulp, and Seeds. Molecules. 2024; 29(15):3533. https://doi.org/10.3390/molecules29153533
Chicago/Turabian StyleMateus, Ana Rita Soares, João David Teixeira, Sílvia Cruz Barros, Carina Almeida, Sónia Silva, and Ana Sanches-Silva. 2024. "Unlocking the Potential of Citrus medica L.: Antioxidant Capacity and Phenolic Profile across Peel, Pulp, and Seeds" Molecules 29, no. 15: 3533. https://doi.org/10.3390/molecules29153533
APA StyleMateus, A. R. S., Teixeira, J. D., Barros, S. C., Almeida, C., Silva, S., & Sanches-Silva, A. (2024). Unlocking the Potential of Citrus medica L.: Antioxidant Capacity and Phenolic Profile across Peel, Pulp, and Seeds. Molecules, 29(15), 3533. https://doi.org/10.3390/molecules29153533