Innovative Approaches to Large-Area Perovskite Solar Cell Fabrication Using Slit Coating
Abstract
:1. Introduction
2. Scaling up Perovskite Solar Cells: Opportunities and Challenges
3. Fundamentals and Advantages of Slit Coating
3.1. Slit Coating Method
3.2. Advantages of Slit Coating for Large-Area Perovskites
4. Key Advancements in Slit Coating for Perovskites
4.1. Solvent Engineering and Perovskite Deposition Processes
4.2. Equipment Innovations and Process Enhancements
4.3. Enhancing Device Performance Through Additive Technology
4.4. Innovations in Electron and Hole Transport Layers
5. Challenges and Future Prospects
5.1. General Challenges
5.2. Stability Challenges in PSCs
5.3. Future Directions for Slot-Die Coated PSCs
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rong, Y.; Hu, Y.; Mei, A.; Tan, H.; Saidaminov, M.I.; Seok, S.I.; McGehee, M.D.; Sargent, E.H.; Han, H. Challenges for commercializing perovskite solar cells. Science 2018, 361, eaat8235. [Google Scholar] [CrossRef] [PubMed]
- Snaith, H.J. Present status and future prospects of perovskite photovoltaics. Nat. Mater. 2018, 17, 372–376. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Johnston, M.B.; Snaith, H.J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.; Asadpour, R.; Blancon, J.-C.; Stoumpos, C.C.; Durand, O.; Strzalka, J.W.; Chen, B.; Verduzco, R.; Ajayan, P.M.; Tretiak, S.; et al. Light-induced lattice expansion leads to high-efficiency perovskite solar cells. Science 2018, 360, 67–70. [Google Scholar] [CrossRef]
- Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051. [Google Scholar] [CrossRef]
- NREL. Research Cell Efficiency Records. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 13 February 2024).
- Park, N.-G.; Segawa, H. Research Direction toward Theoretical Efficiency in Perovskite Solar Cells. ACS Photonics 2018, 5, 2970–2977. [Google Scholar] [CrossRef]
- Hwang, K.; Jung, Y.-S.; Heo, Y.-J.; Scholes, F.H.; Watkins, S.E.; Subbiah, J.; Jones, D.J.; Kim, D.-Y.; Vak, D. Toward Large Scale Roll-to-Roll Production of Fully Printed Perovskite Solar Cells. Adv. Mater. 2015, 27, 1241–1247. [Google Scholar] [CrossRef]
- Matteocci, F.; Razza, S.; Di Giacomo, F.; Casaluci, S.; Mincuzzi, G.; Brown, T.M.; D’Epifanio, A.; Licoccia, S.; Di Carlo, A. Solid-state solar modules based on mesoscopic organometal halide perovskite: A route towards the up-scaling process. Phys. Chem. Chem. Phys. 2014, 16, 3918–3923. [Google Scholar] [CrossRef]
- Hamukwaya, S.L.; Hao, H.; Zhao, Z.; Dong, J.; Zhong, T.; Xing, J.; Hao, L.; Mashingaidze, M.M. A review of recent developments in preparation methods for large-area perovskite solar cells. Coatings 2022, 12, 252. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, L.; Zhang, Y.; Gao, H.; Yan, H. Large-area perovskite solar cells—A review of recent progress and issues. RSC Adv. 2018, 8, 10489–10508. [Google Scholar] [CrossRef]
- Ye, T.; Han, G.; Surendran, A.; Li, J.; Koh, T.M.; Mhaisalkar, S.G.; Leong, W.L. Large area, high efficiency and stable perovskite solar cells enabled by fine control of intermediate phase. Sol. Energy Mater. Sol. Cells 2019, 201, 110113. [Google Scholar] [CrossRef]
- Park, M.; Cho, W.; Lee, G.; Hong, S.C.; Kim, M.-C.; Yoon, J.; Ahn, N.; Choi, M. Highly Reproducible Large-Area Perovskite Solar Cell Fabrication via Continuous Megasonic Spray Coating of CH3NH3PbI3. Small 2019, 15, 1804005. [Google Scholar] [CrossRef] [PubMed]
- Back, H.; Kim, J.; Kim, G.; Kyun Kim, T.; Kang, H.; Kong, J.; Ho Lee, S.; Lee, K. Interfacial modification of hole transport layers for efficient large-area perovskite solar cells achieved via blade-coating. Sol. Energy Mater. Sol. Cells 2016, 144, 309–315. [Google Scholar] [CrossRef]
- Eggers, H.; Schackmar, F.; Abzieher, T.; Sun, Q.; Lemmer, U.; Vaynzof, Y.; Richards, B.S.; Hernandez-Sosa, G.; Paetzold, U.W. Inkjet-Printed Micrometer-Thick Perovskite Solar Cells with Large Columnar Grains. Adv. Energy Mater. 2020, 10, 1903184. [Google Scholar] [CrossRef]
- Gao, J.; Fei, F.; Xu, Y.; Wang, S.; Li, Y.; Du, K.; Sun, H.; Dong, X.; Yuan, N.; Li, L.; et al. Collaborative Fabrication of High-Quality Perovskite Films for Efficient Solar Modules through Solvent Engineering and Vacuum Flash System. ACS Appl. Mater. Interfaces 2024, 16, 38017–38027. [Google Scholar] [CrossRef]
- Liu, J.; Shi, B.; Xu, Q.; Li, Y.; Chen, B.; Wang, Q.; Wang, P.; Zhao, Y.; Zhang, X. Crystalline quality control in sequential vapor deposited perovskite film toward high efficiency and large scale solar cells. Sol. Energy Mater. Sol. Cells 2021, 233, 111382. [Google Scholar] [CrossRef]
- Tan, L.; Zhou, J.; Zhao, X.; Wang, S.; Li, M.; Jiang, C.; Li, H.; Zhang, Y.; Ye, Y.; Tress, W.; et al. Combined Vacuum Evaporation and Solution Process for High-Efficiency Large-Area Perovskite Solar Cells with Exceptional Reproducibility. Adv. Mater. 2023, 35, 2205027. [Google Scholar] [CrossRef]
- Shen, P.-S.; Chen, J.-S.; Chiang, Y.-H.; Li, M.-H.; Guo, T.-F.; Chen, P. Low-Pressure Hybrid Chemical Vapor Growth for Efficient Perovskite Solar Cells and Large-Area Module. Adv. Mater. Interfaces 2016, 3, 1500849. [Google Scholar] [CrossRef]
- Hu, S.; Shang, Q.; Zhang, P.; Chen, J.; Zhang, F.; Miao, X. Study of airflow regime upon optic inside frequency multiplying device and achievement of cleaning technique. Optik 2021, 240, 166777. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, H.; Tan, X.; Wang, H.; Song, Y.; Wei, X.; Deng, Y.; Li, W.; Zhu, L.; Cui, Z.; et al. Suppressing “Coffee ring effect” to deposit high-quality CsPbI3 perovskite films by drop casting. Chem. Eng. J. 2023, 454, 140147. [Google Scholar] [CrossRef]
- Chang, Y.-R.; Chang, H.-M.; Lin, C.-F.; Liu, T.-J.; Wu, P.-Y. Three minimum wet thickness regions of slot die coating. J. Colloid Interface Sci. 2007, 308, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-N.; Liu, T.-J.; Hwang, S.-J. Minimum wet thickness for double-layer slide-slot coating of poly(vinyl-alcohol) solutions. Polym. Eng. Sci. 2005, 45, 1590–1599. [Google Scholar] [CrossRef]
- Burkitt, D.; Patidar, R.; Greenwood, P.; Hooper, K.; McGettrick, J.; Dimitrov, S.; Colombo, M.; Stoichkov, V.; Richards, D.; Beynon, D.; et al. Roll-to-roll slot-die coated P–I–N perovskite solar cells using acetonitrile based single step perovskite solvent system. Sustain. Energy Fuels 2020, 4, 3340–3351. [Google Scholar] [CrossRef]
- Tu, Y.; Ye, J.; Yang, G.; Zang, Y.; Zhang, L.; Wang, Y.; Li, G.; Chu, L.; Yan, W. Slot-die coating fabrication of perovskite solar cells toward commercialization. J. Alloys Compd. 2023, 942, 169104. [Google Scholar] [CrossRef]
- Chang, Y.-R.; Lin, C.-F.; Liu, T.-J. Start-up of slot die coating. Polym. Eng. Sci. 2009, 49, 1158–1167. [Google Scholar] [CrossRef]
- Akkerman, Q.A.; Manna, L. What Defines a Halide Perovskite? ACS Energy Lett. 2020, 5, 604–610. [Google Scholar] [CrossRef]
- Tilley, R.J.D. The ABX3 Perovskite Structure. In Perovskites; Wiley: Hoboken, NJ, USA, 2016; pp. 1–41. [Google Scholar] [CrossRef]
- Qian, J.; Xu, B.; Tian, W. A comprehensive theoretical study of halide perovskites ABX3. Org. Electron. 2016, 37, 61–73. [Google Scholar] [CrossRef]
- Liu, A.; Luo, X. Three component superlattice enhanced stability for photovoltaic applications: A first principles study. Mater. Adv. 2024, 5, 6052–6062. [Google Scholar] [CrossRef]
- Yang, Y.; Xue, Z.; Shao, J.; Yang, H.; Zheng, J.; Zhao, J. Tuning optical and optoelectronic properties of polycrystalline lead selenide via low-energy assisted ion beam. J. Alloys Compd. 2023, 935, 168046. [Google Scholar] [CrossRef]
- Wang, P.; Wu, Y.; Cai, B.; Ma, Q.; Zheng, X.; Zhang, W.-H. Solution-Processable Perovskite Solar Cells toward Commercialization: Progress and Challenges. Adv. Funct. Mater. 2019, 29, 1807661. [Google Scholar] [CrossRef]
- Zuo, C.; Bolink, H.J.; Han, H.; Huang, J.; Cahen, D.; Ding, L. Advances in Perovskite Solar Cells. Adv. Sci. 2016, 3, 1500324. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Niu, T.; Liu, Y.; Zhou, Y.; Xia, Y.; Ran, C.; Wu, Z.; Song, L.; Müller-Buschbaum, P.; Chen, Y.; et al. Flexible Perovskite Solar Cells with High Power-Per-Weight: Progress, Application, and Perspectives. ACS Energy Lett. 2021, 6, 2917–2943. [Google Scholar] [CrossRef]
- Senthilarasu, S.; Fernández, E.F.; Almonacid, F.; Mallick, T.K. Effects of spectral coupling on perovskite solar cells under diverse climatic conditions. Sol. Energy Mater. Sol. Cells 2015, 133, 92–98. [Google Scholar] [CrossRef]
- Cheng, Y.; So, F.; Tsang, S.-W. Progress in air-processed perovskite solar cells: From crystallization to photovoltaic performance. Mater. Horiz. 2019, 6, 1611–1624. [Google Scholar] [CrossRef]
- Lee, J.-W.; Lee, D.-K.; Jeong, D.-N.; Park, N.-G. Control of Crystal Growth toward Scalable Fabrication of Perovskite Solar Cells. Adv. Funct. Mater. 2019, 29, 1807047. [Google Scholar] [CrossRef]
- Ding, X.; Liu, J.; Harris, T.A.L. A review of the operating limits in slot die coating processes. AIChE J. 2016, 62, 2508–2524. [Google Scholar] [CrossRef]
- Malakhov, R.; Tjiptowidjojo, K.; Schunk, P.R. Mechanics of the low-flow limit in slot-die coating with no vacuum. AIChE J. 2019, 65, e16593. [Google Scholar] [CrossRef]
- Park, J.; Shin, K.; Lee, C. Optimized design for anti-reflection coating process in roll-to-roll slot-die coating system. Robot. Comput. Integr. Manuf. 2014, 30, 432–441. [Google Scholar] [CrossRef]
- Vak, D.; Hwang, K.; Faulks, A.; Jung, Y.-S.; Clark, N.; Kim, D.-Y.; Wilson, G.J.; Watkins, S.E. 3D Printer Based Slot-Die Coater as a Lab-to-Fab Translation Tool for Solution-Processed Solar Cells. Adv. Energy Mater. 2015, 5, 1401539. [Google Scholar] [CrossRef]
- Swartwout, R.; Hoerantner, M.T.; Bulović, V. Scalable Deposition Methods for Large-area Production of Perovskite Thin Films. Energy Environ. Mater. 2019, 2, 119–145. [Google Scholar] [CrossRef]
- Che, G.; Wang, X.; Cui, C.; Pang, B.; Wang, X.; Dong, H.; Feng, J.; Yu, L.; Dong, L. Boosting the efficiency and stability of CsPbBr3 perovskite solar cells through modified multi-step spin-coating method. J. Alloys Compd. 2023, 969, 172423. [Google Scholar] [CrossRef]
- Liang, C.; Du, H.-Q.; Geng, C.; Yu, X.; Jiang, X.; Huang, S.; Long, F.; Han, L.; Li, W.; Liang, G.; et al. Low temperature method-based evaporation/spray-coating technology for wide bandgap perovskite solar cells. Mater. Today Energy 2024, 44, 101612. [Google Scholar] [CrossRef]
- Lee, K.-M.; Chan, S.-H.; Hou, M.-Y.; Chu, W.-C.; Chen, S.-H.; Yu, S.-M.; Wu, M.-C. Enhanced efficiency and stability of quasi-2D/3D perovskite solar cells by thermal assisted blade coating method. Chem. Eng. J. 2021, 405, 126992. [Google Scholar] [CrossRef]
- Gao, B.; Meng, J. Flexible CH3NH3PbI3 perovskite solar cells with high stability based on all inkjet printing. Sol. Energy 2021, 230, 598–604. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, A.; Zhang, G.; Fang, Y.; Cheng, J.; Liang, L.; Shi, J.; Li, Z.; Meng, T.; Wang, D. Moisture-dependent room-temperature perovskite crystallization in vacuum flash-assisted solution processed intermediate phase films. Org. Electron. 2022, 111, 106652. [Google Scholar] [CrossRef]
- Sosa-Acosta, J.R.; Fernández-Izquierdo, L.; del Río, R.; Navarrete-Astorga, E.; Leinen, D.; Hevia, S.A. CsPbBr3-based photoanode prepared by single-step Chemical vapor deposition of tunable thickness perovskite films. Appl. Surf. Sci. 2024, 678, 161049. [Google Scholar] [CrossRef]
- Fang, J.; Lin, D.; Huang, W.; Wang, X.; Li, H.; Li, S.; Xie, G.; Wang, D.; Qiu, L. Controllable blading interdiffusion of formamidinium iodide on thermal evaporated scalable and conformal lead iodide for efficient perovskite solar cells. J. Alloys Compd. 2023, 955, 170255. [Google Scholar] [CrossRef]
- Duan, Y.; Zhao, G.; Liu, X.; Ma, J.; Chen, S.; Song, Y.; Pi, X.; Yu, X.; Yang, D.; Zhang, Y.; et al. Highly efficient and stable inorganic CsPbBr3 perovskite solar cells via vacuum co-evaporation. Appl. Surf. Sci. 2021, 562, 150153. [Google Scholar] [CrossRef]
- Wu, P.; He, J.; Zhang, F. Vacuum thermal evaporation saved MA-free perovskite. Joule 2022, 6, 1394–1396. [Google Scholar] [CrossRef]
- Gao, L.-L.; Li, C.-X.; Li, C.-J.; Yang, G.-J. Large-area high-efficiency perovskite solar cells based on perovskite films dried by the multi-flow air knife method in air. J. Mater. Chem. A 2017, 5, 1548–1557. [Google Scholar] [CrossRef]
- Chalkias, D.A.; Karavioti, A.; Kalarakis, A.N.; Stathatos, E. Unveiling the importance of dripping temperature control of hybrid organic-inorganic perovskite precursor solution for the fabrication of fully ambient air-processed perovskite solar cells. Sol. Energy 2021, 224, 1017–1027. [Google Scholar] [CrossRef]
- Rana, P.J.S.; Febriansyah, B.; Koh, T.M.; Muhammad, B.T.; Salim, T.; Hooper, T.J.N.; Kanwat, A.; Ghosh, B.; Kajal, P.; Lew, J.H.; et al. Alkali Additives Enable Efficient Large Area (>55 cm2) Slot-Die Coated Perovskite Solar Modules. Adv. Funct. Mater. 2022, 32, 2113026. [Google Scholar] [CrossRef]
- Patidar, R.; Burkitt, D.; Hooper, K.; Richards, D.; Watson, T. Slot-die coating of perovskite solar cells: An overview. Mater. Today Commun. 2020, 22, 100808. [Google Scholar] [CrossRef]
- Kim, Y.Y.; Park, E.Y.; Yang, T.-Y.; Noh, J.H.; Shin, T.J.; Jeon, N.J.; Seo, J. Fast two-step deposition of perovskite via mediator extraction treatment for large-area, high-performance perovskite solar cells. J. Mater. Chem. A 2018, 6, 12447–12454. [Google Scholar] [CrossRef]
- Li, J.; Dagar, J.; Shargaieva, O.; Flatken, M.A.; Köbler, H.; Fenske, M.; Schultz, C.; Stegemann, B.; Just, J.; Többens, D.M.; et al. 20.8% Slot-Die Coated MAPbI3 Perovskite Solar Cells by Optimal DMSO-Content and Age of 2-ME Based Precursor Inks. Adv. Energy Mater. 2021, 11, 2003460. [Google Scholar] [CrossRef]
- Subbiah, A.S.; Isikgor, F.H.; Howells, C.T.; De Bastiani, M.; Liu, J.; Aydin, E.; Furlan, F.; Allen, T.G.; Xu, F.; Zhumagali, S.; et al. High-Performance Perovskite Single-Junction and Textured Perovskite/Silicon Tandem Solar Cells via Slot-Die-Coating. ACS Energy Lett. 2020, 5, 3034–3040. [Google Scholar] [CrossRef]
- Zarabinia, N.; Lucarelli, G.; Rasuli, R.; De Rossi, F.; Taheri, B.; Javanbakht, H.; Brunetti, F.; Brown, T.M. Simple and effective deposition method for solar cell perovskite films using a sheet of paper. iScience 2022, 25, 103712. [Google Scholar] [CrossRef]
- Deng, Y.; Van Brackle, C.H.; Dai, X.; Zhao, J.; Chen, B.; Huang, J. Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films. Sci. Adv. 2019, 5, eaax7537. [Google Scholar] [CrossRef]
- Kim, J.-E.; Jung, Y.-S.; Heo, Y.-J.; Hwang, K.; Qin, T.; Kim, D.-Y.; Vak, D. Slot die coated planar perovskite solar cells via blowing and heating assisted one step deposition. Sol. Energy Mater. Sol. Cells 2018, 179, 80–86. [Google Scholar] [CrossRef]
- Di Giacomo, F.; Shanmugam, S.; Fledderus, H.; Bruijnaers, B.J.; Verhees, W.J.H.; Dorenkamper, M.S.; Veenstra, S.C.; Qiu, W.; Gehlhaar, R.; Merckx, T.; et al. Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating. Sol. Energy Mater. Sol. Cells 2018, 181, 53–59. [Google Scholar] [CrossRef]
- Remeika, M.; Ono, L.K.; Maeda, M.; Hu, Z.; Qi, Y. High-throughput surface preparation for flexible slot die coated perovskite solar cells. Org. Electron. 2018, 54, 72–79. [Google Scholar] [CrossRef]
- Huang, B.-J.; Guan, C.-K.; Huang, S.-H.; Su, W.-F. Development of once-through manufacturing machine for large-area Perovskite solar cell production. Sol. Energy 2020, 205, 192–201. [Google Scholar] [CrossRef]
- Fievez, M.; Singh Rana, P.J.; Koh, T.M.; Manceau, M.; Lew, J.H.; Jamaludin, N.F.; Ghosh, B.; Bruno, A.; Cros, S.; Berson, S.; et al. Slot-die coated methylammonium-free perovskite solar cells with 18% efficiency. Sol. Energy Mater. Sol. Cells 2021, 230, 111189. [Google Scholar] [CrossRef]
- Zhao, J.; Hou, M.; Wang, Y.; Wang, R.; Zhang, J.; Ren, H.; Hou, G.; Ding, Y.; Zhao, Y.; Zhang, X. Strategies for Large-Scale Perovskite Solar Cells Realization. Org. Electron. 2023, 122, 106892. [Google Scholar] [CrossRef]
- Lao, Y.; Luo, W.; Zhang, Z.; Zhang, Y.; Wang, D.; Qu, B.; Xiao, L.; Chen, Z. The preparation method of double-blade coating to ‘write’ high efficiency perovskite solar cells. Org. Electron. 2022, 100, 106374. [Google Scholar] [CrossRef]
- Ciro, J.; Mejía-Escobar, M.A.; Jaramillo, F. Slot-die processing of flexible perovskite solar cells in ambient conditions. Sol. Energy 2017, 150, 570–576. [Google Scholar] [CrossRef]
- Burkitt, D.; Searle, J.; Watson, T. Perovskite solar cells in N-I-P structure with four slot-die-coated layers. R. Soc. Open Sci. 2018, 5, 172158. [Google Scholar] [CrossRef]
- Cotella, G.; Baker, J.; Worsley, D.; De Rossi, F.; Pleydell-Pearce, C.; Carnie, M.; Watson, T. One-step deposition by slot-die coating of mixed lead halide perovskite for photovoltaic applications. Sol. Energy Mater. Sol. Cells 2017, 159, 362–369. [Google Scholar] [CrossRef]
- Chandrasekhar, P.S.; Chapagain, S.; Blake, M.; Armstrong, P.J.; Grapperhaus, C.; Druffel, T.L. Rapid scalable fabrication of roll-to-roll slot-die coated flexible perovskite solar cells using intense pulse light annealing. Sustain. Energy Fuels 2022, 6, 5316–5323. [Google Scholar] [CrossRef]
- Jung, Y.-S.; Hwang, K.; Heo, Y.-J.; Kim, J.-E.; Lee, D.; Lee, C.-H.; Joh, H.-I.; Yeo, J.-S.; Kim, D.-Y. One-Step Printable Perovskite Films Fabricated under Ambient Conditions for Efficient and Reproducible Solar Cells. ACS Appl. Mater. Interfaces 2017, 9, 27832–27838. [Google Scholar] [CrossRef]
- Xu, F.; Liu, J.; Subbiah, A.S.; Liu, W.; Kang, J.; Harrison, G.T.; Yang, X.; Isikgor, F.H.; Aydin, E.; De Bastiani, M.; et al. Potassium Thiocyanate-Assisted Enhancement of Slot-Die-Coated Perovskite Films for High-Performance Solar Cells. Small Sci. 2021, 1, 2000044. [Google Scholar] [CrossRef]
- Lee, H.-J.; Na, S.-I. Performance improvement of slot-die-deposition based perovskite solar cells using diglycolic acid additives. Mater. Lett. 2022, 312, 131651. [Google Scholar] [CrossRef]
- Heo, Y.-J.; Kim, J.-E.; Weerasinghe, H.; Angmo, D.; Qin, T.; Sears, K.; Hwang, K.; Jung, Y.-S.; Subbiah, J.; Jones, D.J.; et al. Printing-friendly sequential deposition via intra-additive approach for roll-to-roll process of perovskite solar cells. Nano Energy 2017, 41, 443–451. [Google Scholar] [CrossRef]
- Bu, T.; Li, J.; Li, H.; Tian, C.; Su, J.; Tong, G.; Ono, L.K.; Wang, C.; Lin, Z.; Chai, N.; et al. Lead halide–templated crystallization of methylamine-free perovskite for efficient photovoltaic modules. Science 2021, 372, 1327–1332. [Google Scholar] [CrossRef]
- Lee, H.-J.; Na, S.-I. Efficient mixed-cation perovskite photovoltaic cells via additive-assisted slot-die deposition. Mater. Res. Bull. 2022, 149, 111728. [Google Scholar] [CrossRef]
- Zang, Y.; Tu, Y.; Jiao, C.; Li, W.; Zhou, P.; Cheng, J.; Yang, G.; Shao, T.; Ye, J.; Li, G.; et al. Green N1 additive modified perovskite precursor enables effective manufacturing of large-area solar cell modules with high efficiency and stability. Chem. Eng. J. 2024, 480, 148133. [Google Scholar] [CrossRef]
- Baek, D.; Park, G.Y.; Cha, J.; Na, H.; Ham, D.S.; Kim, M. Enhancing the efficiency and scalability of perovskite solar cells through pseudo-halide salt addition. J. Mater. Sci. Technol. 2023, 165, 161–169. [Google Scholar] [CrossRef]
- Sun, L.; Yuan, G.; Gao, L.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M.H.; Gleason, K.K.; Choi, Y.S.; Hong, B.H.; Liu, Z. Chemical vapour deposition. Nat. Rev. Methods Primers 2021, 1, 5. [Google Scholar] [CrossRef]
- Chowdhury, K.; Behura, S.K.; Rahimi, M.; Heydari Gharahcheshmeh, M. oCVD PEDOT-Cl Thin Film Fabricated by SbCl5 Oxidant as the Hole Transport Layer to Enhance the Perovskite Solar Cell Device Stability. ACS Appl. Energy Mater. 2024, 7, 1068–1079. [Google Scholar] [CrossRef]
- Zanoni, K.P.S.; Pérez-del-Rey, D.; Dreessen, C.; Rodkey, N.; Sessolo, M.; Soltanpoor, W.; Morales-Masis, M.; Bolink, H.J. Tin(IV) Oxide Electron Transport Layer via Industrial-Scale Pulsed Laser Deposition for Planar Perovskite Solar Cells. ACS Appl. Mater. Interfaces 2023, 15, 32621–32628. [Google Scholar] [CrossRef]
- Weerasinghe, H.C.; Macadam, N.; Kim, J.-E.; Sutherland, L.J.; Angmo, D.; Ng, L.W.T.; Scully, A.D.; Glenn, F.; Chantler, R.; Chang, N.L.; et al. The first demonstration of entirely roll-to-roll fabricated perovskite solar cell modules under ambient room conditions. Nat. Commun. 2024, 15, 1656. [Google Scholar] [CrossRef] [PubMed]
- Khambunkoed, N.; Homnan, S.; Gardchareon, A.; Chattrapiban, N.; Songsiriritthigul, P.; Wongratanaphisan, D.; Ruankham, P. Fully-covered slot-die-coated ZnO thin films for reproducible carbon-based perovskite solar cells. Mater. Sci. Semicond. Process. 2021, 136, 106151. [Google Scholar] [CrossRef]
- Le, T.S.; Saranin, D.; Gostishchev, P.; Ermanova, I.; Komaricheva, T.; Luchnikov, L.; Muratov, D.; Uvarov, A.; Vyacheslavova, E.; Mukhin, I.; et al. All-Slot-Die-Coated Inverted Perovskite Solar Cells in Ambient Conditions with Chlorine Additives. Sol. RRL 2022, 6, 2100807. [Google Scholar] [CrossRef]
- Qin, T.; Huang, W.; Kim, J.-E.; Vak, D.; Forsyth, C.; McNeill, C.R.; Cheng, Y.-B. Amorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy 2017, 31, 210–217. [Google Scholar] [CrossRef]
- Yin, H.; Lv, P.; Gao, B.; Zhang, Y.; Zhu, Y.; Hu, M.; Tan, B.; Xu, M.; Huang, F.; Cheng, Y.-B.; et al. Slot-die coated scalable hole transporting layers for efficient perovskite solar modules. J. Mater. Chem. A 2022, 10, 25652–25660. [Google Scholar] [CrossRef]
- Du, M.; Zhao, S.; Duan, L.; Cao, Y.; Wang, H.; Sun, Y.; Wang, L.; Zhu, X.; Feng, J.; Liu, L.; et al. Surface redox engineering of vacuum-deposited NiOx for top-performance perovskite solar cells and modules. Joule 2022, 6, 1931–1943. [Google Scholar] [CrossRef]
Methods | Advantages | Shortcomings |
---|---|---|
Spin coating method [43] | Simple preparation, Controllable adjustment, Stable performance in small area | Incompatible with mass production, serious waste, sharp decline in large-area performance |
Spraying method [44] | Low cost, less waste, can be mass-produced | Poor performance |
Blade coating method [45] | Simple and easy to prepare, strong adjustable ability, high efficiency | Uneven quality, difficult to balance |
Inkjet printing [46] | Direct modeling, effect pulling group, extensible, to achieve special functions | Difficulties in film formation, Serious waste |
Vacuum flash assisted method [47] | Excellent film, industrial availability, non-toxic environmental protection, controllable film thickness, low temperature requirements | Low carrier transport, Poor stability |
Chemical vapor deposition [48] | Large area application, uniform film, high repeatability, commercial prospects | Amorphous film, defective crystal, poor charge carrier transport, high cost |
Sequential evaporation method [49] | Excellent small area performance, compact film, good thickness control, high repeatability, good quality | Unfavorable commercial, high cost |
Co-evaporation method [50] | Smooth and uniform film, good film effect, no annealing, compatible with flat battery | High cost, difficult to control |
Flash evaporation [47] | Highly uniform, high surface roughness, extensibility, additive, very fast | High cost, difficult to fabricate |
Vacuum thermal evaporation [51] | Simple wide application, scalability, industrial preparation, control film | Waste is serious, cost is high, additives are difficult to add |
Multi-flow air knife method [52] | Suitable for large area PSC, good replication, low cost | Requires careful control of the space between the air knife and the solution film |
Drip casting method [53] | High material utilization, can control film thickness, fast and cheap | Uneven evaporation, difficult to control rate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Cheng, Z.; Li, J.; Lv, K.; Li, Z.; Zhao, H. Innovative Approaches to Large-Area Perovskite Solar Cell Fabrication Using Slit Coating. Molecules 2024, 29, 4976. https://doi.org/10.3390/molecules29204976
Wang Y, Cheng Z, Li J, Lv K, Li Z, Zhao H. Innovative Approaches to Large-Area Perovskite Solar Cell Fabrication Using Slit Coating. Molecules. 2024; 29(20):4976. https://doi.org/10.3390/molecules29204976
Chicago/Turabian StyleWang, Yitong, Zetong Cheng, Junguo Li, Kuanxin Lv, Zhenzhen Li, and Hang Zhao. 2024. "Innovative Approaches to Large-Area Perovskite Solar Cell Fabrication Using Slit Coating" Molecules 29, no. 20: 4976. https://doi.org/10.3390/molecules29204976
APA StyleWang, Y., Cheng, Z., Li, J., Lv, K., Li, Z., & Zhao, H. (2024). Innovative Approaches to Large-Area Perovskite Solar Cell Fabrication Using Slit Coating. Molecules, 29(20), 4976. https://doi.org/10.3390/molecules29204976