Next Issue
Volume 29, November-1
Previous Issue
Volume 29, October-1
 
 
molecules-logo

Journal Browser

Journal Browser

Molecules, Volume 29, Issue 20 (October-2 2024) – 192 articles

Cover Story (view full-size image): Hydrogen is considered to be a clean and sustainable energy source due to its only combustion by-product being water. However, the practical use of hydrogen is hindered by challenges in production and distribution which are primarily related to its gaseous state and low volumetric energy density. Alcohols, which can be derived from renewable biomass, offer a promising solution as liquid organic hydrogen carriers. Through processes such as aqueous-phase reforming (APR), alcohols can be converted into hydrogen at relatively lower temperatures and pressures, reducing energy costs. This review explores the advancements of APR, focusing on catalyst stability and the potential of ultrasound-assisted reforming to enhance efficiency in sustainable hydrogen production. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 4026 KiB  
Review
Innovative Approaches to Large-Area Perovskite Solar Cell Fabrication Using Slit Coating
by Yitong Wang, Zetong Cheng, Junguo Li, Kuanxin Lv, Zhenzhen Li and Hang Zhao
Molecules 2024, 29(20), 4976; https://doi.org/10.3390/molecules29204976 - 21 Oct 2024
Viewed by 998
Abstract
Perovskite solar cells (PSCs) are gaining prominence in the photovoltaic industry due to their exceptional photoelectric performance and low manufacturing costs, achieving a significant power conversion efficiency of 26.4%, which closely rivals that of silicon solar cells. Despite substantial advancements, the effective area [...] Read more.
Perovskite solar cells (PSCs) are gaining prominence in the photovoltaic industry due to their exceptional photoelectric performance and low manufacturing costs, achieving a significant power conversion efficiency of 26.4%, which closely rivals that of silicon solar cells. Despite substantial advancements, the effective area of high-efficiency PSCs is typically limited to about 0.1 cm2 in laboratory settings, with efficiency decreasing as the area increases. The limitation poses a major obstacle to commercialization, as large-area, high-quality perovskite films are crucial for commercial applications. This paper reviews current techniques for producing large-area perovskites, focusing on slot-die coating, a method that has attracted attention for its revolutionary potential in PSC manufacturing. Slot-die coating allows for precise control over film thickness and is compatible with roll-to-roll systems, making it suitable for large-scale applications. The paper systematically outlines the characteristics of slot-die coating, along with its advantages and disadvantages in commercial applications, suggests corresponding optimization strategies, and discusses future development directions to enhance the scalability and efficiency of PSCs, paving the way for broader commercial deployment. Full article
(This article belongs to the Special Issue Chemical Properties of Photoelectric Materials)
Show Figures

Figure 1

23 pages, 6655 KiB  
Review
A Review of Stoichiometric Nickel Sulfide-Based Catalysts for Hydrogen Evolution Reaction in Alkaline Media
by Yeji Choi, Jun-Hee Lee and Duck Hyun Youn
Molecules 2024, 29(20), 4975; https://doi.org/10.3390/molecules29204975 - 21 Oct 2024
Viewed by 699
Abstract
Efficient and cost-effective catalysts for hydrogen evolution reaction (HER) are essential for large-scale hydrogen production, which is a critical step toward reducing carbon emissions and advancing the global transition to sustainable energy. Nickel sulfide-based catalysts, which exist in various stoichiometries, show promise for [...] Read more.
Efficient and cost-effective catalysts for hydrogen evolution reaction (HER) are essential for large-scale hydrogen production, which is a critical step toward reducing carbon emissions and advancing the global transition to sustainable energy. Nickel sulfide-based catalysts, which exist in various stoichiometries, show promise for HER in alkaline media. However, as single-phase materials, they do not demonstrate superior activity compared to Pt-based catalysts. This review highlights recent strategies to enhance the HER performance of nickel sulfides, including heteroatom doping, heterostructure construction, and vacancy engineering, tailored to their different stoichiometric ratios. The study also examines synthesis methods, characterizations, and their impact on HER performance. Furthermore, it discusses the challenges and limitations of current research and suggests future directions for improvement. Full article
(This article belongs to the Special Issue Metal-Based Nanomaterials in Catalysis and Electrochemistry)
Show Figures

Figure 1

11 pages, 2705 KiB  
Article
Enhanced Thermoelectric Performance of SnTe via Introducing Resonant Levels
by Manman Yang, Jin Jia, Haijun Yu, Yimin Li, Lu Han, Hairui Sun, Haowen Jia and Yuanyuan Zhu
Molecules 2024, 29(20), 4974; https://doi.org/10.3390/molecules29204974 - 21 Oct 2024
Viewed by 648
Abstract
SnTe has emerged as a non-toxic and environmentally friendly alternative to the high-performance thermoelectric material PbTe, attracting significant interest in sustainable energy applications. In our previous work, we successfully synthesized high-quality SnTe with reduced thermal conductivity under high-pressure conditions. Building on this, in [...] Read more.
SnTe has emerged as a non-toxic and environmentally friendly alternative to the high-performance thermoelectric material PbTe, attracting significant interest in sustainable energy applications. In our previous work, we successfully synthesized high-quality SnTe with reduced thermal conductivity under high-pressure conditions. Building on this, in this work, we introduced indium (In) doping to further decrease thermal conductivity under high pressure. By incorporating resonance doping into the SnTe matrix, we aimed to enhance the electrical transport properties while maintaining low thermal conductivity. This approach enhances the Seebeck coefficient to an impressive 153 μVK−1 at 735 K, marking a notable enhancement compared to undoped SnTe. Furthermore, we noted a substantial decrease in total thermal conductivity, dropping from 6.91 to 3.88 Wm−1K−1 at 325 K, primarily due to the reduction in electrical conductivity. The synergistic impact of decreased thermal conductivity and heightened Seebeck coefficient resulted in a notable improvement in the thermoelectric figure of merit (ZT) and average ZT, achieving approximately 0.5 and 0.22 in the doped samples, respectively. These advancements establish Sn1−xInxTe as a promising candidate to replace PbTe in thermoelectric applications, providing a safer and more environmentally sustainable option. Full article
(This article belongs to the Special Issue Modern Materials in Energy Storage and Conversion)
Show Figures

Figure 1

15 pages, 894 KiB  
Article
Influence of Lactation Stage on Content of Neurotrophic Factors, Leptin, and Insulin in Human Milk
by Elena Sinkiewicz-Darol, Katarzyna Łubiech and Iwona Adamczyk
Molecules 2024, 29(20), 4973; https://doi.org/10.3390/molecules29204973 - 21 Oct 2024
Viewed by 654
Abstract
Human milk comprehensively meets the nutritional needs of a child, providing not only structural and energy components but also various bioactive factors. Among these, neurotrophic factors and hormones involved in metabolic processes deserve special attention. Studies using enzyme-linked immunosorbent assays compared the content [...] Read more.
Human milk comprehensively meets the nutritional needs of a child, providing not only structural and energy components but also various bioactive factors. Among these, neurotrophic factors and hormones involved in metabolic processes deserve special attention. Studies using enzyme-linked immunosorbent assays compared the content of neurotrophic factors—CNTF, NT-3, and NGF—and hormones, leptin and insulin, in two groups of breast milk samples: early lactation (1–3 months) and extended lactation (>6 months, up to 12 months). The results indicated changes in leptin and insulin levels as the lactation period extended. NGF, leptin, and insulin were present in milk samples from both study groups, with leptin and insulin levels being higher in the early lactation group. CNTF and NT-3 were not detected in any of the samples from either study group. The analyses confirmed that human milk from women who breastfeed for extended periods remains a source of biologically active components and macronutrients that support a child’s development and health. Full article
Show Figures

Figure 1

19 pages, 1796 KiB  
Review
Advances in Virus Detection Techniques Based on Recombinant Polymerase Amplification
by Shiwen Wu, Wenhan Yu, Xianshu Fu, Xiaoping Yu, Zihong Ye, Mingzhou Zhang, Yulou Qiu and Biao Ma
Molecules 2024, 29(20), 4972; https://doi.org/10.3390/molecules29204972 - 21 Oct 2024
Viewed by 1023
Abstract
Recombinase polymerase amplification (RPA) has emerged as a rapid, efficient, and highly sensitive method for nucleic acid amplification, thus becoming a focal point of research in the field of virus detection. This paper provides an overview of RPA, emphasizing its unique double-stranded DNA [...] Read more.
Recombinase polymerase amplification (RPA) has emerged as a rapid, efficient, and highly sensitive method for nucleic acid amplification, thus becoming a focal point of research in the field of virus detection. This paper provides an overview of RPA, emphasizing its unique double-stranded DNA synthesis mechanism, rapid amplification efficiency, and capability to operate at room temperature, among other advantages. In addition, strategies and case studies of RPA in combination with other technologies are detailed to explore the advantages and potential of these integrated approaches for virus detection. Finally, the development prospect of RPA technology is prospected. Full article
(This article belongs to the Special Issue Applied Analytical Chemistry: Second Edition)
Show Figures

Figure 1

12 pages, 1287 KiB  
Article
Effectiveness Evaluation of Silicone Oil Emulsion In Situ Polymerization for Dehydration of Waterlogged Wooden Artifacts
by Mengruo Wu, Xiangna Han, Zhiguo Zhang and Jiajun Wang
Molecules 2024, 29(20), 4971; https://doi.org/10.3390/molecules29204971 - 21 Oct 2024
Viewed by 629
Abstract
Organosilicon materials have shown potential as dehydration agents for waterlogged wooden artifacts. These materials can polymerize under normal conditions to form polymers with favorable mechanical strength, antibacterial properties, and aging resistance. However, the insolubility of most organosilicon hindered their penetration into waterlogged wood, [...] Read more.
Organosilicon materials have shown potential as dehydration agents for waterlogged wooden artifacts. These materials can polymerize under normal conditions to form polymers with favorable mechanical strength, antibacterial properties, and aging resistance. However, the insolubility of most organosilicon hindered their penetration into waterlogged wood, which may lead to an unwanted cracking. This study aimed to evaluate the effectiveness of polydimethylsiloxane (PDMS) and hydroxy-terminated polydimethylsiloxane (PDMS-OH) with low viscosity and moderate reactivity for dehydrating waterlogged wooden artifacts from the Nanhai No.1 shipwreck. Four surfactants ((3–aminopropyl) triethoxysilane (APTES), alkyl polyoxyethylene ether (APEO), tri-methylstearylammonium chloride (STAC), and fatty alcohol polyoxyethylene ether (AEO)) and cosurfactant were employed to transform the two kinds of water-repellent silicone oils into eight groups of highly permeable oil-in-water (O/W) emulsions. Under the catalysis of a neutral catalyst, in situ polymerization occurred within the wood cells. Group P2-2 formulated with PDMS-OH and APEO showed the best efficiency in maintaining the dimensions of the wood during dehydration. The dehydrated wood exhibited a natural color and texture with a minimal volume shrinkage rate of 1.89%. The resulting polymer adhered uniformly to the cell walls, effectively reinforcing the wood cell structure. The weight percent gain of the wood was only 218%, and the pores of the cell lumen were well maintained for future retreatment. This method effectively controlled the sol–gel reaction process of the organosilicon and prevented damage to the wooden artifact during the dehydration process. Moreover, the dehydrated wood samples only experienced a low weight gain of 17% at 95% relative humidity (RH), indicating their great environmental stability. Full article
Show Figures

Figure 1

15 pages, 1615 KiB  
Article
Selective Sorption of Noble Metals on Polymer Gel Modified with Ionic Liquid
by Ivanka Dakova, Olga Veleva and Irina Karadjova
Molecules 2024, 29(20), 4970; https://doi.org/10.3390/molecules29204970 - 21 Oct 2024
Viewed by 742
Abstract
The solid phase extraction of Au, Ir, Pd, Pt, and Rh on a polymer gel modified with ionic liquid containing methylimidazolium groups (MIA-PG) has been investigated. The positively charged surface of the sorbent is highly suitable for the sorption of stable chlorido complexes [...] Read more.
The solid phase extraction of Au, Ir, Pd, Pt, and Rh on a polymer gel modified with ionic liquid containing methylimidazolium groups (MIA-PG) has been investigated. The positively charged surface of the sorbent is highly suitable for the sorption of stable chlorido complexes of the studied analytes, while the retention of base metals Cu, Fe, Ni, Zn, and Mn is negligible. Optimization experiments performed showed that, at 0.05 M HCl, the degree of sorption of Au, Ir, Pd, and Pt is above 95%, and only for Rh, the maximum degree is 65%; complete elution is achieved in the mixture of thiourea in HCl. The results obtained from the equilibrium adsorption studies are fitted in various adsorption models, such as Langmuir and Freundlich, and the model parameters have been evaluated. The kinetics analysis indicated that the adsorption of Au, Ir, Pd, Pt, and Rh onto the sorbent follows the pseudo-second-order model. Intraparticle diffusion and ion exchange reactions were the rate-limiting steps. Analytical procedures were developed for Pd, Pt, and Rh determination in road dust and soil and for Au determination in copper ore and copper concentrate. The procedures are validated by the analysis of certified reference materials. Analytical figures of merit confirmed their applicability in routine laboratory practice. Full article
Show Figures

Graphical abstract

15 pages, 3926 KiB  
Article
Insights into Catechin–Copper Complex Structure and Biologic Activity Modulation
by Ionut I. Lungu, Oana Cioanca, Cornelia Mircea, Cristina Tuchilus, Alina Stefanache, Riana Huzum and Monica Hancianu
Molecules 2024, 29(20), 4969; https://doi.org/10.3390/molecules29204969 - 21 Oct 2024
Viewed by 722
Abstract
Compounds of natural origin found in varying quantities in plant-based products constitute a highly significant category, possessing structural significance as well as the capacity to regulate oxidative processes. The activity of these compounds may be modulated by the composition of the biological environment [...] Read more.
Compounds of natural origin found in varying quantities in plant-based products constitute a highly significant category, possessing structural significance as well as the capacity to regulate oxidative processes. The activity of these compounds may be modulated by the composition of the biological environment in which they operate, the pH of the environment, or the presence of metal cations in plants or plant extracts. A successful complexation reaction was mainly confirmed by FT-IR, observing the shift from the original transmittance of catechin bonds, especially O-H ones. This work shows the synthetic methodology and the optimization process that took place to synthesize a catechin–copper complex, which demonstrated antioxidant activity. It was tested for iron chelation ability, hydroxyl radicals, and the inhibition of lipoxygenase (15-LOX). An antidiabetic assay was performed by determining the inhibition of alpha-amylase and alpha-glucosidase, finding that the synthesized complex had similar inhibitory potential as pure catechin. The antibacterial tests showed results against Staphylococcus aureus and the antifungal properties of the complex against Candida albicans. Full article
Show Figures

Figure 1

14 pages, 3920 KiB  
Article
Nitrogen-Doped Graphene Uniformly Loaded with Large Interlayer Spacing MoS2 Nanoflowers for Enhanced Lithium–Sulfur Battery Performance
by Zhen Wu, Wenfeng He, Renjie Xie, Xuan Xiong, Zihan Wang, Lei Zhou, Fen Qiao, Junfeng Wang, Yan Zhou, Xinlei Wang, Jiajia Yuan, Tian Tang, Chenyao Hu, Wei Tong, Lubin Ni, Xin Wang and Yongsheng Fu
Molecules 2024, 29(20), 4968; https://doi.org/10.3390/molecules29204968 - 21 Oct 2024
Viewed by 887
Abstract
Lithium–sulfur (Li-S) batteries offer a high theoretical energy density but suffer from poor cycling stability and polysulfide shuttling, which limits their practical application. To address these challenges, we developed a PANI-modified MoS2-NG composite, where MoS2 nanoflowers were uniformly grown on [...] Read more.
Lithium–sulfur (Li-S) batteries offer a high theoretical energy density but suffer from poor cycling stability and polysulfide shuttling, which limits their practical application. To address these challenges, we developed a PANI-modified MoS2-NG composite, where MoS2 nanoflowers were uniformly grown on graphene oxide (GO) through PANI modification, resulting in an increased interlayer spacing of MoS2. This expanded spacing exposed more active sites, enhancing polysulfide adsorption and catalytic conversion. The composite was used to prepare MoS2-NG/PP separators for Li-S batteries, which achieved a high specific capacity of 714 mAh g−1 at a 3 C rate and maintained a low capacity decay rate of 0.085% per cycle after 500 cycles at 0.5 C. The larger MoS2 interlayer spacing was key to improving redox reaction kinetics and suppressing the shuttle effect, making the MoS2-NG composite a promising material for enhancing the performance and stability of Li-S batteries. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Graphical abstract

18 pages, 2104 KiB  
Article
Integrating Epoxidation, High-Resolution Mass Spectrometry and Ultraviolet Spectroscopy to Unravel the Complex Profile of Boswellic Acids and Related Compounds in the Boswellia serrata Gum Resin Extract
by Andrea Castellaneta, Ilario Losito, Stefania Cometa, Francesco Busto, Elvira De Giglio and Tommaso R. I. Cataldi
Molecules 2024, 29(20), 4967; https://doi.org/10.3390/molecules29204967 - 21 Oct 2024
Viewed by 565
Abstract
The chemical characterization of natural products is often a complex task that demands powerful analytical techniques. Liquid chromatography with high-resolution tandem mass spectrometry (HRMS/MS) is often employed, yet it can face hard challenges when isomeric species are present, and reference standards are lacking. [...] Read more.
The chemical characterization of natural products is often a complex task that demands powerful analytical techniques. Liquid chromatography with high-resolution tandem mass spectrometry (HRMS/MS) is often employed, yet it can face hard challenges when isomeric species are present, and reference standards are lacking. In such cases, the confidence level in compound identification can be significantly improved by the collection of orthogonal information on target analytes. In this work, 23 key compounds in Boswellia serrata extract (BSE), 12 of which correspond to boswellic acids (BAs) and 11 to triterpenoidic acid isomers, were identified by combining RPLC followed by serial UV and ESI(-)-FTMS and FTMS/MS detections with the evaluation of the reactivity towards C=C bond epoxidation with meta-chloroperoxybenzoic acid (m-CPBA), proposed as a fast chemical tool to gather information about C=C bond steric hindrance, a key structural feature of BAs and related compounds. The interpretation of UV spectra acquired after chromatographic separation corroborated the identification of the substitution patterns of enonic and dienic residues in ketoboswellic and dehydroboswellic acids. Moreover, MS/MS based on higher-energy collision-induced dissociation (HCD) unveiled new fragmentation pathways, providing important structural details on target analytes. The integrated approach developed during this study might pave the way for a deeper understanding of the BSE bioactive properties. Moreover, it can be considered an example of a more general strategy for the analysis of complex mixtures of natural compounds including also isomeric species. Full article
Show Figures

Figure 1

14 pages, 3108 KiB  
Article
A Spin-Labeled Derivative of Gossypol
by Andrey V. Stepanov, Vladimir N. Yarovenko, Darina I. Nasyrova, Lyubov G. Dezhenkova, Igor O. Akchurin, Mickhail M. Krayushkin, Valentina V. Ilyushenkova, Andrey E. Shchekotikhin and Evgeny V. Tretyakov
Molecules 2024, 29(20), 4966; https://doi.org/10.3390/molecules29204966 - 21 Oct 2024
Viewed by 649
Abstract
Gossypol and its derivatives arouse interest due to their broad spectrum of biological activities. Despite its wide potential application, there is no reported example of gossypol derivatives bearing stable radical functional groups. The first gossypol nitroxide hybrid compound was prepared here via formation [...] Read more.
Gossypol and its derivatives arouse interest due to their broad spectrum of biological activities. Despite its wide potential application, there is no reported example of gossypol derivatives bearing stable radical functional groups. The first gossypol nitroxide hybrid compound was prepared here via formation of a Schiff base. By this approach, synthesis of a gossypol nitroxide conjugate was performed by condensation of gossypol with a 4-amino-TEMPO (4-amino-2,2,6,6-tetramethylpiperidin-1-oxyl) free radical, which afforded the target product in high yield. Its structure was proven by a combination of NMR and EPR spectroscopy, infrared spectroscopy, mass spectrometry, and high-resolution mass spectrometry. In addition, the structure of the gossypol nitroxide was determined by single-crystal X-ray diffraction measurements. In crystals, the paramagnetic Schiff base exists in an enamine–enamine tautomeric form. The tautomer is strongly stabilized by the intra- and intermolecular hydrogen bonds promoted by the resonance of π-electrons in the aromatic system. NMR analyses of the gossypol derivative proved that in solutions, the enamine–enamine tautomeric form prevailed. The gossypol nitroxide at micromolar concentrations suppressed the growth of tumor cells; however, compared to gossypol, the cytotoxicity of the obtained conjugate was substantially lower. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

12 pages, 1364 KiB  
Article
Protein A-like Peptide Design Based on Diffusion and ESM2 Models
by Long Zhao, Qiang He, Huijia Song, Tianqian Zhou, An Luo, Zhenguo Wen, Teng Wang and Xiaozhu Lin
Molecules 2024, 29(20), 4965; https://doi.org/10.3390/molecules29204965 - 21 Oct 2024
Viewed by 1129
Abstract
Proteins are the foundation of life, and designing functional proteins remains a key challenge in biotechnology. Before the development of AlphaFold2, the focus of design was primarily on structure-centric approaches such as using the well-known open-source software Rosetta3. Following the development of AlphaFold2, [...] Read more.
Proteins are the foundation of life, and designing functional proteins remains a key challenge in biotechnology. Before the development of AlphaFold2, the focus of design was primarily on structure-centric approaches such as using the well-known open-source software Rosetta3. Following the development of AlphaFold2, deep-learning techniques for protein design gained prominence. This study proposes a new method to generate functional proteins using the diffusion model and ESM2 protein language model. Diffusion models, which are widely used in image and natural language generation, are used here for protein design, facilitating the controlled generation of new sequences. The ESM2 model, trained on the basis of large-scale protein sequence data, provides a deep understanding of the context of the sequence, thus improving the model’s ability to generate biologically relevant proteins. In this study, we used the Protein A-like peptide as a model study object, combined the diffusion model and the ESM2 model to generate new peptide sequences from minimal input data, and verified their biological activities through experiments such as the BLI affinity test. In conclusion, we developed a new method for protein design that provides a novel strategy to meet the challenges of generic protein generation. Full article
(This article belongs to the Special Issue Computational Insights into Protein Engineering and Molecular Design)
Show Figures

Figure 1

18 pages, 6587 KiB  
Article
Evaluation of Bioactive Compounds, Antioxidant Capacity, and Anti-Inflammatory Effects of Lipophilic and Hydrophilic Extracts of the Pericarp of Passiflora tripartita var. mollissima at Two Stages of Ripening
by Hugo Jesús Justil-Guerrero, Jorge Luis Arroyo-Acevedo, Juan Pedro Rojas-Armas, Carlos Orlando García-Bustamante, Miriam Palomino-Pacheco, Robert Dante Almonacid-Román and James Willan Calva Torres
Molecules 2024, 29(20), 4964; https://doi.org/10.3390/molecules29204964 - 21 Oct 2024
Viewed by 944
Abstract
Chronic disease inflammation requires safe complementary treatments. The pericarp of Passiflora tripartita var. mollissima (PTM) contains potential anti-inflammatory metabolites. This study aimed to evaluate the bioactive components, antioxidant capacity, and anti-inflammatory effects of PTM extracts at two ripening stages. The bioactive compounds in [...] Read more.
Chronic disease inflammation requires safe complementary treatments. The pericarp of Passiflora tripartita var. mollissima (PTM) contains potential anti-inflammatory metabolites. This study aimed to evaluate the bioactive components, antioxidant capacity, and anti-inflammatory effects of PTM extracts at two ripening stages. The bioactive compounds in the hydrophilic and lipophilic extracts of mature and green pericarps were identified by GC-MS and UV–VIS, while the antioxidant capacity was measured by free radical reduction. Anti-inflammatory effects were tested using a rat paw edema model with carrageenan-induced edema, indomethacin, or PTM extracts (100, 250, and 500 mg/kg). The effect of mature hydrophilic extract was further evaluated in an air pouch model, where rats received the placebo, carrageenan, indomethacin, or the extract (500 and 1000 mg/kg). Leukocytes, cytokines, and markers of oxidative stress were evaluated. The results showed the presence of organic compounds, total phenols, and flavonoids. The mature hydrophilic extract exhibited the highest antioxidant activity. At 500 mg/kg, it reduced edema, leukocyte migration, and levels of IL-1β, IL-6, and TNF-α while managing oxidative stress and preventing histological damage. In conclusion, PTM contains bioactive compounds with potential pharmacological properties. The hydrophilic extract of the mature pericarp, at a dose of 500 mg/kg, exhibits an enhanced antioxidant and anti-inflammatory effect. Full article
(This article belongs to the Special Issue Pharmacological Activities of Medicinal Plants)
Show Figures

Graphical abstract

17 pages, 3249 KiB  
Article
Research on the Electrochemical Impedance Spectroscopy Evolution of Sodium-Ion Batteries in Different States
by Xiong Shu, Yongjing Li, Bowen Yang, Qiong Wang and Konlayutt Punyawudho
Molecules 2024, 29(20), 4963; https://doi.org/10.3390/molecules29204963 - 20 Oct 2024
Viewed by 1037
Abstract
Sodium-ion batteries (SIBs) have emerged as a promising alternative to lithium-ion batteries (LIBs) due to the abundant availability of sodium, lower costs, and comparable electrochemical performance characteristics. A thorough understanding of their performance features is essential for the widespread adoption and application of [...] Read more.
Sodium-ion batteries (SIBs) have emerged as a promising alternative to lithium-ion batteries (LIBs) due to the abundant availability of sodium, lower costs, and comparable electrochemical performance characteristics. A thorough understanding of their performance features is essential for the widespread adoption and application of SIBs. Therefore, in this study, we investigate the output characteristics and electrochemical impedance spectroscopy (EIS) features of sodium-ion batteries (SIBs) under various states. The research results show that, unlike conventional lithium iron phosphate (LFP) batteries, SIBs exhibit a strong linear relationship between state of charge (SOC) and open-circuit voltage (OCV) across various SOC and temperature conditions. Additionally, the discharge capacity of the battery remains relatively stable within a temperature range of 15 °C to 35 °C; when the temperatures are outside this range, the available capacity of the sodium-ion battery reduces significantly. Moreover, the EIS profiles in the high-frequency region are predominantly influenced by the ohmic internal resistance, which remains largely unaffected by SOC variations. In contrast, the low-frequency region demonstrates a significant correlation between SOC and impedance, with higher SOC values resulting in reduced impedance, indicated by smaller semicircle radii in the EIS curves. This finds highlights that EIS profiling can effectively monitor SOC and state of health (SOH) in SIBs, offering a clear correlation between impedance parameters and the battery’s operational state. The research not only advances our understanding of the electrochemical properties of SIBs but also provides a valuable reference for the design and application of sodium-ion battery systems in various scenarios. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Electrochemistry)
Show Figures

Figure 1

16 pages, 2542 KiB  
Article
A Comparative Study of the Chemical Composition and Skincare Activities of Red and Yellow Ginseng Berries
by Yu-Dan Wang, Lu-Sheng Han, Gen-Yue Li, Kai-Li Yang, Yan-Long Shen, Hao Zhang, Jian-Feng Hou and En-Peng Wang
Molecules 2024, 29(20), 4962; https://doi.org/10.3390/molecules29204962 - 20 Oct 2024
Viewed by 949
Abstract
This study was conducted to investigate the differences in chemical composition between red (RGBs) and yellow ginseng berries (YGBs) and their whitening and anti-aging skincare effects. The differences in the chemical composition between RGB and YGB were analyzed by ultra-high-performance liquid chromatography tandem [...] Read more.
This study was conducted to investigate the differences in chemical composition between red (RGBs) and yellow ginseng berries (YGBs) and their whitening and anti-aging skincare effects. The differences in the chemical composition between RGB and YGB were analyzed by ultra-high-performance liquid chromatography tandem quadrupole electrostatic field orbit trap mass spectrometry (UHPLC-Q-Exactive-MS/MS) combined with multivariate statistics. An aging model was established using UVB radiation induction, and the whitening and anti-aging effects of the two ginseng berries were verified in vitro and in vivo using cell biology (HaCaT and B16-F10 cells) and zebrafish model organisms. A total of 31 differential compounds, including saponins, flavonoids, phenolic acids, and other chemical constituents, were identified between the two groups. Superoxide dismutase (SOD) activity was more significantly increased (p < 0.05) and malondialdehyde (MDA) content was more significantly decreased (p < 0.01) in RGB more than YGB induced by UVB ultraviolet radiation. In terms of whitening effects, YGB was more effective in inhibiting the melanin content of B16-F10 cells (p < 0.01). The results of zebrafish experiments were consistent with those of in vitro experiments and cell biology experiments. The DCFH fluorescence staining results revealed that both ginseng berries were able to significantly reduce the level of reactive oxygen species (ROS) in zebrafish (p < 0.01). Comparison of chemical composition and skin care activities based on RGB and YGB can provide a theoretical basis for the deep development and utilization of ginseng berry resources. Full article
(This article belongs to the Special Issue Plant Bioactive Compounds in Pharmaceuticals)
Show Figures

Figure 1

19 pages, 6949 KiB  
Article
Virucidal Coatings Active Against SARS-CoV-2
by Anna I. Barabanova, Eduard V. Karamov, Viktor F. Larichev, Galina V. Kornilaeva, Irina T. Fedyakina, Ali S. Turgiev, Alexander V. Naumkin, Boris V. Lokshin, Andrey V. Shibaev, Igor I. Potemkin and Olga E. Philippova
Molecules 2024, 29(20), 4961; https://doi.org/10.3390/molecules29204961 - 20 Oct 2024
Viewed by 803
Abstract
Three types of coatings (contact-based, release-based, and combined coatings with both contact-based and release-based actions) were prepared and tested for the ability to inactivate SARS-CoV-2. In these coatings, quaternary ammonium surfactants were used as active agents since quaternary ammonium compounds are some of [...] Read more.
Three types of coatings (contact-based, release-based, and combined coatings with both contact-based and release-based actions) were prepared and tested for the ability to inactivate SARS-CoV-2. In these coatings, quaternary ammonium surfactants were used as active agents since quaternary ammonium compounds are some of the most commonly used disinfectants. To provide contact-based action, the glass and silicon surfaces with covalently attached quaternary ammonium cationic surfactant were prepared using a dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride modifier. Surface modification was confirmed by attenuated total reflection infrared spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy, and contact angle measurements. The grafting density of the modifier was estimated by XPS and elemental analysis. To provide release-based action, the widely used quaternary ammonium cationic disinfectant, benzalkonium chloride (BAC), and a newly synthesized cationic gemini surfactant, C18-4-C18, were bound non-covalently to the surface either through hydrophobic or electrostatic interactions. Virus titration revealed that the surfaces with combined contact-based and release-based action and the surfaces with only release-based action completely inactivate SARS-CoV-2. Coatings containing only covalently bound disinfectant are much less effective; they only provide up to 1.25 log10 reduction in the virus titer, probably because of the low disinfectant content in the surface monolayer. No pronounced differences in the activity between the flat and structured surfaces were observed for any of the coatings under study. Comparative studies of free and electrostatically bound disinfectants show that binding to the surface of nanoparticles diminishes the activity. These data indicate that SARS-CoV-2 is more sensitive to the free disinfectants. Full article
Show Figures

Figure 1

14 pages, 2057 KiB  
Article
Exploring the Impact of Water Content in Solvent Systems on Photochemical CO2 Reduction Catalyzed by Ruthenium Complexes
by Yusuke Kuramochi, Masaya Kamiya and Hitoshi Ishida
Molecules 2024, 29(20), 4960; https://doi.org/10.3390/molecules29204960 - 20 Oct 2024
Viewed by 794
Abstract
To achieve artificial photosynthesis, it is crucial to develop a catalytic system for CO2 reduction using water as the electron source. However, photochemical CO2 reduction by homogeneous molecular catalysts has predominantly been conducted in organic solvents. This study investigates the impact [...] Read more.
To achieve artificial photosynthesis, it is crucial to develop a catalytic system for CO2 reduction using water as the electron source. However, photochemical CO2 reduction by homogeneous molecular catalysts has predominantly been conducted in organic solvents. This study investigates the impact of water content on catalytic activity in photochemical CO2 reduction in N,N-dimethylacetamide (DMA), using [Ru(bpy)3]2+ (bpy: 2,2′-bipyridine) as a photosensitizer, 1-benzyl-1,4-dihydronicotinamide (BNAH) as an electron donor, and two ruthenium diimine carbonyl complexes, [Ru(bpy)2(CO)2]2+ and trans(Cl)-[Ru(Ac-5Bpy-NHMe)(CO)2Cl2] (5Bpy: 5′-amino-2,2′-bipyridine-5-carboxylic acid), as catalysts. Increasing water content significantly decreased CO and formic acid production. The similar rates of decrease for both catalysts suggest that water primarily affects the formation efficiency of free one-electron-reduced [Ru(bpy)3]2+, rather than the intrinsic catalytic activity. The reduction in cage-escape efficiency with higher water content underscores the challenges in replacing organic solvents with water in photochemical CO2 reduction. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Inorganic Chemistry, 2nd Edition)
Show Figures

Figure 1

17 pages, 2050 KiB  
Article
Cholesteryl Phenolipids as Potential Biomembrane Antioxidants
by Vânia Costa, Marlene Costa, Francisca Arques, Mariana Ferreira, Paula Gameiro, Dulce Geraldo, Luís S. Monteiro and Fátima Paiva-Martins
Molecules 2024, 29(20), 4959; https://doi.org/10.3390/molecules29204959 - 20 Oct 2024
Viewed by 563
Abstract
The lipophilization of polyphenols (phenolipids) may increase their affinity for membranes, leading to better antioxidant protection. Cholesteryl esters of caffeic, dihydrocaffeic, homoprotocatechuic and protocatechuic acids were synthetized in a one-step procedure with good to excellent yields of ~50–95%. After evaluation of their radical [...] Read more.
The lipophilization of polyphenols (phenolipids) may increase their affinity for membranes, leading to better antioxidant protection. Cholesteryl esters of caffeic, dihydrocaffeic, homoprotocatechuic and protocatechuic acids were synthetized in a one-step procedure with good to excellent yields of ~50–95%. After evaluation of their radical scavenging capacity by the DPPH method and establishing the anodic peak potential by cyclic voltammetry, their antioxidant capacity against AAPH-induced oxidative stress in soybean PC liposomes was determined. Their interaction with the liposomal membrane was studied with the aid of three fluorescence probes located at different depths in the membrane. The cholesteryl esters showed a better or similar radical scavenging capacity to that of α-tocopherol and a lower anodic peak potential than the corresponding parental phenolic acids. Cholesteryl esters were able to protect liposomes to a similar or greater extent than α-tocopherol. However, despite their antiradical capacity and being able to penetrate and orientate in the membrane in a parallel position to phospholipids, the antioxidant efficiency of cholesteryl esters was deeply dependent on the phenolipid polyphenolic moiety structure. When incorporated during liposome preparation, cholesteryl protocatechuate and caffeate showed more than double the activity of α-tocopherol. Thus, cholesteryl phenolipids may protect biomembranes against oxidative stress to a greater extent than α-tocopherol. Full article
(This article belongs to the Special Issue Research Progress of Surfactants)
Show Figures

Graphical abstract

20 pages, 3392 KiB  
Article
Anticoagulant Effect of Snow mountain garlic: In Vitro Evaluation of Aqueous Extract
by Isabel Clark-Montoya, Yolanda Terán-Figueroa, Denisse de Loera, Darío Gaytán-Hernández, Jorge Alejandro Alegría-Torres and Rosa del Carmen Milán-Segovia
Molecules 2024, 29(20), 4958; https://doi.org/10.3390/molecules29204958 - 20 Oct 2024
Viewed by 868
Abstract
Snow mountain garlic is traditionally eaten by Himalayan locals for its medicinal properties. Although different species of the genus Allium are known to have other biological effects, such as antiplatelet and antithrombotic activities, little is known about the anticoagulant effect of Snow mountain [...] Read more.
Snow mountain garlic is traditionally eaten by Himalayan locals for its medicinal properties. Although different species of the genus Allium are known to have other biological effects, such as antiplatelet and antithrombotic activities, little is known about the anticoagulant effect of Snow mountain garlic, a member of the genus Allium. Therefore, the present study examined the in vitro anticoagulant effect of the aqueous extract, the lyophilized aqueous extract, and the isoflavone extract from the lyophilized aqueous extract of Snow mountain garlic in samples from 50 human blood donors. Compared to the control, concentrations of 25, 12.5, and 6.25 mg/100 µL lengthened the clotting times of prothrombin, and concentrations of 25 and 12.5 mg/100 µL lengthened the activated partial thromboplastin time (p ˂ 0.05). The isoflavone extract from the lyophilized aqueous extract containing isoflavones, organosulfur compounds, a polyphenol, and a steroid glycoside showed a significant effect (p ˂ 0.05) on the prothrombin time and the activated partial thromboplastin time at a dose of 20 µL (volume) compared to the control. The results regarding the use of Snow mountain garlic as a preventive measure and aid in treating thromboembolic disease are promising. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—2nd Edition)
Show Figures

Graphical abstract

25 pages, 6055 KiB  
Article
Thiazolidinedione-Conjugated Lupeol Derivatives as Potent Anticancer Agents Through a Mitochondria-Mediated Apoptotic Pathway
by Siqi Deng, Yinxu Zhao, Xiaoshan Guo, Xian Hong, Gang Li, Yuchun Wang, Qingyi Li, Ming Bu and Ming Wang
Molecules 2024, 29(20), 4957; https://doi.org/10.3390/molecules29204957 - 20 Oct 2024
Viewed by 1012
Abstract
To improve the potential of lupeol against cancer cells, a privileged structure, thiazolidinedione, was introduced into its C-3 hydroxy group with ester, piperazine-carbamate, or ethylenediamine as a linker, and three series of thiazolidinedione-conjugated compounds (6ai, 9ai, [...] Read more.
To improve the potential of lupeol against cancer cells, a privileged structure, thiazolidinedione, was introduced into its C-3 hydroxy group with ester, piperazine-carbamate, or ethylenediamine as a linker, and three series of thiazolidinedione-conjugated compounds (6ai, 9ai, and 12ai) were prepared. The target compounds were evaluated for their cytotoxic activities against human lung cancer A549, human breast cancer MCF-7, human hepatocarcinoma HepG2, and human hepatic LO2 cell lines, and the results revealed that most of the compounds displayed improved potency over lupeol. Compound 12i exhibited significant activity against the HepG2 cell line, with an IC50 value of 4.40 μM, which is 9.9-fold more potent than lupeol (IC50 = 43.62 μM). Mechanistic studies suggested that 12i could induce HepG2 cell apoptosis, as evidenced by AO/EB staining and annexin V-FITC/propidium iodide dual staining assays. Western blot analysis suggested that compound 12i can upregulate Bax expression, downregulate Bcl-2 expression, and activate the mitochondria-mediated apoptotic pathway. Collectively, compound 12i is worthy of further investigation to support the discovery of effective agents against cancer. Full article
(This article belongs to the Special Issue Anticancer Drug Discovery and Development II)
Show Figures

Graphical abstract

22 pages, 3125 KiB  
Article
Longitudinal and Transverse 1H Nuclear Magnetic Resonance Relaxivities of Lanthanide Ions in Aqueous Solution up to 1.4 GHz/33 T
by Rami Nasser Din, Aiswarya Chalikunnath Venu, Thomas Rudszuck, Alicia Vallet, Adrien Favier, Annie K. Powell, Gisela Guthausen, Masooma Ibrahim and Steffen Krämer
Molecules 2024, 29(20), 4956; https://doi.org/10.3390/molecules29204956 - 19 Oct 2024
Viewed by 1230
Abstract
The longitudinal and transverse nuclear magnetic resonance relaxivity dispersion (NMRD) of 1H in water induced by the paramagnetic relaxation enhancement (PRE) of dissolved lanthanide ions (Ln3+) can become very strong. Longitudinal and transverse 1H NMRD for Gd3+, [...] Read more.
The longitudinal and transverse nuclear magnetic resonance relaxivity dispersion (NMRD) of 1H in water induced by the paramagnetic relaxation enhancement (PRE) of dissolved lanthanide ions (Ln3+) can become very strong. Longitudinal and transverse 1H NMRD for Gd3+, Dy3+, Er3+ and Ho3+ were measured from 20 MHz/0.47 T to 1382 MHz/32.5 T, which extended previous studies by a factor of more than two in the frequency range. For the NMRD above 800 MHz, we used a resistive magnet, which exhibits reduced field homogeneity and stability in comparison to superconducting and permanent NMR magnets. These drawbacks were addressed by dedicated NMRD methods. In a comparison of NMRD measurements between 800 MHz and 950 MHz performed in both superconducting and resistive magnets, it was found that the longitudinal relaxivities were almost identical. However, the magnetic field fluctuations of the resistive magnet strongly perturbed the transverse relaxation. The longitudinal NMRDs are consistent with previous work up to 600 MHz. The transverse NMRD nearly scales with the longitudinal one with a factor close to one. The data can be interpreted within a PRE model that comprises the dipolar hyperfine interactions between the 1H and the paramagnetic ions, as well as a Curie spin contribution that is dominant at high magnetic fields for Dy3+, Er3+ and Ho3+. Our findings provide a solid methodological basis and valuable quantitative insights for future high-frequency NMRD studies, enhancing the measurement accuracy and applicability of PRE models for paramagnetic ions in aqueous solutions. Full article
(This article belongs to the Special Issue Advanced Magnetic Resonance Methods in Materials Chemistry Analysis)
Show Figures

Graphical abstract

14 pages, 5545 KiB  
Article
Heat Transfer in Carbon-Nanotube Dispersions: A Simulation Study of the Role of Nanotube Morphology and Connectivity
by Panagiota V. Polydoropoulou and Vasilis N. Burganos
Molecules 2024, 29(20), 4955; https://doi.org/10.3390/molecules29204955 - 19 Oct 2024
Viewed by 861
Abstract
Simulation of the behavior of carbon nanotubes (CNTs) can become a very challenging task considering their complicated shape and large aspect ratio. This study aims to elucidate the role of CNT shape, length, and connectivity during heat transfer in CNT dispersions through a [...] Read more.
Simulation of the behavior of carbon nanotubes (CNTs) can become a very challenging task considering their complicated shape and large aspect ratio. This study aims to elucidate the role of CNT shape, length, and connectivity during heat transfer in CNT dispersions through a three-dimensional (3D) simulator. Three characteristic shapes for the CNTs are considered, namely, straight, moderately curved, and strongly curved. The results reveal that the commonly used assumption of viewing CNTs as straight cylinders leads to significant overestimation of the overall medium conductivity. The CNT length has an important effect on the nanofluid conductivity for all types of CNT shapes considered here. In addition, use of CNTs with higher conductivity than a certain value appears to have no further beneficial effect, thus relaxing the need for extremely pure or single-wall CNTs. On the contrary, the conductivity remains a strong function of the CNT concentration and may be even increased upon organization of CNTs into loose clusters. The overall approach and concept can be extended to CNT composites in a straightforward manner. Full article
Show Figures

Figure 1

17 pages, 2054 KiB  
Article
A Zebrafish Embryo Model to Screen Potential Therapeutic Compounds in Sapindaceae Poisoning
by Clovis P. Wouters, Benjamin Klein, Nicholas Price, François Boemer, Marianne L. Voz and Dominique-Marie Votion
Molecules 2024, 29(20), 4954; https://doi.org/10.3390/molecules29204954 - 19 Oct 2024
Viewed by 636
Abstract
Hypoglycin A (HGA) and methylenecyclopropylglycine (MCPrG) are protoxins produced by Sapindaceae plants, particularly Acer pseudoplatanus, and are responsible for causing atypical myopathy (AM) in equids. These protoxins metabolise into toxic compounds, such as methylenecyclopropylacetyl-CoA (MCPA-CoA), which alters energy metabolism and induces severe [...] Read more.
Hypoglycin A (HGA) and methylenecyclopropylglycine (MCPrG) are protoxins produced by Sapindaceae plants, particularly Acer pseudoplatanus, and are responsible for causing atypical myopathy (AM) in equids. These protoxins metabolise into toxic compounds, such as methylenecyclopropylacetyl-CoA (MCPA-CoA), which alters energy metabolism and induces severe rhabdomyolysis. Currently, no specific treatment exists for this poisoning, in vitro models fail to reproduce HGA’s toxic effects on equine primary myoblasts, and mammalian models are impractical for large-scale drug screening. This study aimed to develop a zebrafish embryo model for screening therapeutic compounds against AM. Zebrafish embryos were exposed to various concentrations of HGA, MCPrG, and methylenecyclopropylacetate (MCPA) for 72 h. MCPrG did not induce toxicity, while HGA and MCPA showed median lethal concentration (LC50) values of 1.7 µM and 1 µM after 72 h, respectively. The highest levels of the conjugated metabolite MCPA–carnitine were detected 24 h after HGA exposure, and the acylcarnitines profile was highly increased 48 h post-exposure. Isovaleryl-/2- methylbutyrylcarnitine levels notably rose after 24 h, suggesting potential exposition biomarkers. Glycine and carnitine effectively reduced mortality, whereas riboflavin showed no protective effect. These findings suggest that the zebrafish embryo represents a valuable model for identifying therapeutic compounds for Sapindaceae poisoning. Full article
(This article belongs to the Special Issue Veterinary Drugs—2nd Edition)
Show Figures

Figure 1

12 pages, 9190 KiB  
Article
Biomass-Derived-Carbon-Supported Spinel Cobalt Molybdate as High-Efficiency Electrocatalyst for Oxygen Evolution Reaction
by Baoli Wang, Xiujiu Yang, Yan Chen, Jiahan Wang, Mingguo Lan, Kai Tang and Feng Yang
Molecules 2024, 29(20), 4953; https://doi.org/10.3390/molecules29204953 - 19 Oct 2024
Viewed by 754
Abstract
Ananas comosus leaves were converted to a porous graphitized carbon (GPLC) material via a high-temperature pyrolysis method by employing iron salt as a catalyst. A cobalt molybdate (CoMoO4)-and-GPLC composite (CoMoO4/GPLC) was then prepared by engineering CoMoO4 nanorods in [...] Read more.
Ananas comosus leaves were converted to a porous graphitized carbon (GPLC) material via a high-temperature pyrolysis method by employing iron salt as a catalyst. A cobalt molybdate (CoMoO4)-and-GPLC composite (CoMoO4/GPLC) was then prepared by engineering CoMoO4 nanorods in situ, grown on GPLC. N2 adsorption–desorption isothermal curves and a pore size distribution curve verify that the proposed composite possesses a porous structure and a large specific surface area, which are favorable for charge and reactant transport and the rapid escape of O2 bubbles. Consequently, the as-synthesized CoMoO4/GPLC shows low overpotentials of 289 mV and 399 mV to afford the current densities of 10 mA cm−2 and 100 mA cm−2 towards the oxygen evolution reaction (OER), which is superior to many CoMoO4-based catalysts in previous studies. In addition, the decrease in current density is particularly small, with a reduction rate of 3.2% after a continuous OER procedure for 30 h, indicating its good stability. The excellent performance of the CoMoO4/GPLC composite proves that the GPLC carrier can obviously impel the catalytic activity of CoMoO4 by improving electrical conductivity, enhancing mass transport and exposing more active sites of the composite. This work provides an effective strategy for the efficient conversion of waste ananas comosus leaves to a biomass-derived-carbon-supported Co-Mo-based OER electrocatalyst with good performance, which may represent a potential approach to the development of new catalysts for OER, as well as the treatment of waste biomass. Full article
Show Figures

Figure 1

18 pages, 5230 KiB  
Article
Crosslinked Biodegradable Hybrid Hydrogels Based on Poly(ethylene glycol) and Gelatin for Drug Controlled Release
by Zhenzhen Zhao, Zihao Qin, Tianqing Zhao, Yuanyuan Li, Zhaosheng Hou, Hui Hu, Xiaofang Su and Yanan Gao
Molecules 2024, 29(20), 4952; https://doi.org/10.3390/molecules29204952 - 19 Oct 2024
Viewed by 834
Abstract
A series of hybrid hydrogels of poly(ethylene glycol) (PEG) were synthesized using gelatin as a crosslinker and investigated for controlled delivery of the first-generation cephalosporin antibiotic, Cefazedone sodium (CFD). A commercially available 4-arm-PEG–OH was first modified to obtain four-arm-PEG–succinimidyl glutarate (4-arm-PEG–SG), which formed [...] Read more.
A series of hybrid hydrogels of poly(ethylene glycol) (PEG) were synthesized using gelatin as a crosslinker and investigated for controlled delivery of the first-generation cephalosporin antibiotic, Cefazedone sodium (CFD). A commercially available 4-arm-PEG–OH was first modified to obtain four-arm-PEG–succinimidyl glutarate (4-arm-PEG–SG), which formed the gelatin–PEG composite hydrogels (SnNm) through crosslinking with gelatin. To regulate the drug delivery, SnNm hydrogels with various solid contents and crosslinking degrees were prepared. The effect of solid contents and crosslinking degrees on the thermal, mechanical, swelling, degradation, and drug release properties of the hydrogels were intensively investigated. The results revealed that increasing the crosslinking degree and solid content of SnNm could not only enhance the thermal stability, swelling ratio (SR), and compression resistance capacity of SnNm but also prolong the degradation and drug release times. The release kinetics of the SnNm hydrogels were found to follow the first-order model, suggesting that the transport rate of CFD within the matrix of hydrogels is proportional to the concentration of the drug where it is located. Specifically, S1N1-III showed 90% mass loss after 60 h of degradation and a sustained release duration of 72 h. The cytotoxicity assay using the MTT method revealed that cell viability rates of S1N1 were higher than 95%, indicating excellent cytocompatibility. This study offers new insights and methodologies for the development of hydrogels as biomedical composite materials. Full article
(This article belongs to the Special Issue Recent Advances in Porous Materials)
Show Figures

Figure 1

31 pages, 4638 KiB  
Review
The Role of Peptides in Combatting HIV Infection: Applications and Insights
by Naiera M. Helmy and Keykavous Parang
Molecules 2024, 29(20), 4951; https://doi.org/10.3390/molecules29204951 - 19 Oct 2024
Viewed by 1360
Abstract
Peptide-based inhibitors represent a promising approach for the treatment of HIV-1, offering a range of potential advantages, including specificity, low toxicity, and the ability to target various stages of the viral lifecycle. This review outlines the current state of research on peptide-based anti-HIV [...] Read more.
Peptide-based inhibitors represent a promising approach for the treatment of HIV-1, offering a range of potential advantages, including specificity, low toxicity, and the ability to target various stages of the viral lifecycle. This review outlines the current state of research on peptide-based anti-HIV therapies, highlighting key advancements and identifying future research directions. Over the past few years, there has been significant progress in developing synthetic peptide-based drugs that target various stages of the viral life cycle, including entry and replication. These approaches aim to create effective anti-HIV therapies. Additionally, peptides have proven valuable in the development of anti-HIV vaccines. In the quest for effective HIV vaccines, discovering potent antigens and designing suitable vaccine strategies are crucial for overcoming challenges such as low immunogenicity, safety concerns, and increased viral load. Innovative strategies for vaccine development through peptide research are, therefore, a key focus area for achieving effective HIV prevention. This review aims to explore the strategies for designing peptides with anti-HIV activity and to highlight their role in advancing both therapeutic and preventive measures against HIV. Full article
(This article belongs to the Special Issue Strategies in the Design and Development of Antiviral Drugs)
Show Figures

Figure 1

19 pages, 3072 KiB  
Article
Tuning Barrier Properties of Low-Density Polyethylene:  Impact of Amorphous Region Nanostructure on Gas Transmission Rate
by Marta Safandowska, Cezary Makarewicz and Artur Rozanski
Molecules 2024, 29(20), 4950; https://doi.org/10.3390/molecules29204950 - 19 Oct 2024
Viewed by 617
Abstract
This work focused on determining the factors that are of key importance in the oxygen barrier properties of low-density polyethylene (LDPE). It has been shown that, depending on the type and amount of the low-molecular-weight compound (tetracosane, paraffin wax, paraffin oil) introduced into [...] Read more.
This work focused on determining the factors that are of key importance in the oxygen barrier properties of low-density polyethylene (LDPE). It has been shown that, depending on the type and amount of the low-molecular-weight compound (tetracosane, paraffin wax, paraffin oil) introduced into the LDPE matrix, it can contribute to the improvement or deterioration of barrier properties. Tetracosane and paraffin wax incorporated into the LDPE matrix caused a reduction in oxygen permeability parameters compared to neat polyethylene. As their content increased, the barrier properties of the samples towards oxygen also increased. A completely opposite effect was achieved with paraffin oil. The results of comprehensive studies provide evidence that in the case of LDPE blends, two mechanisms are responsible for changing/controlling their transport properties. The first mechanism is associated with changes in the molecular packing in the interlamellar amorphous regions, while the second is related to the crystallinity of the samples. In cases where there are no changes in crystallinity, the density of the amorphous phase becomes the decisive factor in barrier properties, as clearly shown by results assessing chain dynamics. Full article
(This article belongs to the Special Issue Macromolecular Chemistry in Europe)
Show Figures

Graphical abstract

24 pages, 7720 KiB  
Review
Precious Cargo: The Role of Polymeric Nanoparticles in the Delivery of Covalent Drugs
by Daniel Weissberger, Martina H. Stenzel and Luke Hunter
Molecules 2024, 29(20), 4949; https://doi.org/10.3390/molecules29204949 - 19 Oct 2024
Viewed by 866
Abstract
Covalent drugs can offer significant advantages over non-covalent drugs in terms of pharmacodynamics (i.e., target-binding properties). However, the development of covalent drugs is sometimes hampered by pharmacokinetic limitations (e.g., low bioavailability, rapid metabolism and toxicity due to off-target binding). Polymeric nanoparticles offer a [...] Read more.
Covalent drugs can offer significant advantages over non-covalent drugs in terms of pharmacodynamics (i.e., target-binding properties). However, the development of covalent drugs is sometimes hampered by pharmacokinetic limitations (e.g., low bioavailability, rapid metabolism and toxicity due to off-target binding). Polymeric nanoparticles offer a potential solution to these limitations. Delivering covalent drugs via polymeric nanoparticles provides myriad benefits in terms of drug solubility, permeability, lifetime, selectivity, controlled release and the opportunity for synergistic administration alongside other drugs. In this short review, we examine each of these benefits in turn, illustrated through multiple case studies. Full article
(This article belongs to the Special Issue Nanoparticle-Based Drug Delivery Systems)
Show Figures

Figure 1

18 pages, 5234 KiB  
Article
High Fluorescence of Phytochromes Does Not Require Chromophore Protonation
by Sagie Katz, Hoang Trong Phan, Fabian Rieder, Franziska Seifert, Markus Pietzsch, Jan Laufer, Franz-Josef Schmitt and Peter Hildebrandt
Molecules 2024, 29(20), 4948; https://doi.org/10.3390/molecules29204948 - 19 Oct 2024
Viewed by 637
Abstract
Fluorescing proteins emitting in the near-infrared region are of high importance in various fields of biomedicine and applied life sciences. Promising candidates are phytochromes that can be engineered to a small size and genetically attached to a target system for in vivo monitoring. [...] Read more.
Fluorescing proteins emitting in the near-infrared region are of high importance in various fields of biomedicine and applied life sciences. Promising candidates are phytochromes that can be engineered to a small size and genetically attached to a target system for in vivo monitoring. Here, we have investigated two of these minimal single-domain phytochromes, miRFP670nano3 and miRFP718nano, aiming at a better understanding of the structural parameters that control the fluorescence properties of the covalently bound biliverdin (BV) chromophore. On the basis of resonance Raman and time-resolved fluorescence spectroscopy, it is shown that in both proteins, BV is deprotonated at one of the inner pyrrole rings (B or C). This protonation pattern, which is unusual for tetrapyrroles in proteins, implies an equilibrium between a B- and C-protonated tautomer. The dynamics of the equilibrium are slow compared to the fluorescence lifetime in miRFP670nano3 but much faster in miRFP718nano, both in the ground and excited states. The different rates of proton exchange are most likely due to the different structural dynamics of the more rigid and more flexible chromophore in miRFP670nano3 and miRFP718nano, respectively. We suggest that these structural properties account for the quite different fluorescent quantum yields of both proteins. Full article
(This article belongs to the Special Issue Stimuli-Responsive Chromophores and Luminophores—Second Volume)
Show Figures

Graphical abstract

15 pages, 3040 KiB  
Article
Self-DNA in Caenorhabditis elegans Affects the Production of Specific Metabolites: Evidence from LC-MS and Chemometric Studies
by Bruna de Falco, Adele Adamo, Attilio Anzano, Laura Grauso, Fabrizio Carteni, Virginia Lanzotti and Stefano Mazzoleni
Molecules 2024, 29(20), 4947; https://doi.org/10.3390/molecules29204947 - 19 Oct 2024
Viewed by 764
Abstract
The worm Caenorhabditis elegans, with its short lifecycle and well-known genetic and metabolic pathways, stands as an exemplary model organism for biological research. Its simplicity and genetic tractability make it an ideal system for investigating the effects of different conditions on its [...] Read more.
The worm Caenorhabditis elegans, with its short lifecycle and well-known genetic and metabolic pathways, stands as an exemplary model organism for biological research. Its simplicity and genetic tractability make it an ideal system for investigating the effects of different conditions on its metabolism. The chemical analysis of this nematode was performed to identify specific metabolites produced by the worms when fed with either self- or nonself-DNA. A standard diet with OP50 feeding was used as a control. Different development stages were sampled, and their chemical composition was assessed by liquid chromatography–mass spectrometry combined with chemometrics, including both principal component analysis and orthogonal partial least squares discriminant analysis tools. The obtained data demonstrated that self-DNA-treated larvae, when arrested in their cycle, showed significant decreases in dynorphin, an appetite regulator of the nematode, and in N-formyl glycine, a known longevity promoter in C. elegans. Moreover, a substantial decrease was also recorded in the self-DNA-fed adults for the FMRF amide neuropeptide, an embryogenesis regulator, and for a dopamine derivative modulating nematode locomotion. In conclusion, this study allowed for the identification of key metabolites affected by the self-DNA diet, providing interesting hints on the main molecular pathways involved in its biological inhibitory effects. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Figure 1

Previous Issue
Back to TopTop