A Review of Stoichiometric Nickel Sulfide-Based Catalysts for Hydrogen Evolution Reaction in Alkaline Media
Abstract
:1. Introduction
2. Mechanisms of HER in Alkaline Media
3. Stoichiometric Nickel Sulfide-Based Catalysts for HER
3.1. NiS-Based Catalysts
3.1.1. Hexagonal NiS-Based Catalysts
3.1.2. Rhombohedral NiS-Based Catalysts
3.2. NiS2-Based Catalysts
3.3. Ni3S2-Based Catalysts
3.4. Ni3S4-Based Catalysts
3.5. Ni9S8-Based Catalysts
3.6. Heterostructured Catalysts Between Nickel Sulfides
4. Summary and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rogelj, J.; Geden, O.; Cowie, A.; Reisinger, A. Net-zero emissions targets are vague: Three ways to fix. Nature 2021, 591, 365–368. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.J.; Lewis, N.S.; Shaner, M.; Aggarwal, S.; Arent, D.; Azevedo, I.L.; Benson, S.M.; Bradley, T.; Brouwer, J.; Chiang, Y.M.; et al. Net-zero emissions energy systems. Science 2018, 360, 1419. [Google Scholar] [CrossRef] [PubMed]
- Le, P.A.; Trung, V.D.; Nguyen, P.L.; Bac Phung, T.V.; Natsuki, J.; Natsuki, T. The current status of hydrogen energy: An overview. RSC Adv. 2023, 13, 28262–28287. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, B.; Shen, H.; Yin, Y.; Liu, L.; Ma, Y.; Wang, X.; Xiao, C.; Kong, J.; Ding, S. Self-supported nickel nitride nanosheets as highly efficient electrocatalysts for hydrogen evolution. Appl. Surf. Sci. 2020, 503, 144143. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, X.; Wang, X.; Liu, F.; Ren, J.; Wang, H.; Wang, R. Kirkendall effect Strengthened-Superhydrophilic/superaerophobic Co-Ni3N/NF heterostructure as electrode catalyst for High-current hydrogen production. J. Colloid Interface Sci. 2023, 636, 657–667. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Jo, T.H.; Lee, M.H.; Kawashima, K.; Mullins, C.B.; Lim, H.-K.; Youn, D.H. Highly active and stable nickel–molybdenum nitride (Ni2Mo3N) electrocatalyst for hydrogen evolution. J. Mater. Chem. A 2021, 9, 4945–4951. [Google Scholar] [CrossRef]
- Hwang, J.Y.; Kim, J.Y.; Youn, D.H. In-situ construction of Mo2C–MoC heterostructure on Ni foam for efficient hydrogen evolution in alkaline media. Int. J. Hydrogen Energy 2024, 49, 58–66. [Google Scholar] [CrossRef]
- Diaz-Coello, S.; Winkler, D.; Griesser, C.; Moser, T.; Rodriguez, J.L.; Kunze-Liebhauser, J.; Garcia, G.; Pastor, E. Highly Active W2C-Based Composites for the HER in Alkaline Solution: The Role of Surface Oxide Species. ACS Appl. Mater. Interfaces 2024, 16, 21877–21884. [Google Scholar] [CrossRef]
- Youn, D.H.; Han, S.; Kim, J.Y.; Kim, J.Y.; Park, H.; Choi, S.H.; Lee, J.S. Highly Active and Stable Hydrogen Evolution Electrocatalysts Based on Molybdenum Compounds on Carbon Nanotube–Graphene Hybrid Support. ACS Nano 2014, 8, 5164–5173. [Google Scholar] [CrossRef]
- Liu, S.; Li, Z.; Chang, Y.; Gyu Kim, M.; Jang, H.; Cho, J.; Hou, L.; Liu, X. Substantial Impact of Built-in Electric Field and Electrode Potential on the Alkaline Hydrogen Evolution Reaction of Ru-CoP Urchin Arrays. Angew. Chem., Int. Ed. 2024, 63, e202400069. [Google Scholar] [CrossRef]
- Boppella, R.; Tan, J.; Yang, W.; Moon, J. Homologous CoP/NiCoP Heterostructure on N-Doped Carbon for Highly Efficient and pH-Universal Hydrogen Evolution Electrocatalysis. Adv. Funct. Mater. 2018, 29, 1807976. [Google Scholar] [CrossRef]
- Lee, M.H.; Youn, D.H.; Lee, J.S. Nanostructured molybdenum phosphide/N-doped carbon nanotube-graphene composites as efficient electrocatalysts for hydrogen evolution reaction. Appl. Catal. A 2020, 594, 117451. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Gao, Y.; Wang, H. Transition metal (Fe, Co, Ni) doping enhanced monolith catalysts of 1T−MoS2/Mo for the large-current hydrogen evolution reaction. Int. J. Hydrogen Energy 2024, 56, 75–83. [Google Scholar] [CrossRef]
- Qian, Y.; Sun, Y.; Zhang, F.; Luo, X.; Li, K.; Shen, L.; Shi, H.; Kang, D.J.; Pang, H. In situ construction of layered transition metal phosphides/sulfides heterostructures for efficient hydrogen evolution in acidic and alkaline media. Chem. Eng. J. 2024, 490, 151693. [Google Scholar] [CrossRef]
- Youn, D.H.; Jang, J.-W.; Kim, J.Y.; Jang, J.S.; Choi, S.H.; Lee, J.S. Fabrication of graphene-based electrode in less than a minute through hybrid microwave annealing. Sci. Rep. 2014, 4, 5492. [Google Scholar] [CrossRef]
- Ali Shah, S.; Sayyar, R.; Xu, L.; Sun, H.; Khan, I.; Guo, J.; Shen, X.; Hussain, S.; Yuan, A.; Ullah, H. In-situ synthesis of NiS2 nanoparticles/MoS2 nanosheets hierarchical sphere anchored on reduced graphene oxide for enhanced electrocatalytic hydrogen evolution reaction. J. Colloid Interface Sci. 2022, 624, 150–159. [Google Scholar] [CrossRef]
- Khan, H.; Shah, S.A.; Rehman, W.U.; Chen, F. CoS2 Nanoparticles-Decorated MoS2/rGO Nanosheets as An Efficient Electrocatalyst for Ultrafast Hydrogen Evolution. Adv. Mater. Interface 2021, 9, 2101294. [Google Scholar] [CrossRef]
- Shah, S.A.; Shen, X.; Xie, M.; Zhu, G.; Ji, Z.; Zhou, H.; Xu, K.; Yue, X.; Yuan, A.; Zhu, J.; et al. Nickel@Nitrogen-Doped Carbon@MoS2 Nanosheets: An Efficient Electrocatalyst for Hydrogen Evolution Reaction. Small 2019, 15, e1804545. [Google Scholar] [CrossRef]
- Wang, S.; Geng, Z.; Bi, S.; Wang, Y.; Gao, Z.; Jin, L.; Zhang, C. Recent advances and future prospects on Ni3S2-Based electrocatalysts for efficient alkaline water electrolysis. Green Energy Environ. 2024, 9, 659–683. [Google Scholar] [CrossRef]
- Li, Y.; Du, H.; Su, Y.; Zhao, J.; Qu, K.; Zhang, X.; Zhang, Y.; Dong, Y.; Guo, Z. Construction of Heterostructured NiS/NiSe2 and their application in electrocatalytic water splitting. Int. J. Hydrogen Energy 2024, 66, 286–293. [Google Scholar] [CrossRef]
- Zang, Y.; Huang, S.; Yang, B.; Chen, G.; Liu, X.; Zhang, N. Constructing collaborative interface between Mo2N and NiS as efficient bifunctional electrocatalysts for overall water splitting. Appl. Surf. Sci. 2023, 611, 155656. [Google Scholar] [CrossRef]
- Shi, M.; Li, N.; Fu, W.; Sun, G.; Wu, M.; Li, Q.; Shen, W.; Ma, J. Spindle Nanorods of CeO2 and NiS Heterointerface Coated by the NC Layer: A High-Performance Bifunctional Electrocatalyst for Water Splitting. Langmuir 2023, 39, 17929–17938. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhong, W.; Zhang, L.; Liu, G.; Du, Y. MoS2/NiS heterostructure grown on Nickel Foam as highly efficient bifunctional electrocatalyst for overall water splitting. Int. J. Hydrogen Energy 2020, 45, 17329–17338. [Google Scholar] [CrossRef]
- Pitchai, C.; Gopalakrishnan, S.M.; Chen, C.M. Ultra-efficient Nitrogen-Doped Carbon Dots-Supported Nickel Sulfide as a Platinum-Free Electrocatalyst for Overall Water Splitting in Basic Medium. Energy Fuels 2024, 38, 2235–2247. [Google Scholar] [CrossRef]
- Dang, J.; Yun, S.; Zhang, Y.; Yang, G.; Yang, J.; Qiao, D.; Yang, T. Designing nitrogen-enriched heterogeneous NiS@CoNi2S4 embedded in nitrogen-doped carbon with hierarchical 2D/3D nanocage structure for efficient alkaline hydrogen evolution and triiodide reduction. J. Colloid Interface Sci. 2023, 630, 91–105. [Google Scholar] [CrossRef]
- Liu, G.; Thummavichai, K.; Lv, X.; Chen, W.; Lin, T.; Tan, S.; Zeng, M.; Chen, Y.; Wang, N.; Zhu, Y. Defect-Rich Heterogeneous MoS2/rGO/NiS Nanocomposite for Efficient pH-Universal Hydrogen Evolution. Nanomaterials 2021, 11, 662. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, X.; Xin, P.; Wang, H.; Wu, Y.; Gao, C.; He, Q.; Jiang, Y.; Hu, Z.; Huang, S. Interface engineering of NiS@MoS2 core-shell microspheres as an efficient catalyst for hydrogen evolution reaction in both acidic and alkaline medium. J. Alloys Compd. 2021, 853, 157352. [Google Scholar] [CrossRef]
- Shi, C.; Boda, M.A.; Zhao, K.; Zhou, Y.; Ma, H.; Yi, Z. Boosting hydrogen production from alkaline water splitting by regulating interlayer stress via lattice mismatch in NiS/MoS2. Int. J. Hydrogen Energy 2024, 62, 397–404. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Song, W.; Zhang, Y.; Hou, Z.; Zhou, G.; Zhang, Z.; Liu, J. In-situ growth of ReS2/NiS heterostructure on Ni foam as an ultra-stable electrocatalyst for alkaline hydrogen generation. Chem. Eng. J. 2023, 451, 1238905. [Google Scholar] [CrossRef]
- Huang, L.; Li, Z.; Sun, S.; Sun, G.; Li, Y.; Han, S.; Lian, J. NiS/MoS2 complex grown on carbon paper as a bifunctional electrocatalyst for full water splitting. J. Alloys Compd. 2022, 926, 166870. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, K.; Li, W.; Cui, Z.; He, S.-A.; Zhao, S.; Li, J.; He, G.; Shearing, P.R.; Brett, D.J.L. MoS2/NiS core-shell structures for improved electrocatalytic process of hydrogen evolution. J. Power Sources 2020, 472, 228497. [Google Scholar] [CrossRef]
- Prakash, C.; Sahoo, P.; Yadav, R.; Pandey, A.; Singh, V.K.; Dixit, A. Nanoengineered Zn-modified Nickel Sulfide (NiS) as a bifunctional electrocatalyst for overall water splitting. Int. J. Hydrogen Energy 2023, 48, 21969–21980. [Google Scholar] [CrossRef]
- Zhou, H.; Liu, J.; Xu, C. NiFeCr–S/NiS/NF with modified 2D nanosheet array as bifunctional electrocatalysts for overall water splitting. Int. J. Hydrogen Energy 2023, 48, 33088–33097. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, X.; Zong, H.; Xu, H.; Xu, J.; Liu, J. Facile construction Co-doped and CeO2 heterostructure modified NiS2 grown on foamed nickel for high-performance bifunctional water electrolysis catalysts. Int. J. Hydrogen Energy 2024, 51, 314–322. [Google Scholar] [CrossRef]
- Li, G.L.; Miao, Y.Y.; Qiao, X.Y.; Wang, T.Y.; Deng, F. Engineering edge sites based on NiS2/MoS2/CNTs heterojunction catalyst for overall water splitting. Appl. Surf. Sci. 2023, 615, 156309. [Google Scholar] [CrossRef]
- Feng, Y.; Guan, Y.; Zhou, E.; Zhang, X.; Wang, Y. Nanoscale Double-Heterojunctional Electrocatalyst for Hydrogen Evolution. Adv. Sci. 2022, 9, e2201339. [Google Scholar] [CrossRef]
- Zhang, K.; Jia, J.; Tan, L.; Qi, S.; Li, B.; Chen, J.; Li, J.; Lou, Y.; Guo, Y. Morphological and electronic modification of NiS2 for efficient supercapacitors and hydrogen evolution reaction. J. Power Sources 2023, 577, 232239. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, H.; Bei, S.; Bao, K.; Zhang, C.; Xiang, M.; Yu, C.; Dong, S.; Qin, H. Ultralow RuO2 Doped NiS2 Heterojunction as a Multifunctional Electrocatalyst for Hydrogen Evolution linking to Biomass Organics Oxidation. Small 2024, 20, e2310286. [Google Scholar] [CrossRef]
- Zhou, W.; Li, X.; Li, X.; Shao, J.; Yang, H.; Chai, X.; Hu, Q.; He, C. Crafting amorphous VO2–crystalline NiS2 heterostructures as bifunctional electrocatalysts for efficient water splitting: The different cocatalytic function of VO2. Chem. Eng. J. 2023, 470, 144146. [Google Scholar] [CrossRef]
- He, N.; Chen, X.; Fang, B.; Li, Y.; Lu, T.; Pan, L. Zr-MOF/NiS2 hybrids on nickel foam as advanced electrocatalysts for efficient hydrogen evolution. J. Colloid Interface Sci. 2023, 640, 820–828. [Google Scholar] [CrossRef]
- Tong, L.; Liu, Y.; Song, C.; Zhang, Y.; Latthe, S.S.; Liu, S.; Xing, R. (Fe, Ni)S2@MoS2/NiS2 hollow heterostructure nanocubes for high-performance alkaline water electrolysis. Int. J. Hydrogen Energy 2022, 47, 11143–11152. [Google Scholar] [CrossRef]
- Cao, N.; Chen, S.; Di, Y.; Li, C.; Qi, H.; Shao, Q.; Zhao, W.; Qin, Y.; Zang, X. High efficiency in overall water-splitting via Co-doping heterointerface-rich NiS2/MoS2 nanosheets electrocatalysts. Electrochim. Acta 2022, 425, 140674. [Google Scholar] [CrossRef]
- Tong, L.; Song, C.; Liu, Y.; Xing, R.; Sekar, K.; Liu, S. Open and porous NiS2 nanowrinkles grown on non-stoichiometric MoOx nanorods for high-performance alkaline water electrolysis and supercapacitor. Int. J. Hydrogen Energy 2022, 47, 14404–14413. [Google Scholar] [CrossRef]
- Xu, J.; Rong, J.; Zheng, Y.; Zhu, Y.; Mao, K.; Jing, Z.; Zhang, T.; Yang, D.; Qiu, F. Construction of sheet-on-sheet hierarchical MoS2/NiS2 heterostructures as efficient bifunctional electrocatalysts for overall water splitting. Electrochim. Acta 2021, 385, 138438. [Google Scholar] [CrossRef]
- Huang, S.; Jin, Z.; Ning, P.; Gao, C.; Wu, Y.; Liu, X.; Xin, P.; Chen, Z.; Jiang, Y.; Hu, Z.; et al. Synergistically modulating electronic structure of NiS2 hierarchical architectures by phosphorus doping and sulfur-vacancies defect engineering enables efficient electrocatalytic water splitting. Chem. Eng. J. 2021, 420, 127630. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, Y.; Zhang, Y.; Liu, X.; Cao, J.; Zhang, C. Three-dimensional Co–MoS2/Ni3S2/Ni assembly with interfacial engineering and electronic modulation for efficient hydrogen evolution reaction. Int. J. Hydrogen Energy 2024, 67, 42–49. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Fu, W.; Gao, G.; Liu, Y.; Wang, L. Self-templated synthesis of Ni3S2@NiCoN with core-shell structure for effective hydrogen evolution reaction. Int. J. Hydrogen Energy 2024, 59, 1419–1426. [Google Scholar] [CrossRef]
- Hu, M.; Qian, Y.; Yu, S.; Yang, Q.; Wang, Z.; Huang, Y.; Li, L. Amorphous MoS2 Decorated Ni3S2 with a Core-shell Structure of Urchin-Like on Nickel-Foam Efficient Hydrogen Evolution in Acidic and Alkaline Media. Small 2024, 20, e2305948. [Google Scholar] [CrossRef]
- Ha, Q.N.; Susanto Gultom, N.; Yeh, C.H.; Kuo, D.H. One-pot synthesized Li, V co-doped Ni3S2 nanorod arrays as a bifunctional electrocatalyst for industrialization-facile hydrogen production via alkaline exchange membrane water electrolysis. Chem. Eng. J. 2023, 472, 144931. [Google Scholar] [CrossRef]
- Zhang, N.; Li, Y.; Zhang, R.; Huang, S.; Wang, F.; Tang, M.; Liu, J. Tiny Ni3S2 boosting MoS2 hydrogen evolution in alkali by enlarging coupling boundaries and stimulating basal plane. J. Colloid Interface Sci. 2023, 642, 479–487. [Google Scholar] [CrossRef]
- Yang, D.; Cao, L.; Huang, J.; Jiao, G.; Wang, D.; Liu, Q.; Li, G.; He, C.; Feng, L. Reversible active bridging sulfur sites grafted on Ni3S2 nanobelt arrays for efficient hydrogen evolution reaction. J. Colloid Interface Sci. 2023, 649, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Gao, X.; Li, G. Construction of Co2P-Ni3S2 /NF Heterogeneous Structural Hollow Nanowires as Bifunctional Electrocatalysts for Efficient Overall Water Splitting. Small 2023, 19, e2304081. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Tang, Q.; Sheng, M.; You, B.; Jiang, D.-E.; Sun, Y. Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: A case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles. Catal. Sci. Technol. 2016, 6, 1077–1084. [Google Scholar] [CrossRef]
- Zheng, X.; Han, X.; Zhang, Y.; Wang, J.; Zhong, C.; Deng, Y.; Hu, W. Controllable synthesis of nickel sulfide nanocatalysts and their phase-dependent performance for overall water splitting. Nanoscale 2019, 11, 5646–5654. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Dong, J.; An, B.; Su, H.; Teng, Z.; Li, N.; Gao, Y.; Ge, L. Synergistic dual built-in electric fields in 1T-MoS2/Ni3S2/LDH for efficient electrocatalytic overall water splitting reactions. J. Colloid Interface Sci. 2024, 673, 228–238. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lv, W.; Yang, Y.; Yang, M.; Yang, W.; Tao, H.; Wang, Z.; Xiao, X.; Dong, X. One-step hydrothermal synthesis of nanowire-like W/Mo-Ni3S2/NF electrocatalysts for highly efficient hydrogen evolution reactions. J. Alloys Compd. 2024, 995, 174754. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, D.; Liu, P.; Chen, L.; Guo, W.; Gu, T.; Yu, F.; Liu, Y.; Wang, G. Constructing defect-rich S-doped NiMoO4/Ni3S2 2D/2D heterostructures as highly efficient and stable bifunctional electrocatalysts for overall water splitting. J. Alloys Compd. 2024, 970, 172530. [Google Scholar] [CrossRef]
- Du, M.; Ji, Y.; Li, Y.; Liu, S.; Yan, J. Construction of an Internal Charge Field: CoS1.097/Ni3S2 Heterojunction Promotes Efficient Urea Oxidation Reaction. Adv. Funct. Mater. 2024, 34, 2402776. [Google Scholar] [CrossRef]
- Teng, X.; Wang, Z.; Wu, Y.; Zhang, Y.; Yuan, B.; Xu, Y.; Wang, R.; Shan, A. Enhanced alkaline hydrogen evolution reaction of MoO2/Ni3S2 nanorod arrays by interface engineering. Nano Energy 2024, 122, 109299. [Google Scholar] [CrossRef]
- Fang, B.; Jin, J.; Li, Y.; Dang, H.; Shao, M.; Zhao, L.; Yin, N.; Wang, W. Interfacial Electronic Modulation of Mo5N6/Ni3S2 Heterojunction Array Boosts Electrocatalytic Alkaline Overall Water Splitting. Small 2024, 20, e2310825. [Google Scholar] [CrossRef]
- Wang, Z.; Li, B.; Wang, L.; Chu, L.; Yang, M.; Wang, G. Amorphous-crystalline coupling CoS/NixPy/Fe-Ni3S2 heterostructure nanoplate array on NF for efficient overall water splitting. Electrochim. Acta 2023, 462, 142767. [Google Scholar] [CrossRef]
- Zhong, B.; Cheng, B.; Zhu, Y.; Ding, R.; Kuang, P.; Yu, J. Hierarchically porous nickel foam supported Fe-Ni3S2 electrode for high-current-density alkaline water splitting. J. Colloid Interface Sci. 2023, 629, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, B.; Wang, P.; Xu, M.; Wang, D.; Wang, Y.; Zhang, W.; Qu, C.; Feng, M. Modulation of electronic structure of Ni3S2 via Fe and Mo co-doping to enhance the bifunctional electrocatalytic activities for HER and OER. J. Colloid Interface Sci. 2024, 672, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Huang, S.; Chen, L.; Li, Y.; Tang, M.; Pei, Q.; Liu, J. Superhydrophilic/superaerophobic amorphous Ni3S2/NiMoS electrocatalyst for enhanced hydrogen evolution. J. Colloid Interface Sci. 2023, 652, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Poudel, M.B.; Logeshwaran, N.; Kim, A.R.; Karthikeyan, S.C.; Vijayapradeep, S.; Yoo, D.J. Integrated core-shell assembly of Ni3S2 nanowires and CoMoP nanosheets as highly efficient bifunctional electrocatalysts for overall water splitting. J. Alloys Compd. 2023, 960, 170678. [Google Scholar] [CrossRef]
- Wang, X.; Yu, X.; Bai, J.; Yuan, G.; He, P.; Zhu, Y.; Wu, S.; Qin, F.; Ren, L. Interface engineering assisted Fe-Ni3S2/Ni2P heterostructure as a high-performance bifunctional electrocatalyst for OER and HER. Electrochim. Acta 2023, 458, 142524. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, M.; Tian, Y.; Zhao, G.; Huang, J.; Xu, X. In-situ growth of 3D hierarchical gamma-FeOOH/Ni3S2 heterostructure as high performance electrocatalyst for overall water splitting. J. Colloid Interface Sci. 2023, 639, 24–32. [Google Scholar] [CrossRef]
- Li, W.; Sun, Z.; Ge, R.; Li, J.; Li, Y.; Cairney, J.M.; Zheng, R.; Li, Y.; Li, S.; Li, Q.; et al. Nanoarchitectonics of La-Doped Ni3S2/MoS2 Hetetostructural Electrocatalysts for Water Electrolysis. Small Struct. 2023, 4, 2300175. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, X.; Zhao, R.; Gu, M.; Cheng, Y.; Zhang, J. Ni3S2@MoS2@Ni3Si2 Seaweed-like Hybrid Structures In-situ Grown on Ni Foam as Efficient Bifunctional Electrocatalysts. ChemCatChem 2023, 15, e202201412. [Google Scholar] [CrossRef]
- Shi, R.; Yang, J.; Zhou, G. High-index-faceted and electron density-optimized Ni3S2 in hierarchical NiWO4-Ni3S2@NiO/NF nanofibers for robust alkaline electrocatalytic hydrogen evolution. Chem. Eng. J. 2023, 457, 141188. [Google Scholar] [CrossRef]
- He, W.; Zhang, R.; Cao, D.; Li, Y.; Zhang, J.; Hao, Q.; Liu, H.; Zhao, J.; Xin, H.L. Super-Hydrophilic Microporous Ni(OH)x/Ni3S2 Heterostructure Electrocatalyst for Large-Current-Density Hydrogen Evolution. Small 2023, 19, e2205719. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Luo, W.; Gao, Q.; Shen, W.; Jiang, Y.; He, R.; Su, W.; Li, M. Strong electronic coupling induced by synergy of dopant and interface in Ru-Ni3S2/NixPy to boost efficient water splitting. Appl. Surf. Sci. 2023, 637, 157940. [Google Scholar] [CrossRef]
- Wang, Z.; Qian, G.; Yu, T.; Chen, J.; Shen, F.; Luo, L.; Zou, Y.; Yin, S. Carbon encapsulated FeWO4-Ni3S2 nanosheets as a highly active catalyst for overall water splitting at large current density. Chem. Eng. J. 2022, 434, 134669. [Google Scholar] [CrossRef]
- Liu, H.; Cheng, J.; He, W.; Li, Y.; Mao, J.; Zheng, X.; Chen, C.; Cui, C.; Hao, Q. Interfacial electronic modulation of Ni3S2 nanosheet arrays decorated with Au nanoparticles boosts overall water splitting. Appl. Catal. B 2022, 304, 120935. [Google Scholar] [CrossRef]
- Feng, X.; Jiao, Q.; Zhang, J.; Cui, H.; Li, H.; Zhao, Y.; Feng, C. Integrating Amorphous Molybdenum Sulfide Nanosheets with a Co9S8@Ni3S2 Array as an Efficient Electrocatalyst for Overall Water Splitting. Langmuir 2022, 38, 3469–3479. [Google Scholar] [CrossRef]
- Wu, Z.; Feng, Y.; Qin, Z.; Han, X.; Zheng, X.; Deng, Y.; Hu, W. Bimetallic Multi-Level Layered Co-NiOOH/Ni3S2@NF Nanosheet for Hydrogen Evolution Reaction in Alkaline Medium. Small 2022, 18, e2106904. [Google Scholar] [CrossRef]
- Li, R.; Kuang, P.; Wang, L.; Tang, H.; Yu, J. Engineering 2D NiO/Ni3S2 heterointerface electrocatalyst for highly efficient hydrogen production coupled with benzyl alcohol oxidation. Chem. Eng. J. 2022, 431, 134137. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Zhang, W.; Yao, S. A nano-spherical structure Ni3S2/Ni(OH)2 electrocatalyst prepared by one-step fast electrodeposition for efficient and durable water splitting. Int. J. Hydrogen Energy 2022, 47, 14916–14929. [Google Scholar] [CrossRef]
- Guo, D.; Wan, Z.; Fang, G.; Zhu, M.; Xi, B. A Tandem Interfaced Ni3S2-MoS2@TiO2 Composite Fabricated by Atomic Layer Deposition as Efficient HER Electrocatalyst. Small 2022, 18, e2201896. [Google Scholar] [CrossRef]
- Yang, S.; Guo, Y.; Zhao, Y.; Zhang, L.; Shen, H.; Wang, J.; Li, J.; Wu, C.; Wang, W.; Cao, Y.; et al. Construction of Synergistic Ni3S2-MoS2 Nanoheterojunctions on Ni Foam as Bifunctional Electrocatalyst for Hydrogen Evolution Integrated with Biomass Valorization. Small 2022, 18, e2201306. [Google Scholar] [CrossRef]
- Liu, H.; Ouyang, D.; Zhou, Q.; Feng, C. Successional heterostructure MoS2-Ni3S2 nanospheres based on 3D nano-porous Ni: An efficient electrocatalyst for overall water splitting. J. Alloys Compd. 2022, 920, 165243. [Google Scholar] [CrossRef]
- Wu, Q.; Dong, A.; Yang, C.; Ye, L.; Zhao, L.; Jiang, Q. Metal-organic framework derived Co3O4@Mo-Co3S4-Ni3S2 heterostructure supported on Ni foam for overall water splitting. Chem. Eng. J. 2021, 413, 127482. [Google Scholar] [CrossRef]
- Tong, X.; Li, Y.; Pang, N.; Qu, Y.; Yan, C.; Xiong, D.; Xu, S.; Wang, L.; Chu, P.K. Co-doped Ni3S2 porous nanocones as high-performance bifunctional electrocatalysts in water splitting. Chem. Eng. J. 2021, 425, 130455. [Google Scholar] [CrossRef]
- Jin, C.; Zhai, P.; Wei, Y.; Chen, Q.; Wang, X.; Yang, W.; Xiao, J.; He, Q.; Liu, Q.; Gong, Y. Ni(OH)2 Templated Synthesis of Ultrathin Ni3S2 Nanosheets as Bifunctional Electrocatalyst for Overall Water Splitting. Small 2021, 17, e2102097. [Google Scholar] [CrossRef]
- Xu, H.; Liao, Y.; Gao, Z.; Qing, Y.; Wu, Y.; Xia, L. A branch-like Mo-doped Ni3S2 nanoforest as a high-efficiency and durable catalyst for overall urea electrolysis. J. Mater. Chem. A 2021, 9, 3418–3426. [Google Scholar] [CrossRef]
- Chai, H.; Ma, X.; Dang, Y.; Zhang, Y.; Yue, F.; Pang, X.; Wang, G.; Yang, C. Triple roles of Ni(OH)2 promoting the electrocatalytic activity and stability of Ni3S4@Ni(OH)2 in anion exchange membrane water electrolyzers. J. Colloid Interface Sci. 2024, 654, 66–75. [Google Scholar] [CrossRef]
- Shi, Z.; Mao, C.; Zhong, L.; Peng, J.; Liu, M.; Li, H.; Huang, J. Mo-doped Ni3S4 nanosheets grown on carbonized wood as highly efficient and durable electrocatalysts for water splitting. Appl. Catal. B 2023, 339, 123123. [Google Scholar] [CrossRef]
- Ge, J.; Jin, J.; Cao, Y.; Jiang, M.; Zhang, F.; Guo, H.; Lei, X. Heterostructure Ni3S4-MoS2 with interfacial electron redistribution used for enhancing hydrogen evolution. RSC Adv. 2021, 11, 19630–19638. [Google Scholar] [CrossRef]
- Ren, Y.; Zhu, S.; Liang, Y.; Li, Z.; Wu, S.; Chang, C.; Luo, S.; Cui, Z. Hierarchical Ni3S4@MoS2 nanocomposites as efficient electrocatalysts for hydrogen evolution reaction. J. Mater. Sci. Tech. 2021, 95, 70–77. [Google Scholar] [CrossRef]
- Yao, Z.; Wang, J.; Wang, Y.; Xie, T.; Li, C.; Jiang, Z. Boosting electrocatalytic activity toward alkaline hydrogen evolution by strongly coupled ternary Ni3S4/Ni/Ni(OH)2 hybrid. Electrochim. Acta 2021, 382, 138342. [Google Scholar] [CrossRef]
- Gao, Q.; Luo, W.; Ma, X.; Ma, Z.; Li, S.; Gou, F.; Shen, W.; Jiang, Y.; He, R.; Li, M. Electronic modulation and vacancy engineering of Ni9S8 to synergistically boost efficient water splitting: Active vacancy-metal pairs. Appl. Catal. B 2022, 310, 121356. [Google Scholar] [CrossRef]
- Chen, L.; Deng, Z.; Chen, Z.; Wang, X. Building Ni9S8/MoS2 Nanosheets Decorated NiMoO4 Nanorods Heterostructure for Enhanced Water Splitting. Adv. Mater. Interfaces 2021, 8, 2101483. [Google Scholar] [CrossRef]
- Zhang, K.; Duan, Y.; Graham, N.; Yu, W. Unveiling the synergy of polymorph heterointerface and sulfur vacancy in NiS/Ni3S2 electrocatalyst to promote alkaline hydrogen evolution reaction. Appl. Catal. B 2023, 323, 122144. [Google Scholar] [CrossRef]
- Huang, H.; Hu, X.; Hou, Z.; Yang, D.; Xiang, D.; Hu, L. Interfacial construction and lattice distortion-triggered bifunctionality of Mn-NiS/Mn-Ni3S4 for H2 production. Fuel 2022, 328, 125337. [Google Scholar] [CrossRef]
- Chen, M.; Su, Q.; Kitiphatpiboon, N.; Zhang, J.; Feng, C.; Li, S.; Zhao, Q.; Abudula, A.; Ma, Y.; Guan, G. Heterojunction engineering of Ni3S2/NiS nanowire for electrochemical hydrogen evolution. Fuel 2023, 331, 125794. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, X.; Cheng, Y.; Hao, X.; Yang, P. NiS/Ni3S4 decorated double-layered hollow carbon spheres for efficient electrochemical hydrogen evolution reaction and supercapacitor. Electrochim. Acta 2024, 477, 143751. [Google Scholar] [CrossRef]
- Wang, L.; Xue, X.; Luan, Q.; Guo, J.; Chu, L.; Wang, Z.; Li, B.; Yang, M.; Wang, G. Interface engineering of Mo-doped Ni9S8/Ni3S2 multiphase heterostructure nanoflowers by one step synthesis for efficient overall water splitting. J. Colloid Interface Sci. 2023, 634, 563–574. [Google Scholar] [CrossRef]
- Wang, W.; Wang, W.; Xu, Y.; Ren, X.; Liu, X.; Li, Z. Synthesis of Ni3S4/NiS2/FeS2 nanoparticles for hydrogen and oxygen evolution reaction. Appl. Surf. Sci. 2021, 560, 149985. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, W.; Zhang, X.; Hu, S.; Zhang, Z.; Zhou, W.; Liu, H. Multi-interface collaboration of graphene cross-linked NiS-NiS2-Ni3S4 polymorph foam towards robust hydrogen evolution in alkaline electrolyte. Nano Res. 2021, 14, 4857–4864. [Google Scholar] [CrossRef]
- Zhou, B.; Li, J.; Zhang, X.; Guo, J. Engineering P-doped Ni3S2-NiS hybrid nanorod arrays for efficient overall water electrolysis. J. Alloys Compd. 2021, 862, 158391. [Google Scholar] [CrossRef]
- Yang, D.; Cao, L.; Feng, L.; Huang, J.; Feng, Y.; Liu, Q.; He, D.; Wang, J. Controlled Synthesis of V-Doped Heterogeneous Ni3S2/NiS Nanorod Arrays as Efficient Hydrogen Evolution Electrocatalysts. Langmuir 2021, 37, 357–365. [Google Scholar] [CrossRef] [PubMed]
Catalyst | Substrate | Electrolyte | Synthesis Method | Overpotential | Ref | |
---|---|---|---|---|---|---|
η10 | η100 | |||||
NiS/NiSe2 | GC 1) | 1.0 M KOH | Hydrothermal | 155 mV | - | [20] |
Mo2N/NiS | CFP 2) | 1.0 M KOH | Calcination and Hydrothermal | 254 mV | 403 mV * | [21] |
NC 3)/NiS–CeO2 | NF 4) | 1.0 M KOH | Hydrothermal | 47 mV | 139 mV * | [22] |
MoS2/NiS | NF | 1.0 M KOH | Hydrothermal | 87 mV | 189 mV * | [23] |
α–NiS@NDCS 5) | NF | 1.0 M KOH | Hydrothermal | 173 mV | - | [24] |
NiS@CoNi2S4/NC 6) | NF | 1.0 M KOH | Calcination | 126 mV | 210 mV * | [25] |
MoS2/rGO/NiS | GC | 1.0 M KOH | Hydrothermal | 169 mV | 301 mV * | [26] |
NiS@MoS2 | NF | 1.0 M KOH | Calcination and Hydrothermal | 146 mV | - | [27] |
Catalyst | Substrate | Electrolyte | Synthesis Method | Overpotential | Ref | |
---|---|---|---|---|---|---|
η10 | η100 | |||||
NiS/MoS2 | CC 1) | 1.0 M KOH | Electrodeposition and Hydrothermal | 18 mV | 93 mV | [28] |
ReS2/NiS | NF | 1.0 M KOH | Hydrothermal | 78 mV | 181 mV * | [29] |
NiS/MoS2 | CP 2) | 1.0 M KOH | Hydrothermal | 119 mV | 314 mV * | [30] |
MoS2/NiS | NF | 1.0 M KOH | Hydrothermal | 84 mV | 168 mV * | [31] |
Zn–NiS | NF | 1.0 M KOH | Hydrothermal | 208 mV | - | [32] |
NiFeCr–S–NiS | NF | 1.0 M KOH | Calcination and Hydrothermal | 131 mV | 254 mV * | [33] |
Catalyst | Substrate | Electrolyte | Synthesis Method | Overpotential | Ref | |
---|---|---|---|---|---|---|
η10 | η100 | |||||
Co–NiS2–CeO2 | NF | 1.0 M KOH | Calcination and Hydrothermal | 88 mV | 213 mV * | [34] |
NiS2/MoS2/CNTs | GC | 1.0 M KOH | Hydrothermal | 149 mV | 320 mV * | [35] |
NiS2–Ni3C@C | GC | 1.0 M KOH | Calcination and Hydrothermal | 78 mV | 189 mV * | [36] |
V–NiS2 | CC | 1.0 M KOH | Calcination and Hydrothermal | 85 mV | 247 mV * | [37] |
RuO2/NiS2 | NF | 1.0 M KOH | Hydrothermal | 71 mV | - | [38] |
VO2–NiS2 | CC | 1.0 M KOH | Hydrothermal | 96 mV | 225 mV * | [39] |
Zr–MOF/NiS2 | NF | 1.0 M KOH | Calcination | 72 mV | - | [40] |
(Fe, Ni)S2@MoS2/NiS2 | NF | 1.0 M KOH | Calcination and Hydrothermal | 91 mV | 225 mV * | [41] |
Co–NiS2/MoS2 | CFP | 1.0 M KOH | Calcination | 89 mV | 166 mV | [42] |
MoOx@NiS2 | NF | 1.0 M KOH | Calcination and Hydrothermal | 101 mV | 323 mV * | [43] |
MoS2/NiS2 | CC | 1.0 M KOH | Hydrothermal | 80 mV | 175 mV | [44] |
P–NiS2 | NF | 1.0 M KOH | Calcination and Solvothermal | 73 mV | 173 mV * | [45] |
Catalyst | Substrate | Electrolyte | Synthesis Method | Overpotential | Ref | |
---|---|---|---|---|---|---|
η10 | η100 | |||||
Co–MoS2/Ni3S2 | NF | 1.0 M KOH | Hydrothermal | 43 mV | 201 mV | [46] |
Ni3S2@NiCoN | NF | 1.0 M KOH | Calcination and Hydrothermal | 63 mV | 174 mV | [47] |
A–MoS2/Ni3S2 1) | NF | 1.0 M KOH | Hydrothermal | 95 mV | 191 mV | [48] |
Li, V–Ni3S2 | NF | 1.0 M KOH | Hydrothermal | 90 mV | 183 mV | [49] |
Ni3S2/MoS2 | CC | 1.0 M KOH | Hydrothermal | 105 mV * | 189 mV | [50] |
VS4/Ni3S2 | NF | 1.0 M KOH | Solvothermal | 140 mV | 268 mV | [51] |
Co2P–Ni3S2 | NF | 1.0 M KOH | Calcination and Hydrothermal | - | 110 mV | [52] |
1T–MoS2/Ni3S2/LDH | NF | 1.0 M KOH | Electrodeposition and Hydrothermal | 104 mV | 342 mV * | [55] |
W/Mo–Ni3S2 | NF | 1.0 M KOH | Hydrothermal | 136 mV | 271 mV * | [56] |
S–NiMoO4/Ni3S2 | NF | 1.0 M KOH | Electrodeposition and Hydrothermal | 107 mV | 244 mV * | [57] |
CoS1.097/Ni3S2 | NF | 1.0 M KOH | Hydrothermal | 74 mV | - | [58] |
MoO2/Ni3S2 | NF | 1.0 M KOH | Hydrothermal | 74 mV | 200 mV * | [59] |
Mo5N6/Ni3S2 | NF | 1.0 M KOH | Calcination and Hydrothermal | 59 mV | 313 mV * | [60] |
CoS/NixPy/Fe–Ni3S2 | NF | 1.0 M KOH | Calcination and Hydrothermal | 49 mV | 203 mV | [61] |
Fe–Ni3S2 | NF | 1.0 M KOH | Electrodeposition | - | 98 mV | [62] |
Fe–MoS2/Ni3S2 | NF | 1.0 M KOH | Hydrothermal | 74 mV | 235 mV | [63] |
Ni3S2/NiMoS | NF | 1.0 M KOH | Electrodeposition and Hydrothermal | 197 mV | 197 mV | [64] |
CoMoP–Ni3S2 | NF | 1.0 M KOH | Calcination and Hydrothermal | 97 mV | 192 mV * | [65] |
Fe–Ni3S2/Ni2P | NF | 1.0 M KOH | Calcination and Hydrothermal | 112 mV | 198 mV | [66] |
FeOOH/Ni3S2 | NF | 1.0 M KOH | Electrodeposition | 92 mV | 232 mV * | [67] |
La–Ni3S2/MoS2 | NF | 1.0 M KOH | Hydrothermal | - | 154 mV | [68] |
Ni3S2@MoS2@Ni3Si2 | NF | 1.0 M KOH | Hydrothermal | 84 mV | 143 mV * | [69] |
NiWO4–Ni3S2@NiO | NF | 1.0 M KOH | Electrodeposition and Hydrothermal | 89 mV | 210 mV * | [70] |
Ni(OH)x/Ni3S2 | NF | 1.0 M KOH | Electrochemical activation and Hydrothermal | 54 mV | 126 mV | [71] |
Ru–Ni3S2/NixPy | NF | 1.0 M KOH | Calcination and Hydrothermal | 51 mV | 126 mV * | [72] |
FeWO4–Ni3S2@C 2) | NF | 1.0 M KOH | Calcination and Solvothermal | 50 mV | 173 mV * | [73] |
Au–Ni3S2 | NF | 1.0 M KOH | Hydrothermal | 97 mV | 188 mV * | [74] |
MoSx@Co9S8@Ni3S2 | NF | 1.0 M KOH | Hydrothermal | 77 mV | 180 mV * | [75] |
Co–NiOOH/Ni3S2 | NF | 1.0 M KOH | Electrodeposition and Hydrothermal | 87 mV | 203 mV | [76] |
NiO/Ni3S2 | CC | 1.0 M KOH | Electrodeposition | 91 mV | 210 mV * | [77] |
Ni3S2/Ni(OH)2 | NF | 1.0 M KOH | Electrodeposition | 66 mV | 312 mV * | [78] |
(Ni3S2–MoS2)/TiO2 | NF | 1.0 M KOH | ALD 3) and Hydrothermal | 49 mV | 118 mV * | [79] |
Ni3S2–MoS2 | NF | 1.0 M KOH | Solvothermal | 103 mV | 207 mV * | [80] |
MoS2–Ni3S2 | NF | 1.0 M KOH | Hydrothermal and Calcination | 109 mV | 214 mV * | [81] |
Co3O4@Mo–Co3S4–Ni3S2 | NF | 1.0 M KOH | Hydrothermal | 116 mV | 214 mV * | [82] |
Co–Ni3S2 | NF | 1.0 M KOH | ALD and Hydrothermal | 62 mV | 160 mV * | [83] |
Co–Ni3S2 | NF | 1.0 M KOH | Calcination and Hydrothermal | 102 mV (η20) | 158 mV | [84] |
Mo–Ni3S2 | NF | 1.0 M KOH | Hydrothermal | 90 mV | 176 mV * | [85] |
Catalyst | Substrate | Electrolyte | Synthesis Method | Overpotential | Ref | |
---|---|---|---|---|---|---|
η10 | η100 | |||||
Ni3S4@Ni(OH)2 | NF | 1.0 M KOH | Electrodeposition and Hydrothermal | 118 mV | 213 mV | [86] |
Mo–Ni3S4 | CW 1) | 1.0 M KOH | Hydrothermal | 17 mV | 270 mV | [87] |
Ni3S4–MoS2 | NF | 1.0 M KOH | Hydrothermal | 116 mV | - | [88] |
Ni3S4@MoS2 | CC | 1.0 M KOH | Hydrothermal | 97 mV | 174 mV | [89] |
Ni3S4/Ni/Ni(OH)2 | TM 2) | 1.0 M KOH | Electrodeposition | 54 mV | 185 mV * | [90] |
Catalyst | Substrate | Electrolyte | Synthesis Method | Overpotential | Ref | |
---|---|---|---|---|---|---|
η10 | η100 | |||||
Vs–Ru–Ni9S8 | NF | 1.0 M KOH | Hydrothermal | 94 mV | 170 mV * | [91] |
Ni9S8/MoS2@NiMoO4 | NF | 1.0 M KOH | Calcination and Hydrothermal | 190 mV | - | [92] |
Catalyst | Substrate | Electrolyte | Synthesis Method | Overpotential | Ref | |
---|---|---|---|---|---|---|
η10 | η100 | |||||
Mo–NiS/Ni3S2 | NF | 1.0 M KOH | Calcination and Hydrothermal | - | 167 mV | [93] |
Mn–NiS/Mn–Ni3S4 | NF | 1.0 M KOH | Calcination and Electrodeposition | 94 mV | 267 mV | [94] |
Ni3S2@NiS | NF | 1.0 M KOH | Calcination and Hydrothermal | 129 mV | - | [95] |
NiS/Ni3S4 | GC | 1.0 M KOH | Calcination and Hydrothermal | 263 mV | 495 mV * | [96] |
Mo–Ni9S8/Ni3S2 | NF | 1.0 M KOH | Hydrothermal | 116 mV | 240 mV | [97] |
Ni3S4/NiS2/FeS2 | NF | 1.0 M KOH | Hydrothermal | 196 mV | - | [98] |
NiS–NiS2–Ni3S4 | NF | 1.0 M KOH | Calcination and Hydrothermal | 68 mV | - | [99] |
P–Ni3S2–NiS | NF | 1.0 M KOH | Hydrothermal | 141 mV | 376 mV * | [100] |
V–Ni3S2–NiS | NF | 1.0 M KOH | Hydrothermal | 85 mV | 218 mV | [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, Y.; Lee, J.-H.; Youn, D.H. A Review of Stoichiometric Nickel Sulfide-Based Catalysts for Hydrogen Evolution Reaction in Alkaline Media. Molecules 2024, 29, 4975. https://doi.org/10.3390/molecules29204975
Choi Y, Lee J-H, Youn DH. A Review of Stoichiometric Nickel Sulfide-Based Catalysts for Hydrogen Evolution Reaction in Alkaline Media. Molecules. 2024; 29(20):4975. https://doi.org/10.3390/molecules29204975
Chicago/Turabian StyleChoi, Yeji, Jun-Hee Lee, and Duck Hyun Youn. 2024. "A Review of Stoichiometric Nickel Sulfide-Based Catalysts for Hydrogen Evolution Reaction in Alkaline Media" Molecules 29, no. 20: 4975. https://doi.org/10.3390/molecules29204975
APA StyleChoi, Y., Lee, J. -H., & Youn, D. H. (2024). A Review of Stoichiometric Nickel Sulfide-Based Catalysts for Hydrogen Evolution Reaction in Alkaline Media. Molecules, 29(20), 4975. https://doi.org/10.3390/molecules29204975