Virucidal Coatings Active Against SARS-CoV-2
Abstract
:1. Introduction
2. Results and Discussion
2.1. Modification of Surfaces
2.2. Virus Inactivation
3. Materials and Methods
3.1. Materials
3.2. Chemical Modification of the Elongated Silica Nanoparticle Surface
3.3. Hydrophilization and Chemical Modification of Glass and Silicon Substrates
3.4. Preparation of Glass and Silicon Substrates with Non-Covalently Attached Disinfectants
3.5. Measurement of Static Water Contact Angles
3.6. Attenuated Total Reflection Infrared (ATR-IR) Spectroscopy
3.7. Scanning Electron Microscopy (SEM)
3.8. X-Ray Photoelectron Spectroscopy (XPS)
3.9. Cells
3.10. Virus and Virus Titration
3.11. Assessment of Activity Against SARS-CoV-2
3.12. Cytotoxicity Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Available online: https://time.com/5774747/coronavirus-who-public-health-emergency/ (accessed on 29 June 2024).
- Available online: https://time.com/5791661/who-coronavirus-pandemic-declaration/ (accessed on 29 June 2024).
- Cucinotta, D.; Vanelli, M. WHO declares COVID-19 a pandemic. Acta Biomed. 2020, 91, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Kunduru, K.R.; Kutner, N.; Nassar-Marjiya, E.; Shaheen-Mualim, M.; Rizik, L.; Farah, S. Disinfectants role in the prevention of spreading the COVID-19 and other infectious diseases: The need for functional polymers! Polym. Adv. Technol. 2022, 33, 3853–3861. [Google Scholar] [CrossRef] [PubMed]
- Purwar, T.; Dey, S.; Al-Kayyali, O.Z.A.; Zalar, A.F.; Doosttalab, A.; Castillo, L.; Castano, V.M. Electrostatic spray disinfection using nano-engineered solution on frequently touched surfaces in indoor and outdoor environments. Int. J. Environ. Res. Public Health 2022, 19, 7241. [Google Scholar] [CrossRef]
- Guo, Z.D.; Wang, Z.Y.; Zhang, S.F.; Li, X.; Li, L.; Li, C.; Cui, Y.; Fu, R.-B.; Dong, Y.Z.; Chi, X.Y.; et al. Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, 2020. Emerg. Infect. Dis. 2020, 26, 1586–1591. [Google Scholar] [CrossRef]
- Aboubakr, H.A.; Sharafeldin, T.A.; Goyal, S.M. Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: A review. Transbound. Emerg. Dis. 2021, 68, 296–312. [Google Scholar] [CrossRef] [PubMed]
- Chin, A.W.H.; Chu, J.T.S.; Perera, M.R.A.; Hui, K.P.Y.; Yen, H.-L.; Chan, M.C.W.; Peiris, M.; Poon, L.L.M. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 2020, 1, E10. [Google Scholar] [CrossRef]
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and surface stability of SARS-CoV-2 as com-pared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Przekwas, A.; Chen, Z. Washing hands and the face may reduce COVID-19 infection. Med. Hypotheses 2020, 144, 110261. [Google Scholar] [CrossRef]
- Sportelli, M.C.; Izzi, M.; Kukushkina, E.A.; Hossain, S.I.; Picca, R.A.; Ditaranto, N.; Cioffi, N. Can nanotechnology and materials science help the fight against SARS-CoV-2? Nanomaterials 2020, 10, 802. [Google Scholar] [CrossRef]
- List N Tool: COVID-19 Disinfectants. Available online: https://cfpub.epa.gov/wizards/disinfectants/ (accessed on 25 July 2024).
- Kratzel, A.; Todt, D.; V’kovski, P.; Steiner, S.; Gultom, M.; Thao, T.T.N.; Ebert, N.; Holwerda, M.; Steinmann, J.; Niemeyer, D.; et al. Inactivation of severe acute respiratory syndrome coronavirus 2 by WHO-recommended hand rub formulations and alcohols. Emerg. Infect. Dis. 2020, 26, 1592–1595. [Google Scholar] [CrossRef]
- Leslie, R.A.; Zhou, S.S.; Macinga, D.R. Inactivation of SARS-CoV-2 by commercially available alcohol-based hand sanitizers. Am. J. Infect. Control 2021, 49, 401–402. [Google Scholar] [CrossRef]
- Basak, D.; Deb, S. Sensitivity of SARS-CoV-2 towards alcohols: Potential for alcohol-related toxicity in humans. Life 2021, 11, 1334. [Google Scholar] [CrossRef] [PubMed]
- Hirose, R.; Bandou, R.; Ikegaya, H.; Watanabe, N.; Yoshida, T.; Daidoji, T.; Naito, Y.; Itoh, Y.; Nakaya, T. Disinfectant effectiveness against SARS-CoV-2 and influenza viruses present on human skin: Model-based evaluation. Clin. Microbiol. Infect. 2021, 27, 1042.e1–1042.e4. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Chen, Y.; Wang, L.; Wu, X.; Fan, J.; Li, F.; Zeng, X.; Ge, Y.; Chi, Y.; Zhang, L.; et al. In vitro inactivation of SARS-CoV-2 by commonly used disinfection products and methods. Sci. Rep. 2021, 11, 2418. [Google Scholar] [CrossRef]
- Ogilvie, B.H.; Solis-Leal, A.; Lopez, J.B.; Poole, B.D.; Robinson, R.A.; Berges, B.K. Alcohol-free hand sanitizer and other quaternary ammonium disinfectants quickly and effectively inactivate SARS-CoV-2. J. Hosp. Infect. 2021, 108, 142–145. [Google Scholar] [CrossRef]
- Karamov, E.V.; Larichev, V.F.; Kornilaeva, G.V.; Fedyakina, I.T.; Turgiev, A.S.; Shibaev, A.V.; Molchanov, V.S.; Philippova, O.E.; Khokhlov, A.R. Cationic surfactants as disinfectants against SARS-CoV-2. Int. J. Mol. Sci. 2022, 23, 6645. [Google Scholar] [CrossRef] [PubMed]
- Tamimi, A.H.; Carlino, S.; Gerba, C.P. Long-term efficacy of a self-disinfecting coating in an intensive care unit. Am. J. Infect. Control 2014, 42, 1178–1181. [Google Scholar] [CrossRef] [PubMed]
- Romero Starke, K.; Friedrich, S.; Schubert, M.; Kämpf, D.; Girbig, M.; Pretzsch, A.; Nienhaus, A.; Seidler, A. Are healthcare workers at an increased risk for obstructive respiratory diseases due to cleaning and disinfection agents? A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2021, 18, 5159. [Google Scholar] [CrossRef]
- Nabi, G.; Wang, Y.; Hao, Y.; Khan, S.; Wu, Y.; Li, D. Massive use of disinfectants against COVID-19 poses potential risks to urban wildlife. Environ. Res. 2020, 188, 109916. [Google Scholar] [CrossRef]
- Hora, P.I.; Pati, S.G.; McNamara, P.J.; Arnold, W.A. Increased use of quaternary ammonium compounds during the SARS-CoV-2 pandemic and beyond: Consideration of environmental implications. Environ. Sci. Technol. Lett. 2020, 7, 622–631. [Google Scholar] [CrossRef]
- Poursadeqiyan, M.; Bazrafshan, E.; Arefi, M.F. Review of environmental challenges and pandemic crisis of Covid-19. J. Educ. Health Promot. 2020, 9, 250. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Wu, Z.; Chen, H. Dual-function antibacterial surfaces for biomedical applications. Acta Biomater. 2015, 16, 1–13. [Google Scholar] [CrossRef]
- Druvari, D.; Koromilas, N.D.; Lainioti, G.C.; Bokias, G.; Vasilopoulos, G.; Vantarakis, A.; Baras, I.; Dourala, N.; Kallitsis, J.K. Polymeric quaternary ammonium-containing coatings with potential dual contact-based and release-based antimicrobial activity. ACS Appl. Mater. Interfaces 2016, 8, 35593–35605. [Google Scholar] [CrossRef] [PubMed]
- Baker, N.; Williams, A.J.; Tropsha, A.; Ekins, S. Repurposing quaternary ammonium compounds as potential treatments for COVID-19. Pharm. Res. 2020, 37, 104. [Google Scholar] [CrossRef]
- Molchanov, V.S.; Shibaev, A.V.; Karamov, E.V.; Larichev, V.F.; Kornilaeva, G.V.; Fedyakina, I.T.; Turgiev, A.S.; Philippova, O.E.; Khokhlov, A.R. Antiseptic polymer–surfactant complexes with long-lasting activity against SARS-CoV-2. Polymers 2022, 14, 2444. [Google Scholar] [CrossRef] [PubMed]
- Gentili, V.; Pazzi, D.; Rizzo, S.; Schiuma, G.; Marchini, E.; Papadia, S.; Sartorel, A.; Di Luca, D.; Caccuri, F.; Bignozzi, C.A.; et al. Transparent polymeric formulations effective against SARS-CoV-2 infection. ACS Appl. Mater. Interfaces 2021, 13, 54648–54655. [Google Scholar] [CrossRef] [PubMed]
- Meguid, S.A.; Elzaabalawy, A. Potential of combating transmission of COVID-19 using novel self-cleaning superhydrophobic surfaces: Part I. Protection strategies against fomites. Int. J. Mech. Mater. Des. 2020, 16, 423–431. [Google Scholar] [CrossRef]
- Wei, T.; Tang, Z.; Yu, Q.; Chen, H. Smart antibacterial surfaces with switchable bacteria-killing and bacteria-releasing capabilities. ACS Appl. Mater. Interfaces 2017, 9, 37511–37523. [Google Scholar] [CrossRef]
- Dawson, F.; Yew, W.C.; Orme, B.; Markwell, C.; Ledesma-Aguilar, R.; Perry, J.J.; Shortman, I.M.; Smith, D.; Torun, H.; Wells, G.; et al. Self-assembled, hierarchical structured surfaces for applications in (super)hydrophobic antiviral coatings. Langmuir 2022, 38, 10632–10641. [Google Scholar] [CrossRef]
- Avdeev, M.M.; Chesnokov, Y.M.; Kozlov, S.V.; Shibaev, A.V.; Islamov, A.K.; Philippova, O.E. New long tail gemini surfactant in aqueous solution: Self-assembly, rheological properties and responsiveness to hydrocarbon. J. Mol. Liq. 2024, 403, 124930. [Google Scholar] [CrossRef]
- Kissinger, G.; Kissinger, W. Hydrophilicity of Si wafers for direct bonding. Phys. Status Solidi 1991, 123, 185–192. [Google Scholar] [CrossRef]
- Beamson, G.; Briggs, D. High Resolution XPS of Organic Polymers: The Scienta ESCA 300 Database; Wiley: Hoboken, NJ, USA, 1992; Available online: https://books.google.ru/books?id=SIl5QgAACAAJ (accessed on 27 September 2024).
- Krishna, D.N.G.; Philip, J. Review on surface-characterization applications of X-ray photoelectron spectroscopy (XPS): Recent developments and challenges. Appl. Surf. Sci. Adv. 2022, 12, 100332. [Google Scholar] [CrossRef]
- Narayan, S.R.; Day, J.M.; Thinakaran, H.L.; Herbots, N.; Bertram, M.E.; Cornejo, C.E.; Diaz, T.C.; Kavanagh, K.L.; Culbertson, R.J.; Ark, F.J.; et al. Comparative study of surface energies of native oxides of Si(100) and Si(111) via three liquid contact angle analysis. MRS Adv. 2018, 3, 3379–3390. [Google Scholar] [CrossRef]
- Heinz, H.; Pramanik, C.; Heinz, O.; Ding, Y.; Mishra, R.K.; Marchon, D.; Flatt, R.J.; Estrela-Lopis, I.; Llop, J.; Moya, S.; et al. Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications. Surf. Sci. Rep. 2017, 72, 1–58. [Google Scholar] [CrossRef]
- Barabanova, A.I.; Pryakhina, T.A.; Afanas’ev, E.S.; Zavin, B.G.; Vygodskii, Y.S.; Askadskii, A.A.; Philippova, O.E.; Khokhlov, A.R. Anhydride modified silica nanoparticles: Preparation and characterization. Appl. Surf. Sci. 2012, 258, 3168–3172. [Google Scholar] [CrossRef]
- Zhuravlev, L.T. The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf. A Physicochem. Eng. Asp. 2000, 173, 1–38. [Google Scholar] [CrossRef]
- Chu, Z.; Seeger, S. Superamphiphobic surfaces. Chem. Soc. Rev. 2014, 43, 2784–2798. [Google Scholar] [CrossRef]
- Chang, H.; Tu, K.; Wang, X.; Liu, J. Fabrication of mechanically durable superhydro-phobic wood surfaces using polydimethylsiloxane and silica nanoparticles. RSC Adv. 2015, 5, 30647–30653. [Google Scholar] [CrossRef]
- Wang, S.; Liu, K.; Yao, X.; Jiang, L. Bioinspired Surfaces with superwettability: New insight on theory, design, and applications. Chem. Rev. 2015, 115, 8230–8293. [Google Scholar] [CrossRef]
- Bregnocchi, A.; Jafari, R.; Momen, G. Design strategies for antiviral coatings and surfaces: A review. Appl. Surf. Sci. Adv. 2022, 8, 100224. [Google Scholar] [CrossRef]
- Cassie, A.B.D.; Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546. [Google Scholar] [CrossRef]
- Philippova, O.E.; Hourdet, D.; Audebert, R.; Khokhlov, A.R. Interaction of hydrophobically modified poly(acrylic acid) hydrogels with ionic surfactants. Macromolecules 1996, 29, 2822–2830. [Google Scholar] [CrossRef]
- Philippova, O.E.; Chtcheglova, L.A.; Karybiants, N.S.; Khokhlov, A.R. Two mechanisms of gel/surfactant binding. Polym. Gels Netw. 1998, 6, 409–421. [Google Scholar] [CrossRef]
- De la Maza, A.; Parra, J.L. Solubilizing effects caused by alkyl pyridinium surfactants in phosphatidylcholine liposomes. Chem. Phys. Lipids 1995, 77, 79–87. [Google Scholar] [CrossRef]
- Available online: https://epredia.com/pdf/microscope-slides-coverglass/microscopes-coverslips/ (accessed on 27 September 2024).
- Shimbo, M.; Furukawa, K.; Fukuda, K.; Tanzawa, K. Silicon-to-silicon direct bonding method. J. Appl. Phys. 1986, 60, 2987–2989. [Google Scholar] [CrossRef]
- Askadskii, A.A.; Barabanova, A.I.; Afanasev, E.S.; Kagramanov, N.D.; Mysova, N.E.; Ikonnikov, N.S.; Kharitonova, E.P.; Lokshin, B.V.; Khokhlov, A.R.; Philippova, O.E. Revealing defects hampering the formation of epoxy networks with ex-tremely high thermal properties: Theory and experiments. Polym. Test. 2020, 90, 106645. [Google Scholar] [CrossRef]
- Barabanova, A.I.; Lokshin, B.V.; Kharitonova, E.P.; Afanasyev, E.S.; Askadskii, A.A.; Philippova, O.E. Curing cycloaliphatic epoxy resin with 4-methylhexahydrophthalic anhydride: Catalyzed vs. uncatalyzed reaction. Polymer 2019, 178, 121590. [Google Scholar] [CrossRef]
- Kachala, V.V.; Khemchyan, L.L.; Kashin, A.S.; Orlov, N.V.; Grachev, A.A.; Zalesskiy, S.S.; Ananikov, V.P. Target-oriented analysis of gaseous, liquid, and solid chemical systems with mass spectrometry, nuclear magnetic resonance spectroscopy, and electron microscopy. Russ. Chem. Rev. 2013, 82, 648–685. [Google Scholar] [CrossRef]
- ECDC Technical Report. Standard Laboratory Protocols for SARS-CoV-2 Characterisation. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/Standard_laboratory_protocols_for_SARS-CoV-2_characterisation.pdf (accessed on 27 September 2024).
- Brandolini, M.; Taddei, F.; Marino, M.M.; Grumiro, L.; Scalcione, A.; Turba, M.E.; Gentilini, F.; Fantini, M.; Zannoli, S.; Dirani, G.; et al. Correlating qRT-PCR, dPCR and viral titration for the identification and quantification of SARS-CoV-2: A new approach for infection management. Viruses 2021, 13, 1022. [Google Scholar] [CrossRef]
- Gorchakov, A.A.; Kulemzin, S.V.; Guselnikov, S.V.; Baranov, K.O.; Belovezhets, T.N.; Mechetina, L.V.; Volkova, O.Y.; Najakshin, A.M.; Chikaev, N.A.; Chikaev, A.N.; et al. Isolation of a panel of ultra-potent human antibodies neutralizing SARS-CoV-2 and viral variants of concern. Cell Discov. 2021, 7, 96. [Google Scholar] [CrossRef]
- Bullen, C.K.; Davis, S.L.; Looney, M.M. Quantification of infectious SARS-CoV-2 by the 50% tissue culture infectious dose endpoint dilution assay. Methods Mol. Biol. 2022, 2452, 131–146. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Cai, X.; Gu, C.; Zhang, R.; Han, W.; Qian, Y.; Wang, Y.; Xu, W.; Wu, Y.; Cheng, X.; et al. Survival of SARS-COV-2 under liquid medium, dry filter paper and acidic conditions. Cell Discov. 2020, 6, 57. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, S.; Patil, H.P.; Mhaske, S.T.; Palkar, S.; Lalwani, S.; Mishra, A.C.; Arankalle, V.A. Isolation and genetic characterization of SARS-CoV-2 from Indian patients in a single family without H/O travel abroad. Virus Genes 2021, 57, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.; Saunders, V. Virology: Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2007; p. 23. [Google Scholar]
- Barltrop, J.A.; Owen, T.C.; Cory, A.H.; Cory, J.G. 5-(3-carboxymethoxyphenyl)-2-(4,5-dimethylthiazolyl)-3-(4-sulfophenyl)tetrazolium, inner salt (MTS) and related analogs of 3-(4,5-dimethylthiazolyl)-2,5-diphenyltetrazolium bromide (MTT) reducing to purple water-soluble formazans as cell-viability indicators. Bioorg. Med. Chem. Lett. 1991, 1, 611–614. [Google Scholar] [CrossRef]
- Berridge, M.V.; Tan, A.S. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): Subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch. Biochem. Biophys. 1993, 303, 474–482. [Google Scholar] [CrossRef]
- Reed, L.J.; Muench, H. A simple method of estimating fifty percent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
- Lindenbach, B.D. Measuring HCV infectivity produced in cell culture and in vivo. Methods Mol. Biol. 2009, 510, 329–336. [Google Scholar] [CrossRef]
- Forterre, P. Defining life: The virus viewpoint. Orig. Life Evol. Biosph. 2010, 40, 151–160. [Google Scholar] [CrossRef]
- Koonin, E.V.; Starokadomskyy, P. Are viruses alive? The replicator paradigm sheds decisive light on an old but misguided question. Stud. Hist. Philos. Biol. Biomed. Sci. 2016, 59, 125–134. [Google Scholar] [CrossRef]
- Xiao, S.; Yuan, Z.; Huang, Y. Disinfectants against SARS-CoV-2: A Review. Viruses 2022, 14, 1721. [Google Scholar] [CrossRef]
- Tarka, P.; Nitsch-Osuch, A. Evaluating the virucidal activity of disinfectants according to European Union standards. Viruses 2021, 13, 534. [Google Scholar] [CrossRef] [PubMed]
Sample | Substrate Material | Type of Surfactant Binding to the Surface * | Type of Surface | Stages of Surface Modification | ||
---|---|---|---|---|---|---|
Grafting DTSAC | Application of Modified SiO2 NPs by Spin-Coating | Application of BAC | ||||
G_BAC | glass | noncov | flat | - | - | + |
C18G | glass | cov | flat | + | - | - |
C18G_BAC | glass | cov + noncov | flat | + | - | + |
C18G_NP | glass | cov | structured | + | + | - |
C18G_NP_BAC | glass | cov + noncov | structured | + | + | + |
C18Si | Si | cov | flat | + | - | - |
C18Si_NP | Si | cov | structured | + | + | - |
Sample | Elements, % | Method | ||||
---|---|---|---|---|---|---|
Si | C | N | O | H | ||
C18G | 17.2 | 42.9 | 1.3 | 37.8 | XPS | |
C18Si | 18.9 | 58.5 | 1.1 | 21.5 | XPS | |
NPs | 7.54 | 0.28 | 1.98 | Elemental analysis |
Sample | Parameters | Peak 1 | Peak 2 | Peak 3 |
---|---|---|---|---|
C18G | Eb, eV | 402.5 | 399.7 | - |
W, eV | 1.77 | 1.93 | - | |
Irel | 0.6 | 0.4 | - | |
C18Si | Eb, eV | 402.3 | 399.9 | 398.7 |
W, eV | 1.1 | 1.37 | 1.64 | |
Irel | 0.41 | 0.47 | 0.12 |
Sample | CC50, mM |
---|---|
BAC | 0.3 |
DTSAC | 4.2 |
C18-4-C18 | 0.8 |
C18-4-C18 with added NPs * | 3.4 |
Sample | Disinfectant Grafting Density, Group/nm2 | Contact Time, min | Virus Titer | Inhibition Coefficient IC, % | ||
---|---|---|---|---|---|---|
Control Ac | Experiment Ae | Log10 Reduction A | ||||
Flat surfaces | ||||||
C18G | - | 60 | 7.3 | 6.9 | 0.4 | 5.2 |
C18G_BAC | 290 | 5 | 7.3 | 0.0 | 7.3 | 100 |
60 | 7.0 | 0.0 | 7.0 | 100 | ||
G_BAC1 | 1 | 60 | 7.0 | 7.0 | 0.0 | 0 |
G_BAC2 | 10 | 60 | 7.0 | 0.0 | 7.0 | 100 |
G_BAC3 | 290 | 5 | 8.3 | 0.0 | 8.3 | 100 |
60 | 7.0 | 0.0 | 7.0 | 100 | ||
G_C18-4-C18 | 1 | 60 | 7.0 | 4.7 | 2.3 | 32.9 |
C18Si | 1 | 60 | 6.0 | 4.75 | 1.25 | 20.8 |
Unmodified G | 0 | 60 | 7.7 | 7.7 | 0.0 | 0 |
Structured surfaces | ||||||
C18G_NP | 2.3 | 60 | 7.0 | 6.3 | 0.7 | 10.0 |
C18G_NP_BAC | 290 | 5 | 7.3 | 2.0 | 5.3 | 72.6 |
60 | 7.0 | 0.0 | 7.0 | 100 | ||
G_NP_BAC | 290 | 5 | 8.3 | 0.0 | 8.3 | 100 |
C18Si_NP | 2.3 | 60 | 6.0 | 4.75 | 1.25 | 20.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barabanova, A.I.; Karamov, E.V.; Larichev, V.F.; Kornilaeva, G.V.; Fedyakina, I.T.; Turgiev, A.S.; Naumkin, A.V.; Lokshin, B.V.; Shibaev, A.V.; Potemkin, I.I.; et al. Virucidal Coatings Active Against SARS-CoV-2. Molecules 2024, 29, 4961. https://doi.org/10.3390/molecules29204961
Barabanova AI, Karamov EV, Larichev VF, Kornilaeva GV, Fedyakina IT, Turgiev AS, Naumkin AV, Lokshin BV, Shibaev AV, Potemkin II, et al. Virucidal Coatings Active Against SARS-CoV-2. Molecules. 2024; 29(20):4961. https://doi.org/10.3390/molecules29204961
Chicago/Turabian StyleBarabanova, Anna I., Eduard V. Karamov, Viktor F. Larichev, Galina V. Kornilaeva, Irina T. Fedyakina, Ali S. Turgiev, Alexander V. Naumkin, Boris V. Lokshin, Andrey V. Shibaev, Igor I. Potemkin, and et al. 2024. "Virucidal Coatings Active Against SARS-CoV-2" Molecules 29, no. 20: 4961. https://doi.org/10.3390/molecules29204961
APA StyleBarabanova, A. I., Karamov, E. V., Larichev, V. F., Kornilaeva, G. V., Fedyakina, I. T., Turgiev, A. S., Naumkin, A. V., Lokshin, B. V., Shibaev, A. V., Potemkin, I. I., & Philippova, O. E. (2024). Virucidal Coatings Active Against SARS-CoV-2. Molecules, 29(20), 4961. https://doi.org/10.3390/molecules29204961