Advances in Virus Detection Techniques Based on Recombinant Polymerase Amplification
Abstract
:1. Introduction
2. Traditional Virus Detection Techniques
2.1. Virus Isolation and Identification
2.2. Real-Time Fluorescence Quantitative PCR (qPCR)
2.3. Enzyme-Linked Immunosorbent Assay (ELISA)
3. Isothermal Amplification Techniques
3.1. Recombinase Polymerase Amplification (RPA)
3.2. Other Isothermal Amplification Techniques
3.2.1. Recombinase-Aided Amplification (RAA)
3.2.2. Loop-Mediated Isothermal Amplification (LAMP)
3.2.3. Nucleic Acid Sequence-Based Amplification (NASBA)
3.2.4. Strand Displacement Amplification (SDA)
3.2.5. Rolling Circle Amplification (RCA)
3.2.6. Helicase-Dependent Amplification (HDA)
Reaction | Reactive Enzymes | LOD | Primers | Reaction Temperature | Reaction Time | Template | Ref |
---|---|---|---|---|---|---|---|
RPA | recombinase (T4 UvsX), single-stranded DNA-binding protein (T4 Gp32), strand-displacing DNA polymerase (Bsu) | 10 copies/μL | 1 pair | 37~42 °C | 5~20 min | DNA | [15] |
RAA | recombinase, single-stranded binding protein, DNA polymerase | High | 1 pair | 37 °C | 15~30 min | DNA | [103] |
LAMP | Bst DNA polymerase | 10 copies/μL | 2~3 pairs | 60~65 °C | 30~60 min | DNA | [104] |
NASBA | AMV reverse transcriptase, ribonucnase H (RNase H), T7 RNA polymerase | 100 CFU/mL | 1 pair | 40~55 °C | 90~120 min | DNA/RNA | [105] |
SDA | restriction endonuclease enzymes, DNA polymerase | High | 2 pairs | 40~55 °C | 15~20 min | DNA | [106] |
RCA | phi29 DNA polymerase | High | 1 primer or 1 pair | 37 °C | 60 min | DNA/RNA | [93,95] |
HDA | helicase, single-stranded binding protein, DNA polymerase | High | 1 pair | 60~65 °C | 75~90 min | DNA | [107] |
4. Combined Application of RPA with Other Techniques
4.1. Real-Time Fluorescent RPA
4.2. RPA-LFD
4.3. RPA-CRISPR/Cas
4.4. RPA Combined with Flocculation Assay Detection
4.5. RPA Combined with Electrochemical Detection
4.6. RPA Combined with Chemiluminescent Detection
4.7. RPA Combined with Surface-Enhanced Raman Scattering (SERS) Detection
4.8. RPA Combined with Surface-Enhanced Infrared Absorption Spectroscopy (SEIRA)
4.9. RPA Combined with Microfluidic Technology
5. Conclusions and Future Prospects
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bao, D.Q.; Li, Z.; Liu, Q.; Richt, J.A. H7N9 avian influenza A virus in China: A short report on its circulation, drug resistant mutants and novel antiviral drugs. Expert Rev. Anti Infect. Ther. 2017, 15, 723–727. [Google Scholar]
- Tian, D.; Chen, W. Progress in Zika virus and its vaccines. Sheng Wu Gong Cheng Xue Bao 2017, 33, 1–15. [Google Scholar]
- Keita, M.; Lucaccioni, H.; Ilumbulumbu, M.K.; Polonsky, J.; Nsio-Mbeta, J.; Panda, G.T.; Adikey, P.C.; Ngwama, J.K.; Tosalisana, M.K.; Diallo, B.; et al. Evaluation of Early Warning, Alert and Response System for Ebola Virus Disease, Democratic Republic of the Congo, 2018–2020. Emerg. Infect. Dis. 2021, 27, 2988–2998. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Shen, C.; Zhang, D.; Zhang, T.; Shi, X.; Yang, J.; Hao, Y.; Zhao, D.; Cui, H.; Yuan, X.; et al. Mechanism of interaction between virus and host is inferred from the changes of gene expression in macrophages infected with African swine fever virus CN/GS/2018 strain. Virol. J. 2021, 18, 170. [Google Scholar] [CrossRef] [PubMed]
- Kannan, S.; Shaik Syed Ali, P.; Sheeza, A.; Hemalatha, K. COVID-19 (Novel Coronavirus 2019)—Recent trends. Eur. Rev. Med. Pharm. 2020, 24, 2006–2011. [Google Scholar]
- Li, Y.; Yu, J.; Wang, Y.; Yi, J.; Guo, L.; Wang, Q.; Zhang, G.; Xu, Y.; Zhao, Y. Cocirculation and coinfection of multiple respiratory viruses during autumn and winter seasons of 2023 in Beijing, China: A retrospective study. J. Med. Virol. 2024, 96, e29602. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Liu, Y.; Zhao, Y.; Sun, Z.; Xu, N.; Zhao, C.; Xia, W. Recombinase Polymerase Amplification-Based Biosensors for Rapid Zoonoses Screening. Int. J. Nanomed. 2023, 18, 6311–6331. [Google Scholar] [CrossRef]
- Kaur, R.; Maan, S.; Batra, K.; Singh, N.; Chahal, N.; Kumar, A. Rapid detection of porcine sapelovirus by reverse transcription recombinase polymerase amplification assay. Mol. Biol. Rep. 2024, 51, 178. [Google Scholar] [CrossRef]
- Li, X.; Zhu, S.; Zhang, X.; Ren, Y.; He, J.; Zhou, J.; Yin, L.; Wang, G.; Zhong, T.; Wang, L.; et al. Advances in the application of recombinase-aided amplification combined with CRISPR-Cas technology in quick detection of pathogenic microbes. Front. Bioeng. Biotechnol. 2023, 11, 1215466. [Google Scholar] [CrossRef]
- Arutselvan, R.; Makeshkumar, T. Single-tube colorimetric loop-mediated isothermal amplification (LAMP) assay for high-sensitivity detection of SLCMV in cassava from southern India. Microb. Pathog. 2024, 192, 106718. [Google Scholar] [CrossRef]
- Nai, Y.H.; Doeven, E.H.; Guijt, R.M. An improved nucleic acid sequence-based amplification method mediated by T4 gene 32 protein. PloS ONE 2022, 17, e0265391. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Luck, A.N.; Tanner, N.A. Isothermal amplification of long DNA fragments at low temperature by improved strand displacement amplification. BioTechniques 2024, 76, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Okamura, Y.; Suemitsu, M.; Ishikawa, T. Nonribosomal Peptide Synthetase Specific Genome Amplification Using Rolling Circle Amplification for Targeted Gene Sequencing. Int. J. Mol. Sci. 2024, 25, 5089. [Google Scholar] [CrossRef] [PubMed]
- Gulinaizhaer, A.; Yang, C.; Zou, M.; Ma, S.; Fan, X.; Wu, G. Detection of monkeypox virus using helicase dependent amplification and recombinase polymerase amplification combined with lateral flow test. Virol. J. 2023, 20, 274. [Google Scholar] [CrossRef]
- Daher, R.K.; Stewart, G.; Boissinot, M.; Bergeron, M.G. Recombinase Polymerase Amplification for Diagnostic Applications. Clin. Chem. 2016, 62, 947–958. [Google Scholar] [CrossRef]
- Huang, Q.J.; Chen, Y.; Liu, H.; St-Hilaire, S.; Gao, S.; MacKinnon, B.; Zhu, S.Q.; Wen, Z.Q.; Jia, P.; Zheng, X.C. Establishment of a real-time Recombinase Polymerase Amplification (RPA) for the detection of decapod iridescent virus 1 (DIV1). J. Virol. Methods 2021, 300, 114377. [Google Scholar] [CrossRef]
- Preena, P.G.; Kumar, T.V.A.; Johny, T.K.; Dharmaratnam, A.; Swaminathan, T.R. Quick hassle-free detection of cyprinid herpesvirus 2 (CyHV-2) in goldfish using recombinase polymerase amplification-lateral flow dipstick (RPA-LFD) assay. Aquac. Int. 2022, 30, 1211–1220. [Google Scholar] [CrossRef]
- Lin, K.; Guo, J.; Guo, X.; Li, Q.; Li, X.; Sun, Z.; Zhao, Z.; Weng, J.; Wu, J.; Zhang, R.; et al. Fast and visual detection of nucleic acids using a one-step RPA-CRISPR detection (ORCD) system unrestricted by the PAM. Anal. Chim. Acta 2023, 1248, 340938. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Y.; Ding, H.; Jiang, C.; Geng, Y.; Sun, X.; Jing, J.; Gao, H.; Wang, Z.; Dong, C. Recombinase polymerase amplification with polymer flocculation sedimentation for rapid detection of Staphylococcus aureus in food samples. Int. J. Food Microbiol. 2020, 331, 108691. [Google Scholar] [CrossRef]
- Ng, B.Y.; Xiao, W.; West, N.P.; Wee, E.J.; Wang, Y.; Trau, M. Rapid, single-cell electrochemical detection of mycobacterium tuberculosis using colloidal gold nanoparticles. Anal. Chem. 2015, 87, 10613–10618. [Google Scholar] [CrossRef]
- Kober, C.; Niessner, R.; Seidel, M. Quantification of viable and non-viable Legionella spp. by heterogeneous asymmetric recombinase polymerase amplification(haRPA)on a flow-based chemiluminescence microarray. Biosens. Bioelectron. 2018, 100, 49–55. [Google Scholar] [CrossRef] [PubMed]
- Schlucker, S. Surface-enhanced Raman spectroscopy: Concepts and chemical applications. Angew. Chem. Int. Ed. Engl. 2014, 53, 4756–4795. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.; Zhang, Q.; Zhu, W.; Galluzzi, M.; Zhou, W.; Li, J.; Zayats, A.V.; Yu, X.F. Rapid detection of SARS-CoV-2 viral nucleic acids based on surface enhanced infrared absorption spectroscopy. Nanoscale 2021, 13, 10133–10142. [Google Scholar] [CrossRef] [PubMed]
- He, X.P.; Zou, B.J.; Qi, X.M.; Chen, S.; Lu, Y.; Huang, Q.; Zhou, G.H. Methods of isothermal nucleic acid amplification-based microfluidic chips for pathogen microorganism detection. Hereditas 2019, 41, 611–624. [Google Scholar] [PubMed]
- Judson, S.D.; Rabinowitz, P.M. Zoonoses and global epidemics. Curr. Opin. Infect. Dis. 2021, 34, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Wang, L.; Deng, X.; Liang, R.; Su, M.; He, C.; Hu, L.; Su, Y.; Ren, J.; Yu, F.; et al. Recent advances in the detection of respiratory virus infection in humans. J. Med. Virol. 2020, 92, 408–417. [Google Scholar] [CrossRef]
- Hong, S.C.; Murale, D.P.; Jang, S.Y.; Haque, M.M.; Seo, M.; Lee, S.; Woo, D.H.; Kwon, J.; Song, C.S.; Kim, Y.K.; et al. Discrimination of Avian Influenza Virus Subtypes using Host-Cell Infection Fingerprinting by a Sulfinate-based Fluorescence Superoxide Probe. Angew. Chem. 2018, 57, 9716–9721. [Google Scholar] [CrossRef]
- Eisfeld, A.J.; Neumann, G.; Kawaoka, Y. Influenza A virus isolation, culture and identification. Nat. Protoc. 2014, 9, 2663–2681. [Google Scholar] [CrossRef]
- Zhao, S.Y.C.; Tang, S.Q.; Feng, Y.L.; Zhang, Y. Research progress of virus detection methods. China Anim. Husb. Vet. Med. 2023, 50, 4536–4544. [Google Scholar]
- Xiao, M.; Tian, F.; Liu, X.; Zhou, Q.; Pan, J.; Luo, Z.; Yang, M.; Yi, C. Virus Detection: From State-of-the-Art Laboratories to Smartphone-Based Point-of-Care Testing. Adv. Sci. 2022, 9, e2105904. [Google Scholar] [CrossRef]
- Higuchi, R.; Dollinger, G.; Walsh, P.S.; Griffith, R. Simultaneous amplification and detection of specific DNA sequences. Bio/Technol. (Nat. Publ. Co.) 1992, 10, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.N.; Liu, W.Z. The Types, Characteristics and Applications of Real-Time Fluorescent Quantitative PCR Techniques. China Anim. Husb. Vet. Med. 2008, 35, 27–30. [Google Scholar]
- Li, S.; Guo, K.; Wang, X.; Lin, Y.; Wang, J.; Wang, Y.; Du, C.; Hu, Z.; Wang, X. Development and evaluation of a real-time quantitative PCR for the detection of equine infectious anemia virus. Microbiol. Spectr. 2023, 11, e0259923. [Google Scholar] [CrossRef] [PubMed]
- Becker, S.; Böger, P.; Oehlmann, R.; Ernst, A. PCR bias in ecological analysis: A case study for quantitative Taq nuclease assays in analyses of microbial communities. Appl. Environ. Microbiol. 2000, 66, 4945–4953. [Google Scholar] [CrossRef] [PubMed]
- Mayer, Z.; Färber, P.; Geisen, R. Monitoring the production of aflatoxin B1 in wheat by measuring the concentration of nor-1 mRNA. Appl. Environ. Microbiol. 2003, 69, 1154–1158. [Google Scholar] [CrossRef]
- Viet, A.; Fourichon, C.; Seegers, H. Review and critical discussion of assumptions and modelling options to study the spread of the bovine viral diarrhoea virus (BVDV)within a cattle herd. Epidemiol. Infect. 2007, 135, 706–721. [Google Scholar] [CrossRef]
- Shaffaf, T.; Ghafar-Zadeh, E. COVID-19 diagnostic strategies part Ⅱ: Protein-based technologies. Bioengineering 2021, 8, 54. [Google Scholar] [CrossRef]
- Merwaiss, F.; Czibener, C.; Alvarez, D.E. Cell-to-cell transmission is the main mechanism supporting bovine viral diarrhea virus spread in cell culture. J. Virol. 2018, 93, e01776-18. [Google Scholar] [CrossRef]
- Tabatabaei, M.S.; Ahmed, M. Enzyme-Linked Immunosorbent Assay (ELISA). Methods Mol. Biol. 2022, 2508, 115–134. [Google Scholar]
- Simpson, R.; Aliyu, S.; Iturriza, G.M.; Desselberger, U.; Gray, J. Infantile viral gastroenteritis: On the way to closing the diagnostic gap. J. Med. Virol. 2003, 70, 258–262. [Google Scholar] [CrossRef]
- Boguszewska, K.; Szewczuk, M.; Urbaniak, S.; Karwowski, B.T. Review: Immunoassays in DNA damage and instability detection. Cell Mol. Life Sci. 2019, 76, 4689–4704. [Google Scholar] [CrossRef] [PubMed]
- Piepenburg, O.; Williams, C.H.; Stemple, D.L.; Armes, N.A. DNA detection using recombination proteins. PLoS Biol. 2006, 4, e204. [Google Scholar] [CrossRef] [PubMed]
- Boyle, D.S.; McNerney, R.; Teng Low, H.; Leader, B.T.; Pérez-Osorio, A.C.; Meyer, J.C.; O’Sullivan, D.M.; Brooks, D.G.; Piepenburg, O.; Forrest, M.S. Rapid detection of Mycobacterium tuberculosis by recombinase polymerase amplification. PLoS ONE 2014, 9, e103091. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Macdonald, J.; von Stetten, F. Review: A comprehensive summary of a decade development of the recombinase polymerase amplification. Analyst 2018, 144, 31–67. [Google Scholar] [CrossRef]
- Behrmann, O.; Bachmann, I.; Spiegel, M.; Schramm, M.; Abd El Wahed, A.; Dobler, G.; Dame, G.; Hufert, F.T. Rapid Detection of SARS-CoV-2 by Low Volume Real-Time Single Tube Reverse Transcription Recombinase Polymerase Amplification Using an Exo Probe with an Internally Linked Quencher (Exo-IQ). Clin. Chem. 2020, 66, 1047–1054. [Google Scholar] [CrossRef]
- Munawar, M.A. Critical insight into recombinase polymerase amplification technology. Expert. Rev. Mol. Diagn. 2022, 22, 725–737. [Google Scholar] [CrossRef]
- Daher, R.K.; Stewart, G.; Boissinot, M.; Bergeron, M.G. Isothermal recombinase polymerase amplification assay applied to the detection of group B streptococci in vaginal/anal samples. Clin. Chem. 2014, 60, 660–666. [Google Scholar] [CrossRef]
- Abd El Wahed, A.; El-Deeb, A.; El-Tholoth, M.; Abd El Kader, H.; Ahmed, A.; Hassan, S.; Hoffmann, B.; Haas, B.; Shalaby, M.A.; Hufert, F.T.; et al. A portable reverse transcription recombinase polymerase amplification assay for rapid detection of foot-and-mouth disease virus. PLoS ONE 2013, 8, e71642. [Google Scholar] [CrossRef]
- Trinh, K.T.L.; Lee, N.Y. Fabrication of Wearable PDMS Device for Rapid Detection of Nucleic Acids via Recombinase Polymerase Amplification Operated by Human Body Heat. Biosensors 2022, 12, 72. [Google Scholar] [CrossRef]
- Xiong, E.; Jiang, L.; Tian, T.; Hu, M.; Yue, H.; Huang, M.; Lin, W.; Jiang, Y.; Zhu, D.; Zhou, X. Simultaneous Dual-Gene Diagnosis of SARS-CoV-2 Based on CRISPR/Cas9-Mediated Lateral Flow Assay. Angew. Chem. 2021, 60, 5307–5315. [Google Scholar] [CrossRef]
- Cao, G.H.; Huo, D.Q.; Chen, X.L.; Wang, X.F.; Zhou, S.Y.; Zhao, S.X.; Luo, X.G.; Hou, C.J. Automated, portable, and high-throughput fluorescence analyzer (APHF-analyzer) and lateral flow strip based on CRISPR/Cas13a for sensitive and visual detection of SARS-CoV-2. Talanta 2022, 248, 123594. [Google Scholar] [CrossRef] [PubMed]
- Shi, N.X.; Jin, J.H.; Chen, X.R. Recombinase Polymerase Amplification Technology and Its Application in Field of Life Sciences. Acta Agric. Jiangxi 2021, 33, 62–72. [Google Scholar]
- Ying, J.; Mao, L.; Tang, Y.; Fassatoui, M.; Song, W.; Xu, X.; Tang, X.; Li, J.; Liu, H.; Jian, F.; et al. Development and validation of real-time recombinase polymerase amplification-based assays for detecting HPV16 and HPV18 DNA. Microbiol. Spectr. 2023, 11, e0120723. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zheng, T.; Xie, Y.N.; Li, F.; Jiang, X.; Hou, X.; Wu, P. Recombinase Polymerase Amplification Coupled with a Photosensitization Colorimetric Assay for Fast Salmonella spp. Testing. Anal. Chem. 2021, 93, 6559–6566. [Google Scholar] [CrossRef]
- Chen, Z.Q.; Zhang, T.Y.; Lei, J.J.; Wang, Z.C.; Liu, P.; Zhong, K.L.; Chen, J.P.; Liu, J.Q. Rapid, sensitive and simultaneous detection of two wheat RNA viruses using reverse transcription recombinase polymerase amplification (RT-RPA). Life 2022, 12, 1952. [Google Scholar] [CrossRef]
- Aebischer, A.; Wernike, K.; Hoffmann, B.; Beer, M. Rapid genome detection of Schmallenberg virus and bovine viral diarrhea virus by use of isothermal amplification methods and high-speed real-time reverse transcriptase PCR. J. Clin. Microbiol. 2014, 52, 1883–1892. [Google Scholar] [CrossRef]
- Amer, H.M.; Amer, H.M.; Wahed, A.A.; Shalaby, M.A.; Almajhdi, F.N.; Hufert, F.T.; Weidmann, M. A new approach for diagnosis of bovine coronavirus using a reverse transcription recombinase polymerase amplification assay. J. Virol. Methods 2013, 193, 337–340. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Liu, L.; Li, R.; Yuan, W. Rapid detection of Porcine circovirus 2 by recombinase polymerase amplification. J. Vet. Diagn. Investig. 2016, 28, 574–578. [Google Scholar] [CrossRef]
- Yang, Y.; Qin, X.; Zhang, W.; Li, Y.; Zhang, Z. Rapid and specific detection of porcine parvovirus by isothermal recombinase polymerase amplification assays. Mol. Cell. Probes 2016, 30, 300–305. [Google Scholar] [CrossRef]
- Yehia, N.; Arafa, A.S.; Abd El Wahed, A.; El-Sanousi, A.A.; Weidmann, M.; Shalaby, M.A. Development of reverse transcription recombinase polymerase amplification assay for avian influenza H5N1 HA gene detection. J. Virol. Methods 2015, 223, 45–49. [Google Scholar] [CrossRef]
- Xia, X.; Yu, Y.; Weidmann, M.; Pan, Y.; Yan, S.; Wang, Y. Rapid detection of shrimp white spot syndrome virus by real time, isothermal recombinase polymerase amplification assay. PLoS ONE 2014, 9, e104667. [Google Scholar] [CrossRef] [PubMed]
- Abd El Wahed, A.; Weidmann, M.; Hufert, F.T. Diagnostics-in-a-Suitcase: Development of a portable and rapid assay for the detection of the emerging avian influenza A (H7N9) virus. J. Clin. Virol. Off. Publ. Pan Am. Soc. Clin. Virol. 2015, 69, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Teoh, B.T.; Sam, S.S.; Tan, K.K.; Danlami, M.B.; Shu, M.H.; Johari, J.; Hooi, P.S.; Brooks, D.; Piepenburg, O.; Nentwich, O.; et al. Early detection of dengue virus by use of reverse transcription-recombinase polymerase amplification. J. Clin. Microbiol. 2015, 53, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Escadafal, C.; Faye, O.; Sall, A.A.; Faye, O.; Weidmann, M.; Strohmeier, O.; von Stetten, F.; Drexler, J.; Eberhard, M.; Niedrig, M.; et al. Rapid molecular assays for the detection of yellow fever virus in low-resource settings. PLoS Neglected Trop. Dis. 2014, 8, e2730. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ravelonandro, M.; Russell, P.; McOwen, N.; Briard, P.; Bohannon, S.; Vrient, A. Rapid diagnostic detection of plum pox virus in Prunus plants by isothermal AmplifyRP(®) using reverse transcription-recombinase polymerase amplification. J. Virol. Methods 2014, 207, 114–120. [Google Scholar] [CrossRef]
- Mekuria, T.A.; Zhang, S.; Eastwell, K.C. Rapid and sensitive detection of Little cherry virus 2 using isothermal reverse transcription-recombinase polymerase amplification. J. Virol. Methods 2014, 205, 24–30. [Google Scholar] [CrossRef]
- Silva, G.; Bömer, M.; Nkere, C.; Kumar, P.L.; Seal, S.E. Rapid and specific detection of Yam mosaic virus by reverse-transcription recombinase polymerase amplification. J. Virol. Methods 2015, 222, 138–144. [Google Scholar] [CrossRef]
- Xia, X.; Yu, Y.; Hu, L.; Weidmann, M.; Pan, Y.; Yan, S.; Wang, Y. Rapid detection of infectious hypodermal and hematopoietic necrosis virus (IHHNV) by real-time, isothermal recombinase polymerase amplification assay. Arch. Virol. 2015, 160, 987–994. [Google Scholar] [CrossRef]
- Sun, K.; Xing, W.W.; Yu, X.L.; Fu, W.L.; Wang, Y.Y.; Zou, M.J.; Luo, Z.H.; Xu, D.G. Recombinase polymerase amplification combined with a lateral flow dipstick for rapid and visual detection of Schistosoma japonicum. Parasit. Vectors 2016, 9, 476. [Google Scholar] [CrossRef]
- Arizti-Sanz, J.; Freije, C.A.; Stanton, A.C.; Petros, B.A.; Boehm, C.K.; Siddiqui, S.; Shaw, B.M.; Adams, G.; Kosoko-Thoroddsen, T.S.F.; Kemball, M.E.; et al. Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nat. Commun. 2020, 11, 5921. [Google Scholar] [CrossRef]
- Higgins, M.; Ravenhall, M.; Ward, D.; Phelan, J.; Ibrahim, A.; Forrest, M.S.; Clark, T.G.; Campino, S. PrimedRPA: Primer design for recombinase polymerase amplification assays. Bioinformatics 2019, 35, 682–684. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Hoshika, S.; Hutter, D.; Bradley, K.M.; Benner, S.A. Recombinase-based isothermal amplification of nucleic acids with self-avoiding molecular recognition systems (SAMRS). ChemBioChem 2014, 15, 2268–2274. [Google Scholar] [CrossRef] [PubMed]
- LV, B.; Cheng, H.R.; Yan, Q.F.; Huang, Z.J.; Shen, G.F.; Zhang, Z.F.; Li, Y.N.; Deng, Z.X.; Lin, M.; Cheng, Q. Recombinase-Aid Amplification: A Novel Technology of in vitro Rapid Nucleic Acid Amplification. Sci. Sin. (Vitae) 2010, 40, 983–988. [Google Scholar]
- Fu, M.; Yang, Y.; Zhang, C.; Chen, G.; Wang, Y. Recombinase polymerase amplification combined with lateral-flow dipstick for rapid detection of Prorocentrum minimum. J. Appl. Phycol. 2020, 32, 1837–1850. [Google Scholar] [CrossRef]
- Wu, X.; Liu, Y.; Gao, L.; Yan, Z.; Zhao, Q.; Chen, F.; Xie, Q.; Zhang, X. Development and Application of a Reverse-Transcription Recombinase-Aided Amplification Assay for Porcine Epidemic Diarrhea Virus. Viruses. 2022, 14, 591. [Google Scholar] [CrossRef]
- Mao, Y.X.; Liu, M.D.; Zhang, H.B.; Qu, Y.; Nan, W.L.; Su, H.B.; Liu, J.Z.; Sun, S.F.; Hu, L.P.; Fan, X.X. Advances on Application of Recombinase Aided Amplification in Detection of Pathogenic Microorgan. China Anim. Health Insp. 2024, 41, 60–66. [Google Scholar]
- Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.; Watanabe, K.; Amino, N.; Hase, T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000, 28, E63. [Google Scholar] [CrossRef]
- Wang, J.Y.; Wan, Y.P.; Chen, G.Y.; Liang, H.X.; Ding, S.; Shang, K.; Li, M.; Dong, J.; Du, F.; Cui, X.; et al. Colorimetric detection of horse meat based on loop-mediated isothermal amplification (LAMP). Food Anal. Methods 2019, 12, 2535–2541. [Google Scholar] [CrossRef]
- Zhang, D.F.; Gao, L.; Zhang, M.; Du, Z.X.; Lv, X.R.; Bai, X.; Zhang, G.Q.; Li, X.P.; Li, J.R. Research Progress of Molecular Biological Technology in Rapid Detection of Foodborne Pathogens. Food Sci. Technol. 2024, 45, 368–377. [Google Scholar]
- Kuang, Y.Y.; Li, S.G.; Luo, Y.P. Loop-mediated Isothermal Amplification Method for Detection of Nucleic Acids and its Application. Microbiol. China 2007, 34, 557–560. [Google Scholar]
- Yan, L.; Zhou, J.; Zheng, Y.; Gamson, A.S.; Roembke, B.T.; Nakayama, S.; Sintim, H.O. lsothermal amplified detection of DNA and RNA. Mol. Biosyst. 2014, 10, 970–1003. [Google Scholar] [CrossRef]
- Gao, Y.; Meng, X.Y.; Luo, Y.Z.; Hu, Y.H.; Qiu, H.J. Application of Isothermal Amplification Technology in Detecting Pathogens. Progress. Vet. Med. 2017, 38, 103–109. [Google Scholar]
- Compton, J. Nucleic acid sequence-based amplification. Nature 1991, 350, 91–92. [Google Scholar] [CrossRef]
- Chernesky, M.A.; Mahony, J.B. Molecular diagnosis of Chlamydia trachomatis infections by probe hybridization, PCR, LCR, TMA, and Q-β replicase methods. Methods Mol. Med. 1999, 20, 33–46. [Google Scholar]
- Kumar, Y. Isothermal amplification-based methods for assessment of microbiological safety and authenticity of meat and meat products. Food Control. 2021, 121, 107679. [Google Scholar] [CrossRef]
- Brink, A.; Vervoort, M.B.; Middeldorp, J.M.; Meijer, C.; van den Brule, A.J. Nucleic Acid Sequence-Based Amplification, a New Method for Analysis of Spliced and Unspliced Epstein-Barr Virus Latent Transcripts, and Its Comparison with Reverse Transcriptase PCR. J. Clin. Microbiol. 1998, 36, 3164–3169. [Google Scholar] [CrossRef]
- Obande, G.A.; Banga Singh, K.K. Current and Future Perspectives on Isothermal Nucleic Acid Amplification Technologies for Diagnosing Infections. Infect. Drug Resist. 2020, 13, 455–483. [Google Scholar] [CrossRef]
- Walker, G.T.; Fraiser, M.S.; Schram, J.L.; Little, M.C.; Nadeau, J.G.; Malinowski, D.P. Strand displacement amplification-an isothermal, in vitro DNA amplification technique. Nucleic Acids Res. 1992, 20, 1691. [Google Scholar] [CrossRef]
- Liang, H.Y.; Liu, W.X.; Yang, Z.G. Progress of Isothermal Nucleic Acid Amplification Techniques. Med. Innov. China 2017, 14, 145–148. [Google Scholar]
- Asadi, R.; Mollasalehi, H. The mechanism and improvements to the isothermal amplification of nucleic acids, at a glance. Anal. Biochem. 2021, 631, 114260. [Google Scholar] [CrossRef]
- Jiang, T.L. Strand displacement amplification and its progress. Int. J. Lab. Med. 1999, 20, 196–198. [Google Scholar]
- Banér, J.; Nilsson, M.; Mendel-Hartvig, M.; Landegren, U. Signal amplification of padlock probes by rolling circle replication. Nucleic Acids Res. 1998, 26, 5073. [Google Scholar] [CrossRef]
- Huang, G.Q.; Zhou, H.Y.; Xiang, Q.; Zhang, J.; Hu, X.M.; Cheng, R.Z.; Lan, L.W.; Wang, Y.Z.; Shen, Z.F. Exponential and efficient target-catalyst rolling circle amplification for label-free and ultrasensitive fluorescent detection of miR-21 and p53 gene. Anal. Chim. Acta 2022, 1221, 340132. [Google Scholar] [CrossRef]
- Gao, X.Y.; Li, J.H. Research progress in rolling circle amplification in biosensing and cell imaging. Sci. Sin. Chim. 2022, 52, 1609–1626. [Google Scholar] [CrossRef]
- Treerattrakoon, K.; Jiemsakul, T.; Tansarawiput, C.; Pinpradup, P.; Iempridee, T.; Luksirikul, P.; Khoothiam, K.; Dharakul, T.; Japrung, D. Rolling circle amplification and graphene-based sensor-on-a-chip for sensitive detection of serum circulating miRNAs. Anal. Biochem. 2019, 577, 89–97. [Google Scholar] [CrossRef]
- Zhang, S.J.; Feng, J.J.; Guo, S.L.; Wang, Y.L.; Lin, P. Application of Rolling Ring Amplification in the Detection of Pathogenic Microorganism. J. Instrum. Anal. 2021, 40, 1538–1544. [Google Scholar]
- Goldmeyer, J.; Kong, H.; Tang, W. Development of a novel one-tube isothermal reverse transcription thermophilic helicase-dependent amplification platform for rapid RNA detection. J. Mol. Diagn. 2007, 9, 639–644. [Google Scholar] [CrossRef]
- Pumford, E.A.; Lu, J.; Spaczai, I.; Prasetyo, M.E.; Zheng, E.M.; Zhang, H.; Kamei, D.T. Developments in integrating nucleic acid isothermal amplification and detection systems for point-of-care diagnostics. Biosens. Bioelectron. 2020, 170, 112674. [Google Scholar] [CrossRef]
- Vincent, M.; Xu, Y.; Kong, H. Helicase-dependent isothermal DNA amplification. EMBO Rep. 2004, 5, 795–800. [Google Scholar] [CrossRef]
- Jia, H.; Hu, L.; Ma, X.W. Research progress of helicase dependent DNA isothermal amplification. Xin Nongye 2015, 9–10. [Google Scholar]
- Cao, Y.; Kim, H.J.; Li, Y.; Kong, H.; Lemieux, B. Helicase-dependent amplification of nucleic acids. Curr. Protoc. Mol. Biol. 2013, 104, 15.11.1–15.11.12. [Google Scholar] [CrossRef]
- Yu, L.P.; Wang, K.C.; Pan, J.H.; Zhang, F.Y.; Yang, W.J.; Zhou, K.Y.T.; Cui, C.D.; Sun, F.L.; Wang, S.C. Overview of Isothermal Amplification Technology and Its Application in Animal Pathogen Detection. China Anim. Health Insp. 2022, 39, 96–103. [Google Scholar]
- Wang, W.J.; Wang, C.G.; Zhang, Z.C.; Zhang, P.; Zhai, X.H.; Li, X.Y.; Zhang, T. Recombinase-aided amplification-lateral flow dipstick assay-a specific and sensitive method for visual detection of avian infectious laryngotracheitis virus. Poult. Sci. 2021, 100, 100895. [Google Scholar] [CrossRef]
- Bhat, A.I.; Aman, R.; Mahfouz, M. Onsite detection of plant viruses using isothermal amplification assays. Plant Biotechnol. J. 2022, 20, 1859–1873. [Google Scholar] [CrossRef]
- Jia, G.S.; Xu, X.M.; Guo, Z.D.; Hu, X.X.; Pan, Q.; Zhu, H.B.; Wang, Y. A rapid and high sensitivity RNA detection based on NASBA and G4-ThT fluorescent biosensor. Sci. Rep. 2022, 12, 10076. [Google Scholar]
- Zhao, Y.X.; Chen, F.; Li, Q.; Wang, L.H.; Fan, C.H. Isothermal Amplification of Nucleic Acids. Chem. Rev. 2015, 115, 12491–12545. [Google Scholar] [CrossRef]
- Lee, J.E.; Kim, S.A.; Park, H.J.; Mun, H.; Ha, K.S.; Shim, W.B. Colorimetric detection of norovirus by helicase-dependent amplification method based on specific primers integrated with HRPzyme. Anal. Bioanal. Chem. 2022, 414, 6723–6733. [Google Scholar] [CrossRef]
- Du, Y.N.; Zhao, X.; Fan, X.R.; Zhang, Q.; Zhao, K.; Xu, Y. Advances and applications of recombinase polymerase amplification. Acta Agric. Shanghai 2018, 34, 117–122. [Google Scholar]
- Guo, Z.Y.; Liu, Z.D.; Liu, X.Q.; Chen, J.; Lan, Q.X. Research progress of recombinase polymerase amplification. Food Sci. Technol. 2018, 43, 55–59. [Google Scholar]
- Kim, J.Y.; Lee, J. Development of a multiplex real-time recombinase polymerase amplification (RPA) assay for rapid quantitative detection of Campylobacter coli, and jejuni, from eggs and chicken products. Food Control. 2017, 73, 1247–1255. [Google Scholar] [CrossRef]
- Yang, Y.; Qin, X.; Wang, G.; Zhang, Y.; Shang, Y.; Zhang, Z. Development of a fluorescent probe-based recombinase polymerase amplification assay for rapid detection of Orf virus. Virol. J. 2015, 12, 206. [Google Scholar] [CrossRef]
- Wang, J.C.; Liu, L.B.; Han, Q.A.; Wang, J.F.; Yuan, W.Z. An exo probe-based recombinase polymerase amplification assay for the rapid detection of porcine parvovirus. J. Virol. 2017, 248, 145–147. [Google Scholar] [CrossRef]
- Choi, G.; Jung, J.H.; Park, B.H.; Oh, S.J.; Seo, J.H.; Choi, J.S.; Kim, D.H.; Seo, T.S. A centrifugal direct recombinase polymerase amplification (direct-RPA) microdevice for multiplex and real-time identification of food poisoning bacteria. Lab Chip. 2016, 16, 2309–2316. [Google Scholar] [CrossRef]
- Ahn, H.; Batule, B.S.; Seok, Y.; Kim, M.G. Single-Step Recombinase Polymerase Amplification Assay Based on a Paper Chip for Simultaneous Detection of Multiple Foodborne Pathogens. Anal. Chem. 2018, 90, 10211–10216. [Google Scholar] [CrossRef]
- Tu, P.A.; Shiu, J.S.; Lee, S.H.; Pang, V.F.; Wang, D.C.; Wang, P.H. Development of a recombinase polymerase amplification lateral flow dipstick (RPA-LFD) for the field diagnosis of caprine arthritis-encephalitis virus (CAEV) infection. J. Virol. Methods 2017, 243, 98–104. [Google Scholar] [CrossRef]
- Yu, L.Z.; Tao, L.Y.; Wei, X.F. Research and Application Progress in Visualized RPA-LFD Nucleic Acid Detection Technology. Lab. Anim. Comp. Med. 2021, 41, 547–553. [Google Scholar]
- Liu, Z.X. Establishment and Initial Application of RPA-LFD Method for Rapid and Visualization Detection of NDV. Master’s Thesis, South China Agricultural University, Guangzhou, China, 2018. [Google Scholar]
- Hou, P.; Wang, H.; Zhao, G.; He, C.; He, H. Rapid detection of infectious bovine Rhinotracheitis virus using recombinase polymerase amplification assays. BMC Vet. Res. 2017, 13, 386. [Google Scholar] [CrossRef]
- Wu, X.; Chen, S.; Zhang, Z.; Zhang, Y.; Li, P.; Chen, X.; Liu, M.; Lu, Q.; Li, Z.; Wei, Z.; et al. Development of Recombinase Polymerase Amplification Combined with Lateral Flow Strips for Rapid Detection of Cowpea Mild Mottle Virus. Plant Pathol. J. 2023, 39, 486–493. [Google Scholar] [CrossRef]
- Yang, Y.; Qin, X.; Wang, G.; Jin, J.; Shang, Y.; Zhang, Z. Development of an isothermoal amplification-based assay for rapid visual detection of an Orf virus. Virol. J. 2016, 13, 46. [Google Scholar] [CrossRef]
- Gao, X.; Liu, X.; Zhang, Y.; Wei, Y.; Wang, Y. Rapid and visual detection of porcine deltacoronavirus by recombinase polymerase amplification combined with a lateral flow dipstick. BMC Vet. Res. 2020, 16, 130. [Google Scholar] [CrossRef]
- Miao, F.; Zhang, J.; Li, N.; Chen, T.; Wang, L.; Zhang, F.; Mi, L.; Zhang, J.; Wang, S.; Wang, Y.; et al. Rapid and Sensitive Recombinase Polymerase Amplification Combined with Lateral Flow Strip for Detecting African Swine Fever Virus. Front. Microbiol. 2019, 10, 1004. [Google Scholar] [CrossRef] [PubMed]
- Jansen, R.; Embden, J.D.; Gaastra, W.; Schouls, L.M. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 2002, 43, 1565–1575. [Google Scholar] [CrossRef] [PubMed]
- Gasiunas, G.; Barrangou, R.; Horvath, P.; Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA 2012, 109, E2579–E2586. [Google Scholar] [CrossRef] [PubMed]
- Abudayyeh, O.O.; Gootenberg, J.S.; Konermann, S.; Joung, J.; Slaymaker, I.M.; Cox, D.B.; Shmakov, S.; Makarova, K.S.; Semenova, E.; Minakhin, L.; et al. C2c2 is a singlecomponent programmable RNA-guided RNA-targeting CRISPR effector. Science 2016, 353, aaf5573. [Google Scholar] [CrossRef] [PubMed]
- Gootenberg, J.S.; Abudayyeh, O.O.; Lee, J.W.; Essletzbichler, P.; Dy, A.J.; Joung, J.; Verdine, V.; Donghia, N.; Daringer, N.M.; Freije, C.A.; et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 2017, 356, 438–442. [Google Scholar] [CrossRef]
- East-Seletsky, A.; O’Connell, M.R.; Knight, S.C.; Burstein, D.; Cate, J.H.; Tjian, R.; Doudna, J.A. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature 2016, 538, 270–273. [Google Scholar] [CrossRef]
- Rutkauskas, M.; Songailiene, I.; Irmisch, P.; Kemmerich, F.E.; Sinkunas, T.; Siksnys, V.; Seidel, R.A. Quantitative Model for the Dynamics of Target Recognition and off-Target Rejection by the CRISPR-Cas Cascade Complex. Nat. Commun. 2022, 13, 7460. [Google Scholar] [CrossRef]
- Ren, M.; Mei, H.; Zhou, M.; Fu, Z.F.; Han, H.; Bi, D.; Peng, F.; Zhao, L. Development of A Super-Sensitive Diagnostic Method for African Swine Fever Using CRISPR Techniques. Virol. Sin. 2021, 36, 220–230. [Google Scholar] [CrossRef]
- Li, H.; Cao, X.; Chen, R.; Guang, M.; Xu, M.; Wu, X.; Yang, R.; Lei, L.; Zhang, F. Rapid detection of grass carp reovirus type 1 using RPA-based test strips combined with CRISPR Cas13a system. Front. Microbiol. 2023, 14, 1296038. [Google Scholar] [CrossRef]
- Chen, J.S.; Ma, E.; Harrington, L.B.; Da Costa, M.; Tian, X.; Palefsky, J.M.; Doudna, J.A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 2018, 360, 436–439. [Google Scholar] [CrossRef]
- Ma, L.; Zhu, M.; Meng, Q.; Wang, Y.; Wang, X. Real-time detection of Seneca Valley virus by one-tube RPA-CRISPR/Cas12a assay. Front. Cell Infect. Microbiol. 2024, 13, 1305222. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, L.; Yu, X.; Wang, G.; Pan, T.; Huang, Z.; Cui, T.; Huang, T.; Huang, Z.; Nie, L.; et al. Development of a rapid, sensitive detection method for SARS-CoV-2 and influenza virus based on recombinase polymerase amplification combined with CRISPR-Cas12a assay. J. Med. Virol. 2023, 95, e29215. [Google Scholar] [CrossRef] [PubMed]
- Ruehrwein, R.A.; Ward, D.W. Mechanism of Clay Aggregation by Polyelectrolytes. Soil. Sci. 1952, 73, 485–492. [Google Scholar] [CrossRef]
- Smellie, R.; Mer, V.K. Flocculation, subsidence and filtration of phosphate slimes: VI. A quantitative theory of filtration of flocculated suspensions. J. Colloid. Sci. 1958, 13, 589–599. [Google Scholar] [CrossRef]
- Healy, T.W.; La Mer, V.K. The energetics of flocculation and redispersion by polymers. J. Colloid. Sci. 1964, 19, 323–332. [Google Scholar] [CrossRef]
- DeAngelis, M.M.; Wang, D.G.; Hawkins, T.L. Solid-phase reversible immobilization for the isolation of PCR products. Nucleic Acids Res. 1995, 23, 4742–4743. [Google Scholar] [CrossRef]
- Wee, E.J.; Lau, H.Y.; Botella, J.R.; Trau, M. Re-purposing bridging flocculation for on-site, rapid, qualitative DNA detection in resource-poor settings. Chem. Commun. (Camb). 2015, 51, 5828–5831. [Google Scholar] [CrossRef]
- Xie, X.; Zhang, X.; Zhang, H.; Chen, D.; Fei, W. Preparation and application of surface-coated superparamagnetic nanobeads in the isolation of genomic DNA. J. Magn. Magn. Mater. 2004, 277, 16–23. [Google Scholar] [CrossRef]
- Tsaloglou, M.N.; Nemiroski, A.; Camci-Unal, G.; Christodouleas, D.C.; Murray, L.P.; Connelly, J.T.; Whitesides, G.M. Handheld isothermal amplification and electrochemical detection of DNA in resource-limited settings. Anal. Biochem. 2018, 543, 116–121. [Google Scholar] [CrossRef]
- Chen, Y.; Ren, W.Q.; Liu, Z.M.; Wang, W. Rapid detection of HPV 16 DNA by paper-based electrochemiluminescence based on test strip nucleic acid extraction and recombinant polymerase amplification. Chin. J. Lab. Diagn. 2023, 27, 1009–1015. [Google Scholar]
- Xia, S.; Chen, Y.; Li, X.; Zhang, H.Y.; Liu, Z.M.; Wang, J. A Nucleic Acid Detection Method Based on Recombinant Polymerase Amplification and Paper-Based Electrochemiluminescence. J. Anal. Sci. Technol. 2018, 34, 627–632. [Google Scholar]
- Kim, H.E.; Schuck, A.; Lee, S.H.; Lee, Y.; Kang, M.; Kim, Y.S. Sensitive electrochemical biosensor combined with isothermal amplification for point-of-care COVID-19 tests. Biosens. Bioelectron. 2021, 182, 113168. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Sharma, A.; Ahmed, A.; Sundramoorthy, A.K.; Furukawa, H.; Arya, S.; Khosla, A. Recent Advances in Electrochemical Biosensors: Applications, Challenges, and Future Scope. Biosensors 2021, 11, 336. [Google Scholar] [CrossRef] [PubMed]
- Kunze, A.; Dilcher, M.; Abd El Wahed, A.; Hufert, F.; Niessner, R.; Seidel, M. On-chip isothermal nucleic acid amplification on flow-based chemiluminescence microarray analysis platform for the detection of viruses and bacteria. Anal. Chem. 2016, 88, 898–905. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhuang, Z.; Xu, N.; Feng, Y.; Fang, K.; Tan, C.; Tan, Y. Simple, Visual, Point-of-Care SARS-CoV-2 Detection Incorporating Recombinase Polymerase Amplification and Target DNA–Protein Crosslinking Enhanced Chemiluminescence. Biosensors 2024, 14, 135. [Google Scholar] [CrossRef]
- Shvalya, V.; Filipič, G.; Zavašnik, J.; Abdulhalim, I.; Cvelbar, U. Surface-enhanced Raman spectroscopy for chemical and biological sensing using nanoplasmonics: The relevance of interparticle spacing and surface morphology. Appl. Phys. Rev. 2020, 7, 031307. [Google Scholar] [CrossRef]
- Wetzel, H.; Gerischer, H. Surface enhanced Raman scattering from pyridine and halide ions adsorbed on silver and gold sol particles. Chem. Phys. Lett. 1980, 76, 460–464. [Google Scholar] [CrossRef]
- Zhuang, J.; Zhao, Z.; Lian, K.; Yin, L.; Wang, J.; Man, S.; Liu, G.; Ma, L. SERS-based CRISPR/Cas assay on microfluidic paper analytical devices for supersensitive detection of pathogenic bacteria in foods. Biosens. Bioelectron. 2022, 207, 114167. [Google Scholar] [CrossRef]
- Lau, H.Y.; Wang, Y.; Wee, E.J.; Botella, J.R.; Trau, M. Field Demonstration of a Multiplexed Point-of-Care Diagnostic Platform for Plant Pathogens. Anal. Chem. 2016, 88, 8074–8081. [Google Scholar] [CrossRef]
- Liu, H.B.; Du, X.J.; Zang, Y.X.; Li, P.; Wang, S. SERS-Based Lateral Flow Strip Biosensor for Simultaneous Detection of Listeria monocytogenes and Salmonella enterica Serotype Enteritidis. J. Agric. Food Chem. 2017, 65, 10290–10299. [Google Scholar] [CrossRef]
- Koo, K.M.; McNamara, B.; Wee, E.J.H.; Wang, Y.; Trau, M. Rapid and Sensitive Fusion Gene Detection in Prostate Cancer Urinary Specimens by Label-Free Surface-enhanced Raman Scattering. J. Biomed. Nanotechnol. 2016, 12, 1798–1805. [Google Scholar] [CrossRef] [PubMed]
- Qi, W.; Tian, Y.; Lu, D.; Chen, B. Detection of glutathione in dairy products based on surface-enhanced infrared absorption spectroscopy of silver nanoparticles. Front. Nutr. 2022, 9, 982228. [Google Scholar] [CrossRef] [PubMed]
- Okoro, G.O.; Husain, S.; Saukani, M.; Mutalik, C.; Yougbaré, S.; Hsiao, Y.; Kuo, T. Emerging Trends in Nanomaterials for Photosynthetic Biohybrid Systems. ACS Mater. Lett. 2023, 5, 95–115. [Google Scholar] [CrossRef]
- Kuo, J.; Tan, S.; Hsiao, Y.; Mutalik, C.; Chen, H.; Yougbaré, S.; Kuo, T. Unveiling the Antibacterial Mechanism of Gold Nanoclusters via In Situ Transmission Electron Microscopy. ACS Sustain. Chem. Eng. 2021, 10, 464–471. [Google Scholar] [CrossRef]
- Chang, T.; Cheng, T.; Chu, H.; Tan, S.; Kuo, J.; Hsu, P.H.; Su, C.; Chen, H.; Lee, C.; Kuo, T. Metabolic Mechanism Investigation of Antibacterial Active Cysteine-Conjugated Gold Nanoclusters in. ACS Sustain. Chem. Eng. 2019, 7, 15479–15486. [Google Scholar] [CrossRef]
- Dizaji, A.N.; Ozek, N.S.; Yilmaz, A.; Aysin, F.; Yilmaz, M. Gold nanorod arrays enable highly sensitive bacterial detection via surface-enhanced infrared absorption (SEIRA) spectroscopy. Colloid. Surf. B 2021, 206, 111939. [Google Scholar] [CrossRef]
- Tu, Y.P.; Yang, D.L.; Zhang, Z.P.; Dong, X.B.; Liu, L.Y.; Miao, G.J.; Zhang, L.L.; Qiu, X.B. Isothermal amplification technology based on microfluidic chip. Chin. J. Biotechnol. 2022, 38, 943–960. [Google Scholar]
- Liu, D.; Shen, H.; Zhang, Y.; Shen, D.; Zhu, M.; Song, Y.; Zhu, Z.; Yang, C. A microfluidic-integrated lateral flow recombinase polymerase amplification (MI-lF-RPA) assay for rapid COVID-19 detection. Lab Chip 2021, 21, 2019–2026. [Google Scholar] [CrossRef]
- Chen, J.; Xu, Y.; Yan, H.; Zhu, Y.; Wang, L.; Zhang, Y.; Lu, Y.; Xing, W. Sensitive and rapid detection of pathogenic bacteria from urine samples using multiplex recombinase polymerase amplification. Lab Chip 2018, 18, 2441–2452. [Google Scholar] [CrossRef]
- Kim, T.H.; Park, J.; Kim, C.J.; Cho, Y.K. Fully Integrated Lab-on-a-Disc for Nucleic Acid Analysis of Food-Borne Pathogens. Anal. Chem. 2014, 86, 3841–3848. [Google Scholar] [CrossRef]
Pathogenic Agent | Detection Method | LOD | Ref |
---|---|---|---|
Porcine circovirus 2 | qRPA | 100 copies | [58] |
Porcine parvovirus | qRPA RPA-LFD | 300 copies 400 copies | [59] |
H5N1 avian influenza | RT-qRPA | 1 copies | [60] |
White spot syndrome virus | qRPA | 10 copies | [61] |
H7N9 avian influenza | qRPA | 10~100 copies | [62] |
Dengue virus | qRPA | 10 copies | [63] |
Yellow fever virus | LF-RPA | 21 copies | [64] |
Plum pox virus | LF-RPA | 1 fg | [65] |
Little cherry virus 2 | LF-RPA | 100 fg | [66] |
Yam mosaic virus | qRPA | 14 pg | [67] |
Infectious hypodermal and hematopoietic necrosis | qRPA | 4 copies | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, S.; Yu, W.; Fu, X.; Yu, X.; Ye, Z.; Zhang, M.; Qiu, Y.; Ma, B. Advances in Virus Detection Techniques Based on Recombinant Polymerase Amplification. Molecules 2024, 29, 4972. https://doi.org/10.3390/molecules29204972
Wu S, Yu W, Fu X, Yu X, Ye Z, Zhang M, Qiu Y, Ma B. Advances in Virus Detection Techniques Based on Recombinant Polymerase Amplification. Molecules. 2024; 29(20):4972. https://doi.org/10.3390/molecules29204972
Chicago/Turabian StyleWu, Shiwen, Wenhan Yu, Xianshu Fu, Xiaoping Yu, Zihong Ye, Mingzhou Zhang, Yulou Qiu, and Biao Ma. 2024. "Advances in Virus Detection Techniques Based on Recombinant Polymerase Amplification" Molecules 29, no. 20: 4972. https://doi.org/10.3390/molecules29204972
APA StyleWu, S., Yu, W., Fu, X., Yu, X., Ye, Z., Zhang, M., Qiu, Y., & Ma, B. (2024). Advances in Virus Detection Techniques Based on Recombinant Polymerase Amplification. Molecules, 29(20), 4972. https://doi.org/10.3390/molecules29204972