Accessible New Non-Quantum Dot Cs2PbI2Cl2-Based Photocatalysts for Efficient Hole-Driven Photocatalytic Applications
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pastor, E.; Sachs, M.; Selim, S.; Durrant, J.R.; Bakulin, A.A.; Walsh, A. Electronic Defects in Metal Oxide Photocatalysts. Nat. Rev. Mater. 2022, 7, 503–521. [Google Scholar] [CrossRef]
- Gautam, S.; Agrawal, H.; Thakur, M.; Akbari, A.; Sharda, H.; Kaur, R.; Amini, M. Metal Oxides and Metal Organic Frameworks for the Photocatalytic Degradation: A Review. J. Environ. Chem. Eng. 2020, 8, 103726. [Google Scholar] [CrossRef]
- Krishnan, A.; Swarnalal, A.; Das, D.; Krishnan, M.; Saji, V.S.; Shibli, S.M.A. A Review on Transition Metal Oxides Based Photocatalysts for Degradation of Synthetic Organic Pollutants. J. Environ. Sci. 2024, 139, 389–417. [Google Scholar] [CrossRef] [PubMed]
- Ryu, J.; Park, D.; Hahn, B.; Choi, J.; Yoon, W.; Kim, K.; Yun, H. Photocatalytic TiO2 Thin Films by Aerosol-Deposition: From Micron-Sized Particles to Nano-Grained Thin Film at Room Temperature. Appl. Catal. B-Environ. 2008, 83, 1–7. [Google Scholar] [CrossRef]
- Parrino, F.; Livraghi, S.; Giamello, E.; Ceccato, R.; Palmisano, L. Role of Hydroxyl Superoxide and Nitrate Radicals on the Fate of Bromide Ions in Photocatalytic TiO2 Suspensions. ACS Catal. 2020, 10, 7922–7931. [Google Scholar] [CrossRef]
- Zhu, B.; Sun, J.; Zhao, Y.; Zhang, L.; Yu, J. Construction of 2D S-Scheme Heterojunction Photocatalyst. Adv. Mater. 2023, 36, 2310600. [Google Scholar] [CrossRef]
- NREL. Best Research Cell Efficiency Records. Available online: https://www.nrel.gov/pv/cell-efficiency.html (accessed on 1 April 2024).
- Feng, J.; Mak, C.H.; Yu, L.; Han, B.; Shen, H.; Santoso, S.P.; Yuan, M.; Li, F.; Song, H.; Colmenares, J.C.; et al. Structural Modification Strategies Interfacial Charge-Carrier Dynamics and Solar Energy Conversion Applications of Organic-Inorganic Halide Perovskite Photocatalysts. Small Methods 2024, 8, 2300429. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, J.; Wu, Z.; Li, B.; Li, M. All-Inorganic Lead Halide Perovskites for Photocatalysis: A Review. RSC Adv. 2024, 14, 4946–4965. [Google Scholar] [CrossRef]
- Mathuri, A.; Pal, B.; Pramanik, M.; Manna, A.; Mal, P. Enhancing the Photocatalytic Efficiency and Stability of CsPbBr3 Nanocrystals for Visible-Light Driven Aerobic Diaryl Thio/Seleno Etherification. Catal. Sci. Technol. 2024, 14, 183–189. [Google Scholar] [CrossRef]
- Song, W.; Chong, K.C.; Qi, G.; Xiao, Y.; Chen, G.; Li, B.; Tang, Y.; Zhang, X.; Yao, Y.; Lin, Z.; et al. Unraveling the Transformation from Type-II to Z-Scheme in Perovskite-Based Heterostructures for Enhanced Photocatalytic CO2 Reduction. J. Am. Chem. Soc. 2024, 146, 3303–3314. [Google Scholar] [CrossRef]
- Gao, S.; Wang, B.; Chen, F.; He, G.; Zhang, T.; Li, L.; Li, J.; Zhou, Y.; Feng, B.; Mei, D.; et al. Confinement of CsPbBr3 Perovskite Nanocrystals into Extra-Large-Pore Zeolite for Efficient and Stable Photocatalytic Hydrogen Evolution. Angew. Chem. Int. Ed. 2024, 63, e202319996. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Luo, Q.; Jiang, Q.; Liu, X.; Chen, X.; Liu, J.; Mao, X.; Qi, J.; Liang, R.; Qiu, J. Hydrogen-Bonded Cocrystals Encapsulating CsPbBr3 Perovskite Nanocrystals with Enhancement of Charge Transport for Photocatalytic Reduction of Uranium. Small 2024, 20, 2310672. [Google Scholar] [CrossRef]
- Zhu, X.; Lin, Y.; San Martin, J.; Sun, Y.; Zhu, D.; Yan, Y. Lead Halide Perovskites for Photocatalytic Organic Synthesis. Nat. Commun. 2019, 10, 2843. [Google Scholar] [CrossRef] [PubMed]
- Cardenas Morcoso, D.; Gualdron Reyes, A.F.; Ferreira Vitoreti, A.B.; Garcia Tecedor, M.; Yoon, S.J.; De La Fuente, M.S.; Mora Sero, I.; Gimenez, S. Photocatalytic and Photoelectrochemical Degradation of Organic Compounds with All-Inorganic Metal Halide Perovskite Quantum Dots. J. Phys. Chem. Lett. 2019, 10, 630–636. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Chen, H.; Li, J.; Liao, J.; Zhang, H.; Wang, X.; Kuang, D. Z-Scheme 2D/2D Heterojunction of CsPbBr3/Bi2WO6 for Improved Photocatalytic Co2 Reduction. Adv. Funct. Mater. 2020, 30, 2004293. [Google Scholar] [CrossRef]
- Liu, W.; Liu, J.; Wang, X.; He, J.; Li, Y.; Liu, Y. Synthesis of Asymmetrical CsPbBr3/TiO2 Nanocrystals with Enhanced Stability and Photocatalytic Properties. Catalysts 2023, 13, 1048. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, M.; Chen, B.; Wang, X.; Chen, H.; Kuang, D.; Su, C. A CsPbBr3 Perovskite Quantum Dot/Graphene Oxide Composite for Photocatalytic CO2 Reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663. [Google Scholar] [CrossRef]
- Sanjayan, C.G.; Jyothi, M.S.; Balakrishna, R.G. Stabilization of Cspbbr3 Quantum Dots for Photocatalysis Imaging and Optical Sensing in Water And Biological Medium: A Review. J. Mater. Chem. C 2022, 10, 6935–6956. [Google Scholar]
- Rasool, R.T.; Ashraf, G.A.; Pasha, M.; Saleem, M.F.; Ghernaout, D.; Fadhali, M.M.; Guo, H. Nanoscaled MnSnO2@CsPbBr3 Quantum Dots Heterostructure Photocatalyst as Efficient Organic Pollutants Degradation by Peroxymonosulfate; DFT Calculation. J. Mater. Sci. Technol. 2023, 153, 41–55. [Google Scholar] [CrossRef]
- Jiang, H.; Liu, M.; Lian, X.; Zhu, M.; Zhang, F. CsPbBr3 Quantum Dots Promoted Depolymerization of Oxidized Lignin via Photocatalytic Semi-Hydrogenation/Reduction Strategy. Angew. Chem. Int. Ed. 2024, 63, e202318850. [Google Scholar] [CrossRef]
- Zhong, F.; Sheng, J.; Du, C.; He, Y.; Sun, Y.; Dong, F. Ligand-Mediated Exciton Dissociation and Interparticle Energy Transfer on Cspbbr3 Perovskite Quantum Dots for Efficient CO2-To-CO Photoreduction. Sci. Bull. 2024, 69, 901–912. [Google Scholar] [CrossRef] [PubMed]
- Yan, D.D.; Shi, T.C.; Zang, Z.G.; Zhou, T.W.; Liu, Z.Z.; Zhang, Z.Y.; Du, J.; Leng, Y.X.; Tang, X.S. Ultrastable Cspbbr3 Perovskite Quantum Dot and Their Enhanced Amplified Spontaneous Emission by Surface Ligand Modification. Small 2019, 15, 1901173. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Tien, C.H.; Tseng, Z.L.; Dong, Y.S.; Yang, S.Y. Influence of Pmma on All-Inorganic Halide Perovskite CsPbBr3 Quantum Dots Combined with Polymer Matrix. Materials 2019, 12, 985. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Y.L.; Hu, X.D.; Wei, C.T.; Xu, B.; Leng, J.; Miao, H.B.; Zeng, H.B.; Li, X.M. Ligands for CsPbBr3 Perovskite Quantum Dots: The Stronger the Better? Chem. Eng. J. 2023, 453, 139904. [Google Scholar] [CrossRef]
- Xu, Y.Y.; Niu, P.J.; Zhang, L.; Wen, Z.Y.; Cheng, S.; Lyu, M.; Zhu, J. Tailoring Multifunctional Anions to Inhibit Methanol Absorption on A CsPbBr3 Quantum Dot Surface for Highly Efficient Semi-Transparent Photovoltaics. Nanoscale 2023, 15, 9691–9699. [Google Scholar] [CrossRef] [PubMed]
- Mathews, N.R.; Morales, E.R.; Cortés-Jacome, M.A.; Antonio, J.A.T. TiO2 Thin Films—Influence of Annealing Temperature on Structural Optical and Photocatalytic Properties. Sol. Energy 2009, 83, 1499–1508. [Google Scholar] [CrossRef]
- Landes, C.; Burda, C.; Braun, M.; El-Sayed, M.A. Photoluminescence of CdSe Nanoparticles in the Presence of a Hole Acceptor: N-Butylamine. J. Phys. Chem. B 2001, 105, 2981–2986. [Google Scholar] [CrossRef]
- Akasheh, F.; Karim, M.R.; Shao, S. Dislocation Structure of Cu/Nu (100) Semi-Coherent Interface and Its Role in Lattice Dislocation Nucleation. In Proceedings of the TMS 2015 144th Annual Meeting & Exhibition, Orlando, FL, USA, 15–19 March 2015. [Google Scholar]
- Wang, X.; Zhong, Y.; Wang, D.; Sun, L.; Jiang, B.; Wang, J. Effect of interfacial energy on microstructure of a directionally solidified Al2O3/YAG eutectic ceramic. J. Am. Ceram. Soc. 2018, 101, 1029–1035. [Google Scholar] [CrossRef]
- Zhu, Y.; Xue, J.; Xu, T.; He, G.; Chen, H. Enhanced Photocatalytic Activity of Magnetic Core–shell Fe3O4@Bi2O3–RGO Heterojunctions for Quinolone Antibiotics Degradation under Visible Light. J. Mater. Sci. Mater. Electron. 2017, 28, 8519–8528. [Google Scholar] [CrossRef]
- Ye, L.; Liu, J.; Gong, C.; Tian, L.; Peng, T.; Zan, L. Two Different Roles of Metallic Ag on Ag/AgX/BiOX (X = Cl, Br) Visible Light Photocatalysts: Surface Plasmon Resonance and Z-Scheme Bridge. ACS Catal. 2012, 2, 1677–1683. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Lv, K.; Zhu, W.; Li, Z.; Zhao, H. Accessible New Non-Quantum Dot Cs2PbI2Cl2-Based Photocatalysts for Efficient Hole-Driven Photocatalytic Applications. Molecules 2024, 29, 3249. https://doi.org/10.3390/molecules29143249
Huang X, Lv K, Zhu W, Li Z, Zhao H. Accessible New Non-Quantum Dot Cs2PbI2Cl2-Based Photocatalysts for Efficient Hole-Driven Photocatalytic Applications. Molecules. 2024; 29(14):3249. https://doi.org/10.3390/molecules29143249
Chicago/Turabian StyleHuang, Xing, Kuanxin Lv, Wenqiang Zhu, Zhenzhen Li, and Hang Zhao. 2024. "Accessible New Non-Quantum Dot Cs2PbI2Cl2-Based Photocatalysts for Efficient Hole-Driven Photocatalytic Applications" Molecules 29, no. 14: 3249. https://doi.org/10.3390/molecules29143249
APA StyleHuang, X., Lv, K., Zhu, W., Li, Z., & Zhao, H. (2024). Accessible New Non-Quantum Dot Cs2PbI2Cl2-Based Photocatalysts for Efficient Hole-Driven Photocatalytic Applications. Molecules, 29(14), 3249. https://doi.org/10.3390/molecules29143249