Thermal Surface Properties, London Dispersive and Polar Surface Energy of Graphene and Carbon Materials Using Inverse Gas Chromatography at Infinite Dilution
Abstract
:1. Introduction
2. Results
2.1. London Dispersive Surface Energy of Solid Materials
2.2. Lewis Acid-Base Properties of Solid Materials
2.3. Polar Acid-Base Surface Energies of Graphenes and Carbon Fibers
2.4. Determination of the Average Separation Distance H
3. Materials, Experiments, and Methods
3.1. Materials and Solvents
3.2. Experiments
3.3. Methods and Models
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balandin, A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Katsnelson, M.I.Y.; Grigorieva, I.V.; Dubonos, S.V.; Firsov, A.A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.B.; Tan, Y.W.; Stormer, H.L.; Kim, P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 2005, 438, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef]
- Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E.P.; Nika, D.L.; Balandin, A.A.; Lau, C.N. Extremely high thermal conductivity in graphene: Prospects for thermal management application in nanoelectronic circuits. Appl. Phys. Lett. 2008, 92, 151911. [Google Scholar] [CrossRef]
- Calizo, I.; Balandin, A.A.; Bao, W.; Miao, F.; Lau, C.N. Temperature dependence of the Raman spectra of graphene and graphene multilayers. Nano Lett. 2007, 7, 2645–2649. [Google Scholar] [CrossRef]
- Ghosh, S.; Subrina, S.; Goyal, V.K.; Nika, D.L.; Pokatilov, E.P.; Narayanan, J.R.; Balandin, A.A. Thermal properties of polycrystalline graphene films and reduced graphene-oxide films. MRS Proc. 2010, 6, 198. [Google Scholar]
- Kole, M.; Dey, T.K. Investigation of thermal conductivity, viscosity, and electrical conductivity of graphene based nanofluids. J. Appl. Phys. 2013, 113, 084307. [Google Scholar] [CrossRef]
- Kumar, P.V.; Bardhan, N.M.; Tongay, S.; Wu, J.; Belcher, A.M.; Grossman, J.C. Scalable enhancement of graphene oxide properties by thermally driven phase transformation. Nat. Chem. 2014, 6, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Ko, J.M.; Kim, J.-D. Hydrothermal preparation of nitrogen-doped graphene sheets via hexamethylenetetramine for application as supercapacitor electrodes. Electrochim. Acta 2012, 85, 459–466. [Google Scholar] [CrossRef]
- Novoselov, K.; Fal′ko, V.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A roadmap for graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Paz, I.L.; Godignon, P.; Moffat, N.; Pellegrini, G.; Rafí, J.M.; Rius, G. Position-resolved charge collection of silicon carbide detectors with an epitaxially-grown graphene layer. Sci. Rep. 2024, 14, 10376. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Wang, G.; Wu, C. Progress in Surface Properties and the Surface Testing of Graphene. J. Adv. Phys. Chem. 2016, 5, 48–57. [Google Scholar] [CrossRef]
- Amanda, S.B.; Ian, K.S. Thermal stability of graphene edge structure and graphene nanoflakes. J. Chem. Phys. 2008, 128, 094707. [Google Scholar]
- Xiong, Z.; Yu, P.; Liang, Q.; Li, D. Rapid microwave reduction of electrochemically-derived graphene oxide for high-crystalline graphene membranes. Sci. China Mater. 2023, 66, 4733–4741. [Google Scholar] [CrossRef]
- Liu, J.; Li, Q.; Xu, S. Reinforcing mechanism of graphene and graphene oxide sheets on cement-based materials. J. Mater. Civ. Eng. 2019, 31, 04019014. [Google Scholar] [CrossRef]
- Kumuda, S.; Gandhi, U.; Mangalanathan, U.; Rajanna, K. Synthesis and characterization of graphene oxide and reduced graphene oxide chemically reduced at different time duration. J. Mater. Sci. Mater. Electron. 2024, 35, 637. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Y.; Abidi, N.; Cabrales, L. Wettability and Surface Free Energy of Graphene Films. Langmuir 2009, 25, 11078–11081. [Google Scholar] [CrossRef]
- Dai, J.; Wang, G.; Wu, C. Investigation of the Surface Properties of Graphene Oxide and Graphene by Inverse Gas Chromatography. Chromatographia 2014, 77, 299–307. [Google Scholar] [CrossRef]
- Hamieh, T. Study of the temperature effect on the surface area of model organic molecules, the dispersive surface energy and the surface properties of solids by inverse gas chromatography. J. Chromatogr. A 2020, 1627, 461372. [Google Scholar] [CrossRef] [PubMed]
- Hamieh, T.; Ahmad, A.A.; Roques-Carmes, T.; Toufaily, J. New approach to determine the surface and interface thermodynamic properties of H-β-zeolite/rhodium catalysts by inverse gas chromatography at infinite dilution. Sci. Rep. 2020, 10, 20894. [Google Scholar] [CrossRef] [PubMed]
- Hamieh, T. New methodology to study the dispersive component of the surface energy and acid–base properties of silica particles by inverse gas chromatography at infinite dilution. J. Chromatogr. Sci. 2022, 60, 126–142. [Google Scholar] [CrossRef] [PubMed]
- Hamieh, T. Some Irregularities in the Evaluation of Surface Parameters of Solid Materials by Inverse Gas Chromatography. Langmuir 2023, 39, 17059–17070. [Google Scholar] [CrossRef] [PubMed]
- Hamieh, T. Inverse Gas Chromatography to Characterize the Surface Properties of Solid Materials. Chem. Mater. 2024, 36, 2231–2244. [Google Scholar] [CrossRef]
- Lee, S.-Y.; Lee, J.-H.; Kim, Y.-H.; Mahajan, R.L.; Park, S.-J. Surface energetics of graphene oxide and reduced graphene oxide determined by inverse gas chromatographic technique at infinite dilution at room temperature. J. Colloid Interface Sci. 2022, 628, 758–768. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, S.K.; Panayiotou, C. Assessment of the thermodynamic properties of poly(2,2,2-trifluoroethyl methacrylate) by inverse gas chromatography. J. Chromatogr. A 2014, 1324, 207–214. [Google Scholar] [CrossRef] [PubMed]
- Voelkel, A.; Strzemiecka, B.; Adamska, K.; Milczewska, K. Inverse gas chromatography as a source of physiochemical data. J. Chromatogr. A 2009, 1216, 1551. [Google Scholar] [CrossRef]
- Al-Saigh, Z.Y.; Munk, P. Study of polymer-polymer interaction coefficients in polymer blends using inverse gas chromatography. Macromolecules 1984, 17, 803. [Google Scholar] [CrossRef]
- Dritsas, G.S.; Karatasos, K.; Panayiotou, C. Investigation of thermodynamic properties of hyperbranched aliphatic polyesters by inverse gas chromatography. J. Chromatogr. A 2009, 1216, 8979. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, S.K.; Panayiotou, C. Thermodynamic characterization of poly(1,1,1,3,3,3-hexafluoroisopropyl methacrylate) by inverse gas chromatography. J. Chromatogr. A 2012, 1229, 230. [Google Scholar] [CrossRef]
- Coimbra, P.; Coelho, M.S.N.; Gamelas, J.A.F. Surface characterization of polysaccharide scaffolds by inverse gas chromatography regarding application in tissue engineering. Surf. Interface Anal. 2019, 51, 1070–1077. [Google Scholar] [CrossRef]
- Kołodziejek, J.; Voelkel, A.; Heberger, K. Characterization of hybrid materials by means of inverse gas chromatography and chemometrics. J. Pharm. Sci. 2013, 102, 1524. [Google Scholar] [CrossRef]
- Belgacem, M.N.; Czeremuszkin, G.; Sapieha, S.; Gandini, A. Surface by XPS characterization and inverse gas of cellulose fibres chromatography. Cellulose 1995, 2, 145–157. [Google Scholar] [CrossRef]
- Ryan, H.M.; Douglas, J.G.; Rupert, W. Inverse Gas Chromatography for Determining the Dispersive Surface Free Energy and Acid–Base Interactions of Sheet Molding Compound-Part II 14 Ligno-Cellulosic Fiber Types for Possible Composite Reinforcement. J. Appl. Polym. Sci. 2008, 110, 3880–3888. [Google Scholar]
- Jacob, P.N.; Berg, J.C. Acid-base surface energy characterization of microcrystalline cellulose and two wood pulp fiber types using inverse gas chromatography. Langmuir 1994, 10, 3086–3093. [Google Scholar] [CrossRef]
- Carvalho, M.G.; Santos, J.M.R.C.A.; Martins, A.A.; Figueiredo, M.M. The Effects of Beating, Web Forming and Sizing on the Surface Energy of Eucalyptus globulus Kraft Fibres Evaluated by Inverse Gas Chromatography. Cellulose 2005, 12, 371–383. [Google Scholar] [CrossRef]
- Chtourou, H.; Riedl, B.; Kokta, B.V. Surface characterizations of modified polyethylene pulp and wood pulps fibers using XPS and inverse gas chromatography. J. Adhesion Sci. Tech. 1995, 9, 551–574. [Google Scholar] [CrossRef]
- Donnet, J.B.; Park, S.J.; Balard, H. Evaluation of specific interactions of solid surfaces by inverse gas chromatography. Chromatographia 1991, 31, 434–440. [Google Scholar] [CrossRef]
- Donnet, J.B.; Custodéro, E.; Wang, T.K.; Hennebert, G. Energy site distribution of carbon black surfaces by inverse gas chromatography at finite concentration conditions. Carbon 2002, 40, 163–167. [Google Scholar] [CrossRef]
- Gamble, J.F.; Davé, R.N.; Kiang, S.; Leane, M.M.; Tobyn, M.; Wang, S.S.Y. Investigating the applicability of inverse gas chromatography to binary powdered systems: An application of surface heterogeneity profiles to understanding preferential probe-surface interactions. Int. J. Pharm. 2013, 445, 39–46. [Google Scholar] [CrossRef]
- Balard, H.; Maafa, D.; Santini, A.; Donnet, J.B. Study by inverse gas chromatography of the surface properties of milled graphites. J. Chromatogr. A 2008, 1198–1199, 173–180. [Google Scholar] [CrossRef]
- Bogillo, V.I.; Shkilev, V.P.; Voelkel, A. Determination of surface free energy components for heterogeneous solids by means of inverse gas chromatography at finite concentrations. J. Mater. Chem. 1998, 8, 1953–1961. [Google Scholar] [CrossRef]
- Das, S.C.; Zhou, Q.; Morton, D.A.V.; Larson, I.; Stewart, P.J. Use of surface energy distributions by inverse gas chromatography to understand mechanofusion processing and functionality of lactose coated with magnesium stearate. Eur. J. Pharm. Sci. 2011, 43, 325–333. [Google Scholar] [CrossRef]
- Das, S.C.; Stewart, P.J. Characterising surface energy of pharmaceutical powders by inverse gas chromatography at finite dilution. J. Pharm. Pharmacol. 2012, 64, 1337–1348. [Google Scholar] [CrossRef]
- Bai, W.; Pakdel, E.; Li, Q.; Wang, J.; Tang, W.; Tang, B.; Wang, X. Inverse gas chromatography (IGC) for studying the cellulosic materials surface characteristics: A mini review. Cellulose 2023, 30, 3379–3396. [Google Scholar] [CrossRef]
- Dong, S.; Brendlé, M.; Donnet, J.B. Study of solid surface polarity by inverse gas chromatography at infinite dilution. Chromatographia 1989, 28, 469–472. [Google Scholar] [CrossRef]
- Gamble, J.F.; Leane, M.; Olusanmi, D.; Tobyn, M.; Supuk, E.; Khoo, J.; Naderi, M. Surface energy analysis as a tool to probe the surface energy characteristics of micronized materials—A comparison with inverse gas chromatography. Int. J. Pharm. 2012, 422, 238–244. [Google Scholar] [CrossRef]
- Newell, H.E.; Buckton, G.; Butler, D.A.; Thielmann, F.; Williams, D.R. The use of inverse gas chromatography to measure the surface energy of crystalline, amorphous, and recently milled lactose. Pharm. Res. 2001, 18, 662–666. [Google Scholar] [CrossRef]
- Newell, H.E.; Buckton, G. Inverse gas chromatography: Investigating whether the technique preferentially probes high energy sites for mixtures of crystalline and amorphous lactose. Pharm. Res. 2004, 21, 1440–1444. [Google Scholar] [CrossRef] [PubMed]
- Kołodziejek, J.; Głowka, E.; Hyla, K.; Voelkel, A.; Lulek, J.; Milczewska, K. Relationship between surface properties determined by inverse gas chromatography and ibuprofen release from hybrid materials based on fumed silica. Int. J. Pharm. 2013, 441, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Ho, R.; Hinder, S.J.; Watts, J.F.; Dilworth, S.E.; Williams, D.R.; Heng, J.Y.Y. Determination of surface heterogeneity of D-mannitol by sessile drop contact angle and finite concentration inverse gas chromatography. Int. J. Pharm. 2010, 387, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Sesigur, F.; Sakar, D.; Yazici, O.; Cakar, F.; Cankurtaran, O.; Karaman, F. Dispersive Surface Energy and Acid-Base Parameters of Tosylate Functionalized Poly(ethylene glycol) via Inverse Gas Chromatography. J. Chem. 2014, 2014, 402325. [Google Scholar] [CrossRef]
- Calvet, R.; Del Confetto, S.; Balard, H.; Brendlé, E.; Donnet, J.B. Study of the interaction polybutadiene/fillers using inverse gas chromatography. J. Chromatogr. A 2012, 1253, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, S.K.; Dritsas, G.; Karapanagiotis, I.; Zuburtikudis, I.; Panayiotou, C. Surface characterization of poly(2,2,3,3,3-pentafluoropropyl methacrylate) by inverse gas chromatography and contact angle measurements. Eur. Polym. J. 2010, 46, 202–208. [Google Scholar]
- Dritsas, G.S.; Karatasos, K.; Panayiotou, C. Investigation of thermodynamic properties of hyperbranched poly(ester amide) by inverse gas chromatography. J. Polym. Sci. Polym. Phys. 2008, 46, 2166–2172. [Google Scholar] [CrossRef]
- Hamieh, T.; Schultz, J. New approach to characterise physicochemical properties of solid substrates by inverse gas chromatography at infinite dilution. I. II. And III. J. Chromatogr. A 2002, 969, 17–47. [Google Scholar] [CrossRef]
- Hamieh, T. Temperature Dependence of the Polar and Lewis Acid–Base Properties of Poly Methyl Methacrylate Adsorbed on Silica via Inverse Gas Chromatography. Molecules 2024, 29, 1688. [Google Scholar] [CrossRef]
- Papirer, E.; Brendlé, E.; Ozil, F.; Balard, H. Comparison of the surface properties of graphite, carbon black and fullerene samples, measured by inverse gas chromatography. Carbon 1999, 37, 1265–1274. [Google Scholar] [CrossRef]
- Chung, D.L. Carbon Fiber Composites; Butterworth-Heinemann: Boston, MA, USA, 1994; pp. 3–65. ISBN 978-0-08-050073-7. [Google Scholar] [CrossRef]
- Donnet, J.B.; Bansal, R.C. Carbon Fibers, 2nd ed.; Marcel Dekker: New York, NY, USA, 1990; 584p. [Google Scholar] [CrossRef]
- Liu, Y.; Gu, Y.; Wang, S.; Li, M. Optimization for testing conditions of inverse gas chromatography and surface energies of various carbon fiber bundles. Carbon Lett. 2023, 33, 909–920. [Google Scholar] [CrossRef]
- Pal, A.; Kondor, A.; Mitra, S.; Thua, K.; Harish, S.; Saha, B.B. On surface energy and acid–base properties of highly porous parent and surface treated activated carbons using inverse gas chromatography. J. Ind. Eng. Chem. 2019, 69, 432–443. [Google Scholar] [CrossRef]
- Sawyer, D.T.; Brookman, D.J. Thermodynamically based gas chromatographic retention index for organic molecules using salt-modified aluminas and porous silica beads. Anal. Chem. 1968, 40, 1847–1850. [Google Scholar] [CrossRef]
- Saint-Flour, C.; Papirer, E. Gas-solid chromatography. A method of measuring surface free energy characteristics of short carbon fibers. 1. Through adsorption isotherms. Ind. Eng. Chem. Prod. Res. Dev. 1982, 21, 337–341. [Google Scholar] [CrossRef]
- Saint-Flour, C.; Papirer, E. Gas-solid chromatography: Method of measuring surface free energy characteristics of short fibers. 2. Through retention volumes measured near zero surface coverage. Ind. Eng. Chem. Prod. Res. Dev. 1982, 21, 666–669. [Google Scholar] [CrossRef]
- Basivi, P.K.; Hamieh, T.; Kakani, V.; Pasupuleti, V.R.; Sasikala, G.; Heo, S.M.; Pasupuleti, K.S.; Kim, M.-D.; Munagapati, V.S.; Kumar, N.S.; et al. Exploring advanced materials: Harnessing the synergy of inverse gas chromatography and artificial vision intelligence. TrAC Trends Anal. Chem. 2024, 173, 117655. [Google Scholar] [CrossRef]
- Brendlé, E.; Papirer, E. A new topological index for molecular probes used in inverse gas chromatography for the surface nanorugosity evaluation, 2. Application for the Evaluation of the Solid Surface Specific Interaction Potential. J. Colloid Interface Sci. 1997, 194, 217–224. [Google Scholar] [CrossRef]
- Brendlé, E.; Papirer, E. A new topological index for molecular probes used in inverse gas chromatography for the surface nanorugosity evaluation, 1. Method of Evaluation. J. Colloid Interface Sci. 1997, 194, 207–216. [Google Scholar] [CrossRef]
- Hamieh, T. The Effect of Temperature on the Surface Energetic Properties of Carbon Fibers Using Inverse Gas Chromatography. Crystals 2024, 14, 28. [Google Scholar] [CrossRef]
- Hamieh, T. New Progress on London Dispersive Energy, Polar Surface Interactions, and Lewis’s Acid–Base Properties of Solid Surfaces. Molecules 2024, 29, 949. [Google Scholar] [CrossRef]
- Hamieh, T. London Dispersive and Lewis Acid-Base Surface Energy of 2D Single-Crystalline and Polycrystalline Covalent Organic Frameworks. Crystals 2024, 14, 148. [Google Scholar] [CrossRef]
- Dai, J.; Wang, G.; Ma, L.; Wu, C. Study on the surface energies and dispersibility of graphene oxide and its derivatives. J. Mater. Sci. 2015, 50, 3895–3907. [Google Scholar] [CrossRef]
- Fu, B. Surface Energy of Diamond Cubic Crystals and Anisotropy Analysis Revealed by Empirical Electron Surface Models. Adv. Mater. 2019, 8, 61–69. [Google Scholar] [CrossRef]
- Frank, J.Z.; Hermenzo, D.J. Surface energy and the size of diamond crystals. AIP Conf. Proc. 1996, 370, 163–166. [Google Scholar] [CrossRef]
- Zhang, J.-M.; Li, H.-Y.; Xu, K.-W.; Ji, V. Calculation of surface energy and simulation of reconstruction for diamond cubic crystals (001) surface. Appl. Surf. Sci. 2008, 254, 4128–4133. [Google Scholar] [CrossRef]
- Jang, D.; Lee, S. Correlating thermal conductivity of carbon fibers with mechanical and structural properties. J. Ind. Eng. Chem. 2020, 89, 115–118. [Google Scholar] [CrossRef]
- Kim, S.K.; Bae, H.S.; Yu, J.; Kim, S.Y. Thermal conductivity of polymer composites with the geometrical characteristics of graphene nanoplatelets. Sci. Rep. 2016, 6, 26825. [Google Scholar] [CrossRef]
- Mahdavi, M.; Yousefi, E.; Baniassadi, M.; Karimpour, M.; Baghani, M. Effective thermal and mechanical properties of short carbon fiber/natural rubber composites as a function of mechanical loading. Appl. Therm. Eng. 2017, 117, 8–16. [Google Scholar] [CrossRef]
- Hadadian, M.; Goharshadi, E.K.; Youssefi, A. Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids. J. Nanopart. Res. 2014, 16, 2788. [Google Scholar] [CrossRef]
- Hofmeister, A.M. Thermal diffusivity and thermal conductivity of single-crystal MgO and Al2O3 and related compounds as a function of temperature. Phys. Chem. Miner. 2014, 41, 361–371. [Google Scholar] [CrossRef]
- Wu, X.; Lee, J.; Varshney, V.; Wohlwend, J.L.; Roy, A.K.; Luo, T. Thermal Conductivity of Wurtzite Zinc-Oxide from First-Principles Lattice Dynamics—A Comparative Study with Gallium Nitride. Sci. Rep. 2016, 6, 22504. [Google Scholar] [CrossRef] [PubMed]
- Van Oss, C.J.; Good, R.J.; Chaudhury, M.K. Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir 1988, 4, 884. [Google Scholar] [CrossRef]
- Fowkes, F.M. Surface and Interfacial Aspects of Biomedical Polymers; Andrade, J.D., Ed.; Plenum Press: New York, NY, USA, 1985; Volume I, pp. 337–372. [Google Scholar]
- Gutmann, V. The Donor-Acceptor Approach to Molecular Interactions; Plenum: New York, NY, USA, 1978. [Google Scholar]
- Riddle, F.L.; Fowkes, F.M. Spectral shifts in acid-base chemistry. Van der Waals contributions to acceptor numbers, Spectral shifts in acid-base chemistry. 1. van der Waals contributions to acceptor numbers. J. Am. Chem. Soc. 1990, 112, 3259–3264. [Google Scholar] [CrossRef]
Solid Material | (mJ/m2) | (mJ m−2 K−1) | (mJ/m2) | (K) |
---|---|---|---|---|
Graphene | = −1.736T + 822.22 | −1.736 | 822.22 | 473.5 |
Graphene oxide | = −0.832T + 377.98 | −0.832 | 377.98 | 454.6 |
Reduced graphene oxide | = −0.424T + 284.29 | −0.424 | 284.29 | 670.5 |
Untreated carbon fibers | = −0.295T + 148.22 | −0.295 | 148.22 | 502.8 |
Oxidized carbon fibers | = −0.409T + 183.60 | −0.409 | 183.60 | 449.4 |
Solid Material | (mJ/m2) Lee et al. [27] | (mJ/m2) Dai et al. [21] | (mJ/m2) Dai et al. [74] | (mJ/m2) This Work |
---|---|---|---|---|
Graphene oxide | 110 | 28.5 | 78.9 | 118.2 |
Reduced graphene oxide | 125 | 98.3 | 106.8 | 151.0 |
Material | |
---|---|
MgO | = 0.2124 + 31.47 |
Graphene | = 14.398 + 1002 |
Graphite | = 13.613 + 856.09 |
Carbon fibers | = 2.646 + 39.83 |
Alumina | = −0.0012 2 + 0.281 + 21.123 |
ZnO | = 0.004 2 − 0.142 + 28.794 |
Material | KD | KA | KD/KA | R2 | 10−3ωA | 10−3ωD | ωD/ωA | R2 |
---|---|---|---|---|---|---|---|---|
Graphene | 0.253 | 0.593 | 0.426 | 0.9906 | −1.346 | 1.187 | −1.134 | 0.9563 |
Graphene oxide | −0.551 | 0.223 | −2.471 | 0.9833 | −3.305 | 0.416 | −7.951 | 0.9412 |
Reduced graphene oxide | −0.721 | 0.601 | −1.200 | 0.9608 | −1.800 | 1.232 | −1.461 | 0.9421 |
Untreated carbon fibers | 0.345 | 0.235 | 1.468 | 0.8465 | 0.927 | 0.348 | 2.663 | 0.7631 |
Oxidized carbon fibers | −0.010 | 0.381 | −0.025 | 0.9120 | −0.613 | 0.630 | −0.973 | 0.9002 |
Material | KD | KA | KD/KA | |
---|---|---|---|---|
Graphene (G) | 0.278 | 0.594 | 5.7 × 10−4 | 0.468 |
Graphene oxide (GO) | 0.227 | 0.069 | −7.9 × 10−3 | 3.306 |
Reduced graphene oxide (rGO) | 0.217 | 0.631 | 2.1 × 10−2 | 0.344 |
Untreated carbon fibers (UCFs) | 1.587 | 0.325 | 4.4 × 10−2 | 4.883 |
Oxidized carbon fibers (OCFs) | 1.190 | 0.468 | 4.2 × 10−2 | 2.543 |
Dichloromethane | |||||
---|---|---|---|---|---|
T (K) | G | GO | rGO | UCF | OCF |
313.15 | 12.938 | 2.309 | 10.175 | 4.130 | 10.526 |
323.15 | 12.993 | 2.749 | 10.148 | 3.872 | 10.235 |
333.15 | 13.048 | 3.192 | 10.123 | 3.614 | 9.944 |
343.15 | 13.102 | 3.639 | 10.095 | 3.356 | 9.653 |
353.15 | 13.157 | 4.082 | 10.068 | 3.098 | 9.362 |
363.15 | 13.211 | 4.523 | 10.042 | 2.840 | 9.071 |
373.15 | 13.265 | 4.964 | 10.013 | 2.582 | 8.780 |
Ethyl Acetate | |||||
T (K) | G | GO | rGO | UCF | OCF |
313.15 | 22.191 | 11.657 | 21.696 | 9.471 | 13.204 |
323.15 | 21.658 | 11.603 | 20.849 | 9.381 | 12.962 |
333.15 | 21.125 | 11.552 | 20.000 | 9.291 | 12.720 |
343.15 | 20.591 | 11.504 | 19.151 | 9.201 | 12.478 |
353.15 | 20.057 | 11.452 | 18.302 | 9.111 | 12.236 |
363.15 | 19.524 | 11.400 | 17.453 | 9.021 | 11.994 |
373.15 | 18.990 | 11.347 | 16.604 | 8.931 | 11.752 |
(kJ/mol) | Graphene | ||||||
---|---|---|---|---|---|---|---|
Solvents | 313.15 K | 323.15 K | 333.15 K | 343.15 K | 353.15 K | 363.15 K | 373.15 K |
n-hexane | 9.560 | 7.950 | 6.340 | 4.730 | 3.120 | 1.510 | −0.100 |
n-heptane | 17.765 | 15.850 | 13.935 | 12.020 | 10.105 | 8.190 | 6.275 |
n-octane | 22.360 | 20.350 | 18.340 | 16.330 | 14.320 | 12.310 | 10.300 |
n-nonane | 29.361 | 27.116 | 24.871 | 22.626 | 20.381 | 18.136 | 15.891 |
CH2Cl2 | 6.948 | 5.905 | 4.862 | 3.819 | 2.776 | 1.733 | 0.690 |
Diethyl ether | 13.313 | 12.025 | 10.737 | 9.449 | 8.161 | 6.873 | 5.585 |
THF | 17.305 | 15.025 | 12.745 | 10.465 | 8.185 | 5.905 | 3.625 |
Ethyl acetate | 20.285 | 18.000 | 15.715 | 13.430 | 11.145 | 8.860 | 6.575 |
Acetone | 11.920 | 10.375 | 8.830 | 7.285 | 5.740 | 4.195 | 2.650 |
Acetonitrile | 10.070 | 8.425 | 6.780 | 5.135 | 3.490 | 1.845 | 0.200 |
(kJ/mol) | Graphene oxide | ||||||
Solvents | 313.15 K | 323.15 K | 333.15 K | 343.15 K | 353.15 K | 363.15 K | 373.15 K |
n-hexane | 10.250 | 8.500 | 6.750 | 5.000 | 3.250 | 1.500 | −0.250 |
n-heptane | 13.284 | 11.734 | 10.184 | 8.634 | 7.084 | 5.534 | 3.984 |
n-octane | 18.550 | 16.500 | 14.450 | 12.400 | 10.350 | 8.300 | 6.250 |
n-nonane | 22.329 | 20.245 | 18.162 | 16.079 | 13.996 | 11.913 | 9.829 |
CH2Cl2 | 3.750 | 2.855 | 1.960 | 1.065 | 0.170 | −0.725 | −1.620 |
Diethyl ether | 5.682 | 4.748 | 3.814 | 2.880 | 1.946 | 1.012 | 0.078 |
THF | 10.085 | 8.534 | 6.983 | 5.432 | 3.881 | 2.330 | 0.779 |
Ethyl acetate | 11.914 | 10.281 | 8.648 | 7.015 | 5.382 | 3.749 | 2.116 |
Acetone | 8.040 | 6.876 | 5.712 | 4.548 | 3.384 | 2.220 | 1.056 |
Acetonitrile | 5.400 | 4.587 | 3.774 | 2.961 | 2.148 | 1.335 | 0.522 |
(kJ/mol) | Reduced graphene oxide | ||||||
Solvents | 313.15 K | 323.15 K | 333.15 K | 343.15 K | 353.15 K | 363.15 K | 373.15 K |
n-hexane | 11.800 | 10.400 | 9.000 | 7.600 | 6.200 | 4.800 | 3.400 |
n-heptane | 16.800 | 15.300 | 13.800 | 12.300 | 10.800 | 9.300 | 7.800 |
n-octane | 21.200 | 19.700 | 18.200 | 16.700 | 15.200 | 13.700 | 12.200 |
n-nonane | 25.998 | 24.433 | 22.865 | 21.299 | 19.733 | 18.165 | 16.599 |
CH2Cl2 | 8.491 | 7.170 | 5.849 | 4.528 | 3.207 | 1.886 | 0.565 |
Diethyl ether | 14.820 | 13.450 | 12.080 | 10.710 | 9.340 | 7.970 | 6.600 |
THF | 22.199 | 19.905 | 17.611 | 15.317 | 13.023 | 10.729 | 8.435 |
Ethyl acetate | 21.830 | 19.525 | 17.220 | 14.915 | 12.610 | 10.305 | 8.000 |
Acetone | 18.485 | 16.375 | 14.265 | 12.155 | 10.045 | 7.935 | 5.825 |
Acetonitrile | 13.999 | 12.930 | 11.861 | 10.792 | 9.723 | 8.654 | 7.585 |
(kJ/mol) | Untreated carbon fibers | ||||||
Solvents | 313.15 K | 323.15 K | 333.15 K | 343.15 K | 353.15 K | 363.15 K | 373.15 K |
n-hexane | 0.591 | 0.388 | 0.185 | -0.018 | −0.221 | −0.424 | −0.627 |
n-heptane | 3.859 | 3.589 | 3.319 | 3.049 | 2.779 | 2.509 | 2.239 |
n-octane | 6.487 | 6.244 | 6.001 | 5.758 | 5.515 | 5.272 | 5.029 |
n-nonane | 9.917 | 9.494 | 9.101 | 8.686 | 8.285 | 7.984 | 7.734 |
CCl4 | 1.830 | 1.760 | 1.690 | 1.626 | 1.564 | 1.500 | 1.442 |
CH2Cl2 | −2.639 | −2.911 | −3.212 | −3.517 | −3.851 | −4.279 | −4.787 |
CHCl3 | 11.181 | 10.463 | 9.653 | 8.741 | 7.642 | 6.137 | 3.682 |
Diethyl ether | −1.970 | −2.305 | −2.668 | −3.019 | −3.389 | −3.848 | −4.362 |
THF | 5.562 | 5.107 | 4.651 | 4.197 | 3.743 | 3.282 | 2.820 |
Benzene | 5.709 | 5.441 | 5.183 | 4.919 | 4.659 | 4.428 | 4.213 |
Ethyl acetate | 5.326 | 5.092 | 4.860 | 4.634 | 4.412 | 4.191 | 3.982 |
Acetone | 1.539 | 1.308 | 1.065 | 0.841 | 0.616 | 0.348 | 0.071 |
(kJ/mol) | Oxidized carbon fibers | ||||||
Solvents | 313.15 K | 323.15 K | 333.15 K | 343.15 K | 353.15 K | 363.15 K | 373.15 K |
n-hexane | 1.211 | 1.143 | 1.061 | 0.979 | 0.897 | 0.815 | 0.733 |
n-heptane | 4.409 | 4.139 | 3.869 | 3.599 | 3.329 | 3.059 | 2.789 |
n-octane | 7.192 | 6.814 | 6.436 | 6.058 | 5.680 | 5.302 | 4.924 |
n-nonane | 10.445 | 10.107 | 9.769 | 9.431 | 9.093 | 8.755 | 8.417 |
CCl4 | 3.505 | 3.427 | 3.341 | 3.256 | 3.173 | 3.090 | 3.009 |
CH2Cl2 | 4.441 | 4.238 | 4.035 | 3.832 | 3.629 | 3.426 | 3.223 |
CHCl3 | 9.763 | 9.484 | 9.205 | 8.926 | 8.647 | 8.368 | 8.089 |
Diethyl ether | 3.941 | 3.738 | 3.535 | 3.332 | 3.129 | 2.926 | 2.723 |
THF | 11.359 | 10.873 | 10.379 | 9.886 | 9.394 | 8.902 | 8.411 |
Benzene | 8.182 | 7.919 | 7.652 | 7.386 | 7.120 | 6.855 | 6.590 |
Ethyl acetate | 9.662 | 9.432 | 9.202 | 8.972 | 8.742 | 8.512 | 8.282 |
Acetone | 9.379 | 9.082 | 8.785 | 8.488 | 8.191 | 7.894 | 7.597 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamieh, T. Thermal Surface Properties, London Dispersive and Polar Surface Energy of Graphene and Carbon Materials Using Inverse Gas Chromatography at Infinite Dilution. Molecules 2024, 29, 2871. https://doi.org/10.3390/molecules29122871
Hamieh T. Thermal Surface Properties, London Dispersive and Polar Surface Energy of Graphene and Carbon Materials Using Inverse Gas Chromatography at Infinite Dilution. Molecules. 2024; 29(12):2871. https://doi.org/10.3390/molecules29122871
Chicago/Turabian StyleHamieh, Tayssir. 2024. "Thermal Surface Properties, London Dispersive and Polar Surface Energy of Graphene and Carbon Materials Using Inverse Gas Chromatography at Infinite Dilution" Molecules 29, no. 12: 2871. https://doi.org/10.3390/molecules29122871
APA StyleHamieh, T. (2024). Thermal Surface Properties, London Dispersive and Polar Surface Energy of Graphene and Carbon Materials Using Inverse Gas Chromatography at Infinite Dilution. Molecules, 29(12), 2871. https://doi.org/10.3390/molecules29122871