Quantum Chemical Investigation into the Structural Analysis and Calculated Raman Spectra of Amylose Modeled with Linked Glucose Molecules
Abstract
:1. Introduction
2. Calculation Details
3. Results and Discussion
3.1. Structural Analysis and Calculated Raman Spectra of 4Glc
3.2. Band Assignments for 4Glc Structures
3.3. Structural Conformations and Calculated Raman Spectra of 2Glc, 6Glc, and 8Glc
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pérez, S.; Bertoft, E. The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch/Stärke 2010, 62, 389–420. [Google Scholar] [CrossRef]
- Zhu, J.; Bai, Y.; Gilbert, R.G. Effects of the Molecular Structure of Starch in Foods on Human Health. Foods 2023, 12, 2263. [Google Scholar] [CrossRef] [PubMed]
- Svihus, B.; Hervik, A.K. Digestion and metabolic fates of starch, and its relation to major nutrition-related health problems: A review. Starch/Stärke 2016, 68, 302–313. [Google Scholar] [CrossRef]
- Bertoft, E. Understanding Starch Structure: Recent Progress. Agronomy 2017, 7, 56. [Google Scholar] [CrossRef]
- Salimi, M.; Channab, B.-E.; Idrissi, A.E.; Zahouily, M.; Motamedi, E. A comprehensive review on starch: Structure, modification, and applications in slow/controlled-release fertilizers in agriculture. Carbohydr. Polym. 2023, 322, 121326. [Google Scholar] [CrossRef] [PubMed]
- Ogunsona, E.; Ojogbo, E.; Mekonnen, T. Advanced material applications of starch and its derivatives. Eur. Polym. J. 2018, 108, 570–581. [Google Scholar] [CrossRef]
- Zarski, A.; Bajer, K.; Kapuśniak, J. Review of the Most Important Methods of Improving the Processing Properties of Starch toward Non-Food Applications. Polymers 2021, 13, 832. [Google Scholar] [CrossRef] [PubMed]
- Compart, J.; Singh, A.; Fettke, J.; Apriyanto, A. Customizing Starch Properties: A Review of Starch Modifications and Their Applications. Polymers 2023, 15, 3491. [Google Scholar] [CrossRef] [PubMed]
- Jayarathna, S.; Andersson, M.; Andersson, R. Recent Advances in Starch-Based Blends and Composites for Bioplastics Applications. Polymers 2022, 14, 4557. [Google Scholar] [CrossRef]
- Marichelvam, M.K.; Jawaid, M.; Asim, M. Corn and Rice Starch-Based Bio-Plastics as Alternative Packaging Materials. Fibers 2019, 7, 32. [Google Scholar] [CrossRef]
- Zhang, H.; Su, Z.; Wang, X. Starch-Based Rehealable and Degradable Bioplastic Enabled by Dynamic Imine Chemistry. ACS Sustain. Chem. Eng. 2022, 10, 8650–8657. [Google Scholar] [CrossRef]
- Xie, D.; Zhang, R.; Zhang, C.; Yang, S.; Xu, Z.; Song, Y. A novel, robust mechanical strength, and naturally degradable double crosslinking starch-based bioplastics for practical applications. Int. J. Biol. Macromol. 2023, 253, 126959. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.X.; Andriyana, A.; Ong, H.C.; Lim, S.; Pang, Y.L.; Ngoh, G.C. A Comprehensive Review on the Emerging Roles of Nanofillers and Plasticizers towards Sustainable Starch-Based Bioplastic Fabrication. Polymers 2022, 14, 664. [Google Scholar] [CrossRef] [PubMed]
- Xie, F. Natural polymer starch-based materials for flexible electronic sensor development: A review of recent progress. Carbohydr. Polym. 2024, 337, 122116. [Google Scholar] [CrossRef] [PubMed]
- Seung, D. Amylose in starch: Towards an understanding of biosynthesis, structure and function. New Phytol. 2020, 228, 1490–1504. [Google Scholar] [CrossRef] [PubMed]
- Cummings, S.; Zhang, Y.; Smeets, N.; Cunningham, M.; Dubé, M.A. On the Use of Starch in Emulsion Polymerizations. Processes 2019, 7, 140. [Google Scholar] [CrossRef]
- Sarder, R.; Piner, E.; Rios, D.C.; Chacon, L.; Artner, M.A.; Barrios, N.; Argyropoulos, D. Copolymers of starch, a sustainable template for biomedical applications: A review. Carbohydr. Polym. 2022, 278, 118973. [Google Scholar] [CrossRef] [PubMed]
- Pesek, S.; Silaghi-Dumitrescu, R. The Iodine/Iodide/Starch Supramolecular Complex. Molecules 2024, 29, 641. [Google Scholar] [CrossRef]
- Wang, Z.; He, M.; Sari, W.I.; Kishimoto, N.; Morita, S.-I. Bio-Raman research using principal component analysis and non-negative matrix factorization on rice grains: Detections of ordered and disordered states of starch in the cooking process. Jpn. J. Appl. Phys. 2021, 60, 060903. [Google Scholar] [CrossRef]
- Wiercigroch, E.; Szafraniec, E.; Czamara, K.; Pacia, M.Z.; Majzner, K.; Kochan, K.; Kaczor, A.; Baranska, M.; Malek, K. Raman and infrared spectroscopy of carbohydrates: A review. Spectrochim. Acta A 2017, 185, 317–335. [Google Scholar] [CrossRef]
- Bağcıoğlu, M.; Zimmermann, B.; Kohler, A. A Multiscale Vibrational Spectroscopic Approach for Identification and Biochemical Characterization of Pollen. PLoS ONE 2015, 10, e0137899. [Google Scholar] [CrossRef]
- Maeda, S.; Harabuchi, Y.; Sumiya, Y.; Takagi, M.; Suzuki, K.; Hatanaka, M.; Osada, Y.; Taketsugu, T.; Morokuma, K.; Ohno, K. GRRM17. Available online: http://iqce.jp/GRRM/index_e.shtml (accessed on 20 August 2021).
- Maeda, S.; Ohno, K.; Morokuma, K. Systematic Exploration of the Mechanism of Chemical Reactions: The Global Reaction Route Mapping (GRRM) Strategy by the ADDF and AFIR Methods. Phys. Chem. Chem. Phys. 2013, 15, 3683–3701. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Revision B.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Yanai, T.; Tew, D.; Handy, N. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 2004, 393, 51–57. [Google Scholar] [CrossRef]
- McLean, A.D.; Chandler, G.S. Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J. Chem. Phys. 1980, 72, 5639–5648. [Google Scholar] [CrossRef]
- Raghavachari, K.; Binkley, J.S.; Seeger, R.; Pople, J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J. Chem. Phys. 1980, 72, 650–654. [Google Scholar] [CrossRef]
- Clark, T.; Chandrasekhar, J.; Spitznagel, G.W.; Schleyer, P.V.R. Efficient diffuse function-augmented basis sets for anion calculations. III.† The 3-21+G basis set for first-row elements. Li–F. J. Comput. Chem. [CrossRef]
- Frisch, M.J.; Pople, J.A.; Binkley, J.S. Self-consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 1984, 80, 3265–3269. [Google Scholar] [CrossRef]
- Stewart, J.J.P. Optimization of parameters for semiempirical methods. V. Modification of NDDO approximations and application to 70 elements. J. Mol. Model. 2007, 13, 1173–1213. [Google Scholar] [CrossRef] [PubMed]
- Maeda, S.; Taketsugu, T.; Morokuma, K.; Ohno, K. Anharmonic Downward Distortion Following for Automated Exploration of Quantum Chemical Potential Energy Surfaces. Bull. Chem. Soc. Jpn. 2014, 87, 1315–1334. [Google Scholar] [CrossRef]
- Ohno, K.; Maeda, S. A Scaled Hypersphere Search Method for the Topography of Reaction Pathways on the Potential Energy Surface. Chem. Phys. Lett. 2004, 384, 277–282. [Google Scholar] [CrossRef]
- Maeda, S.; Ohno, K. Global Mapping of Equilibrium and Transition Structures on Potential Energy Surfaces by the Scaled Hypersphere Search Method: Applications to Ab Initio Surfaces of Formaldehyde and Propyne Molecules. J. Phys. Chem. A 2005, 109, 5742–5753. [Google Scholar] [CrossRef]
- Ohno, K.; Maeda, S. Global Reaction Route Mapping on Potential Energy Surfaces of Formaldehyde, Formic Acid, and their Metal Substituted Analogues. J. Phys. Chem. A 2006, 110, 8933–8941. [Google Scholar] [CrossRef] [PubMed]
- Ditchfield, R.; Hehre, W.J.; Pople, J.A. Self-Consistent Molecular Orbital Methods. 9. Extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 1971, 54, 724–728. [Google Scholar] [CrossRef]
- Hehre, W.J.; Ditchfield, R.; Pople, J.A. Self-Consistent Molecular Orbital Methods. 12. Further extensions of Gaussian-type basis sets for use in molecular-orbital studies of organic-molecules. J. Chem. Phys. 1972, 56, 2257–2261. [Google Scholar] [CrossRef]
- Hariharan, P.C.; Pople, J.A. Influence of polarization functions on molecular-orbital hydrogenation energies. Theor. Chem. Acc. 1973, 28, 213–222. [Google Scholar] [CrossRef]
- Hariharan, P.C.; Pople, J.A. Accuracy of AH equilibrium geometries by single determinant molecular-orbital theory. Mol. Phys. 1974, 27, 209–214. [Google Scholar] [CrossRef]
- Gordon, M.S. The isomers of silacyclopropane. Chem. Phys. Lett. 1980, 76, 163–168. [Google Scholar] [CrossRef]
- Francl, M.M.; Pietro, W.J.; Hehre, W.J.; Binkley, J.S.; DeFrees, D.J.; Pople, J.A.; Gordon, M.S. Self-Consistent Molecular Orbital Methods. 23. A polarization-type basis set for 2nd-row elements. J. Chem. Phys. 1982, 77, 3654–3665. [Google Scholar] [CrossRef]
- Binning, R.C., Jr.; Curtiss, L.A. Compact contracted basis-sets for 3rd-row atoms—GA-KR. J. Comp. Chem. 1990, 11, 1206–1216. [Google Scholar] [CrossRef]
- Blaudeau, J.-P.; McGrath, M.P.; Curtiss, L.A.; Radom, L. Extension of Gaussian-2 (G2) theory to molecules containing third-row atoms K and Ca. J. Chem. Phys. 1997, 107, 5016–5021. [Google Scholar] [CrossRef]
- Rassolov, V.A.; Pople, J.A.; Ratner, M.A.; Windus, T.L. 6-31G* basis set for atoms K through Zn. J. Chem. Phys. 1998, 109, 1223–1229. [Google Scholar] [CrossRef]
- Rassolov, V.A.; Ratner, M.A.; Pople, J.A.; Redfern, P.C.; Curtiss, L.A. 6-31G* Basis Set for Third-Row Atoms. J. Comp. Chem. 2001, 22, 976–984. [Google Scholar] [CrossRef]
Structure | O5 (Ring 1)⋯H-O6′ (Ring 2) | O5 (Ring 2)⋯H-O6′ (Ring 3) | O5 (Ring 3)⋯H-O6′ (Ring 4) | O6 (Ring 3)⋯H-O6′ (Ring 4) |
---|---|---|---|---|
4Glc1 | 158.39, 2.06 | 159.73, 2.10 | 161.46, 2.09 | - |
4Glc2 | 158.21, 2.05 | 159.93, 2.10 | 161.29, 2.10 | - |
4Glc3 | 158.95, 2.06 | 160.10, 2.10 | - | - |
4Glc4 | 163.07, 2.08 | - | - | 164.08, 1.89 |
4Glc5 | 163.60, 2.11 | - | - | 163.98, 1.89 |
4Glc6 | - | 162.69, 2.09 | 161.40, 2.09 | - |
4Glc7 | 159.34, 1.94 | 160.02, 2.12 | 161.23, 2.09 | - |
4Glc8 | - | - | - | 158.83, 1.98 |
4Glc9 | 160.63, 1.95 | - | - | 165.88, 1.89 |
4Glc10 | 157.96, 1.95 | - | 154.90, 1.84 | 158.17, 1.95 |
Structure | O6 (Ring 1)⋯HOCH2 (Ring 2) | O6 (Ring 2)⋯H-O6′ (Ring 3) | O5 (Ring 3)⋯HOCH2 (Ring 4) | O6 (Ring 3)⋯HOCH2 (Ring 4) |
---|---|---|---|---|
4Glc11 | 156.42, 2.00 | 168.22, 1.99 | 159.78, 2.08 | - |
4Glc12 | 156.48, 2.00 | 168.32, 1.99 | 159.69, 2.09 | |
4Glc13 | 161.70, 1.95 | 167.75, 1.96 | - | - |
4Glc14 | 167.11, 1.87 | 173.30, 1.85 | - | 162.54, 1.84 |
4Glc15 | - | 158.29, 1.97 | 162.81, 1.96 | - |
4Glc16 | 162.60, 1.92 | 158.74, 1.89 | 164.22, 1.95 | - |
4Glc17 | 168.32, 1.86 | - | - | 167.68, 1.88 |
4Glc18 | 164.86, 1.86 | - | - | 161.44, 1.94 |
Structure | O3 (Ring 1)⋯H-O6′ (Ring 1) | O4 (Ring 1)⋯H-O6′ (Ring 2) | O4 (Ring 1)⋯H-O6′ (Ring 4) | O6 (Ring 1)⋯H-O6′ (Ring 2) | O6 (Ring 1)⋯H-O6′ (Ring 4) | O6 (Ring 2)⋯H-O6′ (Ring 3) | O6 (Ring 2)⋯H-O6′ (Ring 4) | O6 (Ring 3)⋯H-O6′ (Ring 4) |
---|---|---|---|---|---|---|---|---|
EQ21 | - | 167.38, 1.82 | - | - | - | - | 164.81, 1.84 | |
EQ145 | 153.45, 1.91 | - | - | - | - | 150.32, 1.93 | 150.43, 1.90 | - |
EQ52 | - | - | 161.65, 1.92 | 154.06, 1.78 | - | - | 162.14, 1.86 | |
EQ54 | - | - | 161.64, 1.92 | 154.06, 1.78 | - | - | 162.13, 1.86 | |
EQ141 | 165.17, 1.84 | 175.28, 1.88 | - | - | - | 155.49, 1.93 | - | 164.93, 1.78 |
EQ67 | - | - | 156.21, 1.80 | 170.57, 1.77 | 166.54, 1.80 | - | 154.00, 1.82 | |
EQ9 | - | 166.67, 1.84 | - | - | - | - | 163.91, 1.87 | |
EQ112 | - | - | - | - | 150.48, 1.93 | 152.49, 1.88 | - | |
EQ32 | - | - | - | - | 151.75, 1.92 | 155.48, 1.86 | - | |
EQ134 | - | 168.25, 1.82 | - | - | 164.33, 2.00 | - | 156.73, 1.82 |
Part | Wavenumber (Structure Name) | Band Assignment (Primary Vibration) 1 |
---|---|---|
II | 3092 (4Glc14) | υ (4, -CH) |
3046 (4Glc17) | υ (2, -CH) | |
I | 1527 (EQ9) | β (3, 4, -OH), β (1, 2, 3, 4, -CH2-OH) |
1462 (4Glc1) | β (2, -OH), β (2, 3, -CH), ρ (2, 3, 4) | |
1417 (4Glc8) | υ (2, -C-O-C-), β (1, 2, 3, 4, -CH), β (4, -OH), ρ (3, 4) | |
1371 (4Glc1) | β (2, 3, 4, -CH), β (4, -OH), ρ (2, 3, 4) | |
1304 (4Glc1) | β (1, -CH), β (1, -OH), β (1, -CH2-OH), ρ (1) | |
1290 (4Glc13) | β (3, 4, -CH2-OH), β (3, 4, -CH), β (4, -OH) | |
1280 (4Glc5) | β (1, -CH2-OH), β (1, 2, 3, 4, -CH), β (1, 2, 3, 4 -OH) | |
1154 (4Glc10) | υ (1, -CH-OH), υ (1, -C-O-C-), β (2, -CH2-OH), β (1, 2, 4, -CH), β (1, 2, -OH) | |
1123 (4Glc1) | υ (1, 2, 3, 4, -CH-OH), β (1, 2, 3, 4, -CH), β (1, 2, 3, 4 -OH), ρ (1, 2, 3, 4) | |
968 (4Glc1) | β (1, 2, 3, 4, -CH2-OH), β (1, 2, 3, 4, -CH), β (1, 2, 3, 4, -OH), ρ (1, 2, 3, 4) | |
926 (4Glc8) | β (1, 2, 3, 4, -CH2-OH), β (1, 2, 3, 4, -CH), β (1, 2, 3, 4, -OH), ρ (1, 2, 3, 4) | |
887 (4Glc1) | β (1, -CH2-OH), β (1, -CH), ρ (1) | |
854 (4Glc1) | β (3, 4, -CH2-OH), β (3, 4, -CH), ρ (3, 4) | |
529 (EQ145) | β (2, 3, 4, -CH2-OH), β (1, 3, -OH), ρ (1, 2, 3) | |
490 (4Glc1) | β (1, 2, 3, -CH2-OH), β (2, 3, -CH), ρ (1, 2, 3, 4) |
Part | Wavenumber (Structure Name) | Band Assignment (Primary Vibration) 1 |
---|---|---|
II | 3046 (6Glc2) | υ (1, 3, 4, -CH), υ (1, 2, 3, -CH2-OH) |
I | 1371 (6Glc1) | υ (2, -CH2-OH), β (2, 3, 4, -CH), β (2, 3, 4 -OH), ρ (2, 3, 4) |
1353 (6Glc2) | υ (1, 4, 5, -CH2-OH), β (1, 2, 4, 5, 6, -CH), β (1, 4, 5, 6, -OH), ρ (1, 2, 3, 4) | |
1154 (6Glc2) | υ (1, 2, 3, 4, 5, 6, -CH2-OH), β (1, 2, 3, 4, 5, 6, -CH2-OH), β (1, 2, 3, 4, 5, 6, -CH), β (1, 2, 3, 4, 5, 6, -OH), ρ (1, 2, 3, 4, 5, 6) | |
977 (6Glc2) | υ (2, 3, 4, 5, 6, -CH2-OH), β (1, 2, 3, 4, 5, 6, -CH), β (1, 2, 3, 4, 5, 6, -OH), ρ (1, 2, 3, 4, 5, 6) | |
851 (6Glc1) | β (2, 3, 4, 5, 6, -CH2-OH), β (2, 3, 4, 6, -CH), ρ (2, 3, 4, 6) | |
489 (6Glc1) | β (2, 3, 4, 5, 6, -CH2-OH), ρ (1, 2, 3, 4, 5, 6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Kishimoto, N. Quantum Chemical Investigation into the Structural Analysis and Calculated Raman Spectra of Amylose Modeled with Linked Glucose Molecules. Molecules 2024, 29, 2842. https://doi.org/10.3390/molecules29122842
Zhang D, Kishimoto N. Quantum Chemical Investigation into the Structural Analysis and Calculated Raman Spectra of Amylose Modeled with Linked Glucose Molecules. Molecules. 2024; 29(12):2842. https://doi.org/10.3390/molecules29122842
Chicago/Turabian StyleZhang, Dapeng, and Naoki Kishimoto. 2024. "Quantum Chemical Investigation into the Structural Analysis and Calculated Raman Spectra of Amylose Modeled with Linked Glucose Molecules" Molecules 29, no. 12: 2842. https://doi.org/10.3390/molecules29122842
APA StyleZhang, D., & Kishimoto, N. (2024). Quantum Chemical Investigation into the Structural Analysis and Calculated Raman Spectra of Amylose Modeled with Linked Glucose Molecules. Molecules, 29(12), 2842. https://doi.org/10.3390/molecules29122842