NiO Nano- and Microparticles Prepared by Solvothermal Method—Amazing Catalysts for CO2 Methanation
Abstract
:1. Introduction
2. Experimental Section
2.1. Material
2.2. Catalyst Preparation
2.3. Instruments and Methods of Characterization
2.4. Catalytic Performance
2.4.1. Parameters of Catalysis
2.4.2. Catalytic Tests—Temperature Ramp
2.4.3. Catalysis Conditions
- (1)
- Used amount of catalysts’ samples—100 mg NiO + 150 mg SG.
- (2)
- Activation of catalyst at 300 °C, 4 bars for 2 h using pure H2 atmosphere.
- (3)
- Catalysis was conducted at 450 °C, 30 bar for 20 h; flow CO2 was adjusted to 6 mL/min and flow H2 to 24 mL/min (ratio of H2 and CO2 of 4:1), and flow He was 36 mL/min (55% of gaseous mixture).
3. Results and Discussion
3.1. Electron Microscopy of the NiO Catalysts
3.1.1. SEM/TEM before Catalysis
3.1.2. SEM/TEM after Catalysis
3.2. Surface Area and Pore Volume Characterization
3.3. X-ray Photoelectron Spectroscopy
3.4. TPR-TPD Characterization
3.5. Catalytic Reduction of CO2 on Different Morphologies of NiO-Based Catalysts
3.5.1. NiO Disc Structures
3.5.2. NiO Microsphere and Sheet-Cluster Structures
3.5.3. Comparison of Catalytic Activity of Prepared NiO Structures
4. Conclusions
- Catalysts prepared by simple solvothermal methods using inexpensive and green solvents (water, ethanol), namely NiOhx1, NiOhx2, and NiOhx+m, demonstrated excellent catalytic activity in CO2 methanation, especially due to their well-developed surface area (145 m2/g) and good resistance to blocking of the active catalyst area by deposits of atomic carbon, which is a problem of many methanation catalysts.
- NiO catalytic samples prepared using the solvothermal method in the DMF solvent (NiOms2 and NiOms3) also showed very good catalytic activity, especially NiOms3, since it has a more developed surface (110 m2/g), which may be due to the use of ultrasound in synthesis. However, the use of an expensive DMF and not green solvent and a long reaction time make the preparation of this catalyst more expensive than the preparation of the above-mentioned disc structures.
- NiOnd, NiOms1, and NiOshc are very poor catalysts due to a high drop in methane conversion and methane selectivity during the catalytic reaction (20 h). The results of XPS measurements also indicate lower resistance of these structures against deposits of atomic carbon during the reaction course. This fact is probably the main reason for the observed time instability of the catalytic efficiency of these catalysts. Therefore, the modifications of the solvothermal method used for the preparation of these catalysts are not promising for advanced studies.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Z.M.; Xie, W.; Zhang, H.Y. Error of acid rain research, effect of atmosphere CO2 ignored. Prog. Environ. Sci. Eng. 2013, 610–613, 381–384. [Google Scholar] [CrossRef]
- Mirica, M. Carbon Dioxide Pollution when Burning Solid, Liquid and Gas Fuels. Rev. Chim. 2011, 62, 947–949. [Google Scholar]
- Yang, X.H.; Jin, X.B.; Zhou, Y.K. Carbon emissions induced by farmland expansion in China during the past 300 years. Sci. China Earth Sci. 2019, 62, 423–437. [Google Scholar] [CrossRef]
- Li, H.S.B.; Ye, Y.; Li, H.X.; Ye, Q. Emergence, distribution dynamics and drivers of global high-emission countries since the Industrial Revolution. Int. J. Glob. Warm. 2023, 29, 383–394. [Google Scholar] [CrossRef]
- Ghommem, M.; Hajj, M.R.; Puri, I.K. Influence of natural and anthropogenic carbon dioxide sequestration on global warming. Ecol. Model. 2012, 235–236, 1–7. [Google Scholar] [CrossRef]
- Constantin, F.A.; Loredana, I. The Causes and Effects of Global Warming. In Proceedings of the 9th International Multidisciplinary Scientific GeoConference (Sgem 2009), Albena, Bulgaria, 14–19 June 2009; Volume I, pp. 147–154. [Google Scholar]
- Zhu, S.S.; Sun, H.; Xia, X.C.; Yang, Z.D. Decoupling Analysis of Carbon Emissions and Forest Area in China from 2004 to 2020. Land 2023, 12, 1458. [Google Scholar] [CrossRef]
- Wang, Y.P.; Galbally, I.E.; Meyer, C.P.; Smith, C.J. A comparison of two algorithms for estimating carbon dioxide emissions after forest clearing. Environ. Model. Softw. 1997, 12, 187–195. [Google Scholar] [CrossRef]
- Carvalho, J.A.; Santos, J.M.; Santos, J.C.; Leitao, M.M. A Tropical Rain-Forest Clearing Experiment by Biomass Burning in the Manaus Region. Atmos. Environ. 1995, 29, 2301–2309. [Google Scholar] [CrossRef]
- Carbon Capture and Storage Plant Becomes Operational in Iceland; UNESCO: Paris, France, 2021; Available online: https://www.unesco.org/en/articles/carbon-capture-and-storage-plant-becomes-operational-iceland (accessed on 6 April 2024).
- World’s Biggest Machine Capturing Carbon from Air Turned on in Iceland; Agence France-Presse: Paris, Frence, 2021; Available online: https://www.theguardian.com/environment/2021/sep/09/worlds-biggest-plant-to-turn-carbon-dioxide-into-rock-opens-in-iceland-orca (accessed on 26 December 2021).
- The ‘World’s Largest’ Vacuum to Suck Climate Pollution out of the Air Just Opened. Here’s How It Works; CNN: Atlanta, GA, USA, 2024.
- Jiang, L.; Liu, W.; Wang, R.; Gonzalez-Diaz, A.; Rojas-Michaga, M.F.; Michailos, S.; Pourkashanian, M.; Zhang, X.; Font-Palma, C. Sorption direct air capture with CO2 utilization. Prog. Energy Combust. Sci. 2023, 95, 101069. [Google Scholar] [CrossRef]
- Ignatusha, P.; Lin, H.Q.; Kapuscinsky, N.; Scoles, L.; Ma, W.G.; Patarachao, B.; Du, N.Y. Membrane Separation Technology in Direct Air Capture. Membranes 2024, 14, 30. [Google Scholar] [CrossRef]
- Lino, A.V.P.; Assaf, E.M.; Assaf, J.M. Production of light hydrocarbons at atmospheric pressure from CO2 hydrogenation using CexZr(1-x)O2 iron-based catalysts. J. CO2 Util. 2022, 55, 101805. [Google Scholar] [CrossRef]
- To, A.T.; Arellano-Treviño, M.A.; Nash, C.P.; Ruddy, D.A. Direct synthesis of branched hydrocarbons from CO2 over composite catalysts in a single reactor. J. CO2 Util. 2022, 66, 102261. [Google Scholar] [CrossRef]
- Cui, L.R.; Liu, C.; Yao, B.Z.; Edwards, P.P.; Xiao, T.C.; Cao, F.H. A review of catalytic hydrogenation of carbon dioxide: From waste to hydrocarbons. Front. Chem. 2022, 10, 1037997. [Google Scholar] [CrossRef] [PubMed]
- Van der Laan, G.P.; Beenackers, A.A.C.M. Kinetics and selectivity of the Fischer-Tropsch synthesis: A literature review. Catal. Rev. Sci. Eng. 1999, 41, 255–318. [Google Scholar] [CrossRef]
- Sie, S.T. Process development and scale up: IV. Case history of the development of a Fischer-Tropsch synthesis process. Rev. Chem. Eng. 1998, 14, 109–157. [Google Scholar] [CrossRef]
- Tsubaki, N.; Fujimoto, K. Product control in Fischer-Tropsch synthesis. Fuel Process. Technol. 2000, 62, 173–186. [Google Scholar] [CrossRef]
- Zhang, Q.H.; Kang, J.C.; Wang, Y. Development of Novel Catalysts for Fischer-Tropsch Synthesis: Tuning the Product Selectivity. ChemCatChem 2010, 2, 1030–1058. [Google Scholar] [CrossRef]
- Fujita, S.I.; Takezawa, N. Difference in the selectivity of CO and CO2 methanation reactions. Chem. Eng. J. 1997, 68, 63–68. [Google Scholar] [CrossRef]
- Griboval-Constant, A.; Butel, A.; Ordomsy, V.V.; Chernavskii, P.A.; Khodakova, A.Y. Cobalt and iron species in alumina supported bimetallic catalysts for Fischer-Tropsch reaction. Appl. Catal. A Gen. 2014, 481, 116–126. [Google Scholar] [CrossRef]
- Romar, H.; Lahti, R.; Tynjälä, P.; Lassi, U. Co and Fe Catalysed Fischer-Tropsch Synthesis in Biofuel Production 14th Nordic Symposium on Catalysis. Top. Catal. 2011, 54, 1302. [Google Scholar] [CrossRef]
- Strysovsky, T.; Kajabová, M.; Prucek, R.; Panacek, A.; Simkovicova, K.; Vajda, S.; Kvitek, L. Temperature switching of product selectivity in CO2 reduction on Cu/In2O3 catalysts. J. CO2 Util. 2023, 77, 102617. [Google Scholar] [CrossRef]
- Nie, X.W.; Li, W.H.; Jiang, X.; Guo, X.W.; Song, C.S. Recent advances in catalytic CO2 hydrogenation to alcohols and hydrocarbons. Adv. Catal. 2019, 65, 121–233. [Google Scholar] [CrossRef]
- Rahdar, A.; Aliahmad, M.; Azizi, Y. NiO Nanoparticles: Synthesis and Characterization. J. Nanostruct. 2015, 5, 145–151. [Google Scholar] [CrossRef]
- Nobakht, A.R.; Rezaei, M.; Alavi, S.M.; Akbari, E.; Varbar, M.; Hafezi-Bakhtiari, J. CO2 methanation over NiO catalysts supported on CaO-Al2O3: Effect of CaO:Al2O3 molar ratio and nickel loading. Int. J. Hydrogen Energy 2023, 48, 38664–38675. [Google Scholar] [CrossRef]
- Zhu, W.L.; Shui, A.Z.; Xu, L.F.; Cheng, X.S.; Liu, P.G.; Wang, H. Template-free sonochemical synthesis of hierarchically porous NiO microsphere. Ultrason. Sonochem. 2014, 21, 1707–1713. [Google Scholar] [CrossRef]
- Aslani, A.; Oroojpour, V.; Fallahi, M. Sonochemical synthesis, size controlling and gas sensing properties of NiO nanoparticles. Appl. Surf. Sci. 2011, 257, 4056–4061. [Google Scholar] [CrossRef]
- Yang, Q.; Sha, J.; Ma, X.Y.; Yang, D.R. Synthesis of NiO nanowires by a sol-gel process. Mater. Lett. 2005, 59, 1967–1970. [Google Scholar] [CrossRef]
- Jeevanandam, P.; Pulimi, V.R.R. Synthesis of nanocrystalline NiO by sol-gel and homogeneous precipitation methods. Indian J. Chem. 2012, 51A, 586–590. [Google Scholar]
- Li, X.L.; Zhang, X.X.; Li, Z.R.; Qian, Y.T. Synthesis and characteristics of NiO nanoparticles by thermal decomposition of nickel dimethylglyoximate rods. Solid State Commun. 2006, 137, 581–584. [Google Scholar] [CrossRef]
- Mehdizadeh, R.; Sanati, S.; Saghatforoush, L.A. Preparation and Characterization of Nickel Oxide Nanostructures via Solid State Thermal Decomposition Approach. Synth. React. Inorg. Met. Org. Nano Met. Chem. 2013, 43, 466–470. [Google Scholar] [CrossRef]
- Chandrakala, M.; Raj Bharath, S.; Maiyalagan, T.; Arockiasamy, S. Synthesis, crystal structure and vapour pressure studies of novel nickel complex as precursor for NiO coating by metalorganic chemical vapour deposition technique. Mater. Chem. Phys. 2017, 201, 344–353. [Google Scholar] [CrossRef]
- Ansar, A.; Soysal, D.; Schiller, G. Nanostructured functional layers for solid oxide fuel cells. Int. J. Energy Res. 2009, 33, 1191–1202. [Google Scholar] [CrossRef]
- Razali, M.H.; Buang, N.A.; Bakar, W.A.W.A. CO2/H2 Methanation Reactivity of Nickel Oxide Based Catalyst Prepared from Different Nickel Salt Precursors. In Proceedings of the International Conference On Advancement Of Materials And Nanotechnology (ICAMN—2007), Langkawi, Malaysia, 29 May–1 June 2009; pp. 195–199. [Google Scholar] [CrossRef]
- Xu, J.; Wang, M.R.; Liu, Y.Y.; Li, J.; Cui, H.T. One-pot solvothermal synthesis of size-controlled NiO nanoparticles. Adv. Powder Technol. 2019, 30, 861–868. [Google Scholar] [CrossRef]
- Chen, T.; Yang, Y.; Zhao, W.Y.; Pan, D.Q.; Zhu, C.T.; Lin, F.Y.; Guo, X.Y. Solvothermal Preparation and Characterization of Nano-nickel Oxide. Acta Chim. Sin. 2019, 77, 447–454. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, H.X.; Li, H.L.; Liu, Y.; Zhang, H.Y.; Li, T.D. Solvothermal synthesis and photocatalytic properties of NiO ultrathin nanosheets with porous structure. Appl. Surf. Sci. 2015, 328, 525–530. [Google Scholar] [CrossRef]
- Poimenidis, I.A.; Lykaki, M.; Moustaizis, S.; Loukakos, P.; Konsolakis, M. One-step solvothermal growth of NiO nanoparticles on nickel foam as a highly efficient electrocatalyst for hydrogen evolution reaction. Mater. Chem. Phys. 2023, 305, 128007. [Google Scholar] [CrossRef]
- Kajabova, M.; Strysovsky, T.; Bikbashev, A.; Kovarova, Z.; Simkovicova, K.; Prucek, R.; Panacek, A.; Novak, P.; Kopp, J.; Kaslik, J.; et al. Electron traps as a valuable criterium of iron oxide catalysts’ performance in CO2 hydrogenation. J. CO2 Util. 2024, 85, 102863. [Google Scholar] [CrossRef]
- Jalama, K.; Coville, N.J.; Hildebrandt, D.; Glasser, D.; Jewell, L.L. Fischer-Tropsch synthesis over Co/TiO2: Effect of ethanol addition. Fuel 2007, 86, 73–80. [Google Scholar] [CrossRef]
- Kwak, B.S.; Choi, B.H.; Ji, M.J.; Park, S.M.; Kang, M. Synthesis of spherical NiO nanoparticles using a solvothermal treatment with acetone solvent. J. Ind. Eng. Chem. 2012, 18, 11–15. [Google Scholar] [CrossRef]
- Zhao, B.; Ke, X.K.; Bao, J.H.; Wang, C.L.; Dong, L.; Chen, Y.W.; Chen, H.L. Synthesis of Flower-Like NiO, Effects of Morphology on Its Catalytic Properties. J. Phys. Chem. 2009, 113, 14440–14447. [Google Scholar] [CrossRef]
- Zhou, D.S.; Yan, A.F.; Wu, Y.; Wu, T.H. A facile synthetic route to flower-like NiO and its catalytic properties. Indian J. Chem. 2013, 52A, 51–56. [Google Scholar]
- NassBarakat, A.M.; Abdelkareem, M.A.; El-Newehy, M.; Kim, H.Y. Influence of the nanofibrous morphology on the catalytic activity of NiO nanostructures: An effective impact toward methanol electrooxidation. Nanoscale Res. Lett. 2013, 8, 402. [Google Scholar] [CrossRef]
- Silva, V.D.; Simoes, T.A.; Grilo, J.P.F.; Medeiros, E.S.; Macedo, D.A.; Macedo, D.A. Impact of the NiO nanostructure morphology on the oxygen evolution reaction catalysis. J. Mater. Sci. 2020, 55, 6648–6659. [Google Scholar] [CrossRef]
- Bai, G.; Dai, H.; Deng, J.; Liu, Y.; Ji, K. Porous NiO nanoflowers and nanourchins: Highly active catalysts for toluene combustion. Catal. Commun. 2012, 27, 148–153. [Google Scholar] [CrossRef]
- Xiao, J.; Chen, B.; Liang, X.; Zhang, R.; Li, Y. NiO microspheres with tunable porosity and morphology effects for CO oxidation. Catal. Sci. Technol. 2011, 1, 999–1005. [Google Scholar] [CrossRef]
- Wang, J.; Wei, C.; Pang, H.; Gao, F.; Yin, J.; Guan, L.; Lu, Q. Facile synthesis of mono-dispersive hierarchical nickel-based microspheres as potential catalysts. Catal. Commun. 2011, 12, 1031–1036. [Google Scholar] [CrossRef]
- San, X.; Wang, G.; Liang, B.; Ma, J.; Meng, D.; Shen, Y. Flower-like NiO hierarchical microspheres self-assembled with nanosheets: Surfactant-free solvothermal synthesis and their gas sensing properties. J. Alloys Compd. 2015, 636, 357–362. [Google Scholar] [CrossRef]
- Kumar, S.; Das, J. Synthesis, structural and magnetic properties of NiO nanospheres and rGO-NiO nanocomposites and observing magnetocaloric effect in rGO-NiO nanocomposites. Mater. Sci. Eng. B 2021, 265, 115007. [Google Scholar] [CrossRef]
- Abbasa, S.A.; Junga, K.-D. Preparation of mesoporous microspheres of NiO with high surface area and analysis on their pseudocapacitive behavior. Electrochim. Acta 2016, 193, 145–153. [Google Scholar] [CrossRef]
- Su, C.; Zhang, L.; Han, Y.; Ren, C.; Chen, X.; Hu, J.; Zeng, M.; Hu, N.; Su, Y.; Zhou, Z.; et al. Controllable synthesis of crescent-shaped porous NiO nanoplates for conductometric ethanol gas sensors. Sens. Actuators B Chem. 2019, 296, 126642. [Google Scholar] [CrossRef]
- Wang, J.; Pang, H.; Yin, J.; Guan, L.; Lu, Q.; Gao, F. Controlled fabrication and property studies of nickel hydroxide and nickel oxide nanostructures. CrystEngComm 2010, 12, 1404–1409. [Google Scholar] [CrossRef]
- Zhu, J.; Cannizzaro, F.; Liu, L.; Zhang, H.; Kosimov, N.; Filot, I.A.W.; Rabeah, J.; Brückner, A.; Hensen, E.J.M. Ni-In Synergy in CO2 Hydrogenation to Methanol. ACS Catal. 2021, 11, 11371–11384. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, Y.; Sun, C.; Wang, Y.; Song, G.; Li, C.; Lim, K.H.; Ye, R.; Peng, Y.; Arandiyan, H.; et al. Lanthanum-mediated enhancement of nickel nanoparticles for efficient CO2 methanation. Fuel 2024, 371, 131998. [Google Scholar] [CrossRef]
- Li, Z.X.; Fu, X.P.; Ma, C.; Wang, W.W.; Liu, J.C.; Jia, C.J. Identifying the key structural features of Ni-based catalysts for the CO2 methanation reaction. J. Catal. 2024, 436, 115585. [Google Scholar] [CrossRef]
- Hu, Y.; Men, Y.; Xu, S.; Feng, Y.; Wang, J.; Liu, K.; Zhang, Y. Modulating nickel precursors to construct highly active Ni/Y2O3 catalysts for CO2 methanation. Int. J. Hydrogen Energy 2024, 81, 1311–1321. [Google Scholar] [CrossRef]
- Machado-Silva, R.B.; Da Costa-Serra, J.F.; Chica, A. Enhancement of catalytic activity in CO2 methanation in Ni-based catalysts supported on delaminated ITQ-6 zeolite. J. Catal. 2024, 436, 115609. [Google Scholar] [CrossRef]
- Yang, D.; Xu, F.; Jin, D.; Meng, X.; Dai, W.; Zhao, R.; Xin, Z. Enhanced low-temperature catalytic activity for CO2 methanation over NiMgx/Na-HNTs: The role of MgO. Int. J. Hydrogen Energy 2024, 78, 1108–1116. [Google Scholar] [CrossRef]
- Wang, L.; Hu, J.; Liu, H.; Wei, Q.; Gong, D.; Mo, L.; Tao, H.; Zhang, C. Three-Dimensional Mesoporous Ni-CeO2 Catalysts with Ni Embedded in the Pore Walls for CO2 Methanation. Catalysts 2020, 10, 523. [Google Scholar] [CrossRef]
- González-Rangulan, V.V.; Reyero, I.; Bimbela, F.; Romero-Sarria, F.; Daturi, M.; Gandía, L.M. CO2 Methanation over Nickel Catalysts: Support Effects Investigated through Specific Activity and Operando IR Spectroscopy Measurements. Catalysts 2023, 13, 448. [Google Scholar] [CrossRef]
- Safdar, M.; Shezad, N.; Akhtar, F.; Arellano-Garcıa, H. Development of Ni-doped A-site lanthanides-based perovskite-type oxide catalysts for CO2 methanation by auto-combustion method. RSC Adv. 2024, 14, 20240–20253. [Google Scholar] [CrossRef]
Sample | Abbrev. | Ni Salt | Solvent | Stabilizer | Tsynt, °C | Tsynt, h | Tcalc, °C | Tcalc, h |
---|---|---|---|---|---|---|---|---|
NiO microspheres 1 | NiOms1 | Ni(Ac)2 | Met | --- | 200 | 4 | 450 | 2 |
NiO microspheres 2 | NiOms2 | Ni(NO3)2 | DMF | --- | 180 | 12 | 400 | 4 |
NiO microspheres 3 | NiOms3 | Ni(NO3)2 | DMF | --- Ultrasound | 180 | 12 | 350 | 4 |
NiO sheet clusters | NiOshc | Ni(NO3)2 | Et | Oleylamine | 180 | 15 | 350 | 4 |
NiO hexagonal 1 | NiOhx1 | Ni(NO3)2 | Et + DW | PVP 40,000 | 180 | 6 | 350 | 2 |
NiO hexagonal 2 | NiOhx2 | Ni(NO3)2 | Et + DW | PVP 360,000 | 180 | 6 | 350 | 2 |
NiO hexagonal + moon-like | NiOhx+m | Ni(NO3)2 | Et + DW | PVP 40,000 | 180 | 6 | 350 | 2 |
NiO nanodisk | NiOnd | Ni(Ac)2 | Et + DW | --- | 200 | 8 | 450 | 1 |
Sample Name | NiOms1 | NiOms2 | NiOms3 | NiOshc | NiOhx1 | NiOhx2 | NiOhx+m | NiOnd |
---|---|---|---|---|---|---|---|---|
BET surface area, m2/g | 24.4 | 47.7 | 110.3 | 103.7 | 145.5 | 145.5 | 128.9 | 55.5 |
Pore volume, cm3/g | 0.049 | 0.113 | 0.202 | 0.166 | 0.221 | 0.169 | 0.162 | 0.123 |
Sample | Ni | Ni # | O | O # | C | C # | Si |
---|---|---|---|---|---|---|---|
NiOms1* | 1.2 | 2.0 | 39.3 | 21.6 | 46.4 | 76.5 | 13.2 |
NiOhx1* | 1.2 | 1.5 | 39.2 | 32.2 | 52.8 | 66.3 | 6.8 |
NiOhx1 | 11.0 | --- | 35.7 | --- | 53.4 | --- | --- |
NiOms1 | 10.9 | --- | 38.1 | --- | 51.0 | --- | --- |
NiOhx+m | 11.3 | --- | 41.6 | --- | 47.1 | --- | --- |
NiOhx+m* | 1.6 | 2.6 | 43.9 | 29.3 | 41.5 | 68.0 | 13.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bikbashev, A.; Stryšovský, T.; Kajabová, M.; Kovářová, Z.; Prucek, R.; Panáček, A.; Kašlík, J.; Fodor, T.; Cserháti, C.; Erdélyi, Z.; et al. NiO Nano- and Microparticles Prepared by Solvothermal Method—Amazing Catalysts for CO2 Methanation. Molecules 2024, 29, 4838. https://doi.org/10.3390/molecules29204838
Bikbashev A, Stryšovský T, Kajabová M, Kovářová Z, Prucek R, Panáček A, Kašlík J, Fodor T, Cserháti C, Erdélyi Z, et al. NiO Nano- and Microparticles Prepared by Solvothermal Method—Amazing Catalysts for CO2 Methanation. Molecules. 2024; 29(20):4838. https://doi.org/10.3390/molecules29204838
Chicago/Turabian StyleBikbashev, Arkadii, Tomáš Stryšovský, Martina Kajabová, Zuzana Kovářová, Robert Prucek, Aleš Panáček, Josef Kašlík, Tamás Fodor, Csaba Cserháti, Zoltán Erdélyi, and et al. 2024. "NiO Nano- and Microparticles Prepared by Solvothermal Method—Amazing Catalysts for CO2 Methanation" Molecules 29, no. 20: 4838. https://doi.org/10.3390/molecules29204838
APA StyleBikbashev, A., Stryšovský, T., Kajabová, M., Kovářová, Z., Prucek, R., Panáček, A., Kašlík, J., Fodor, T., Cserháti, C., Erdélyi, Z., & Kvítek, L. (2024). NiO Nano- and Microparticles Prepared by Solvothermal Method—Amazing Catalysts for CO2 Methanation. Molecules, 29(20), 4838. https://doi.org/10.3390/molecules29204838