Self-DNA in Caenorhabditis elegans Affects the Production of Specific Metabolites: Evidence from LC-MS and Chemometric Studies
Abstract
:1. Introduction
2. Results and Discussion
2.1. C. elegans Treatments with Self- and Nonself-DNA and Extract Preparation
2.2. Compound Annotation by LC-MS Analysis
2.3. Chemometric Analysis and Compound Quantification in Larvae
2.4. Chemometric Analysis and Compound Quantification in Adults
3. Materials and Methods
3.1. Growth Conditions and Metabolite Extraction
3.2. LC-MS Analyses
3.3. Data Analysis and Metabolite Annotation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, J.K.; Lindon, J.C. Systems biology: Metabonomics. Nature 2008, 455, 1054–1056. [Google Scholar] [CrossRef] [PubMed]
- Bohmann, K.; Evans, A.; Gilbert, M.T.P.; Carvalho, G.R.; Creer, S.; Knapp, M.; Douglas, W.Y.; De Bruyn, M. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 2014, 29, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Aucamp, J.; Bronkhorst, A.J.; Badenhorst, C.P.; Pretorius, P.J. The diverse origins of circulating cell-free DNA in the human body: A critical re-evaluation of the literature. Biol. Rev. 2018, 93, 1649–1683. [Google Scholar] [CrossRef] [PubMed]
- Mazzoleni, S.; Bonanomi, G.; Incerti, G.; Chiusano, M.L.; Termolino, P.; Mingo, A.; Senatore, M.; Giannino, F.; Cartenì, F.; Rietkerk, M.; et al. Inhibitory and toxic effects of extracellular self-DNA in litter: A mechanism for negative plant-soil feedbacks? New Phytol. 2015, 205, 1195–1210. [Google Scholar] [CrossRef]
- Mazzoleni, S.; Cartenì, F.; Bonanomi, G.; Senatore, M.; Termolino, P.; Giannino, F.; Incerti, G.; Rietkerk, M.; Lanzotti, V.; Chiusano, M.L. Inhibitory effects of extracellular self-DNA: A general biological process? New Phytol. 2015, 206, 127–132. [Google Scholar] [CrossRef]
- Chiusano, M.L.; Incerti, G.; Colantuono, C.; Termolino, P.; Palomba, E.; Monticolo, F.; Benvenuto, G.; Foscari, A.; Esposito, A.; Marti, L.; et al. Arabidopsis thaliana response to extracellular DNA: Self versus nonself exposure. Plants 2021, 10, 1744. [Google Scholar] [CrossRef]
- Bonanomi, G.; Zotti, M.; Idbella, M.; Termolino, P.; De Micco, V.; Mazzoleni, S. Field evidence for litter and self? DNA inhibitory effects on Alnus glutinosa roots. New Phytol. 2022, 236, 399–412. [Google Scholar] [CrossRef]
- de Alteriis, E.; Incerti, G.; Cartenì, F.; Chiusano, M.L.; Colantuono, C.; Palomba, E.; Termolino, P.; Monticolo, F.; Esposito, A.; Bonanomi, G.; et al. Extracellular DNA secreted in yeast cultures is metabolism-specific and inhibits cell proliferation. Microb. Cell 2023, 10, 292. [Google Scholar] [CrossRef]
- Lanzotti, V.; Grauso, L.; Mangoni, A.; Termolino, P.; Palomba, E.; Anzano, A.; Incerti, G.; Mazzoleni, S. Metabolomics and molecular networking analyses in Arabidopsis thaliana show that extracellular self-DNA affects nucleoside/nucleotide cycles with accumulation of cAMP, cGMP and N6-methyl-AMP. Phytochemistry 2022, 204, 113453. [Google Scholar] [CrossRef]
- Colombo, M.; Grauso, L.; Lanzotti, V.; Incerti, G.; Adamo, A.; Storlazzi, A.; Gigliotti, S.; Mazzoleni, S. Self-DNA Inhibition in Drosophila melanogaster Development: Metabolomic Evidence of the Molecular Determinants. Biology 2023, 12, 1378. [Google Scholar] [CrossRef] [PubMed]
- Félix, M.A.; Braendle, C. The natural history of Caenorhabditis elegans. Curr. Biol. 2010, 20, R965–R969. [Google Scholar] [CrossRef] [PubMed]
- Butler, J.A.; Mishur, R.J.; Bhaskaran, S.; Rea, S.L. A metabolic signature for long life in the Caenorhabditis elegans Mit mutants. Aging Cell 2013, 12, 130–138. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, S.; Bundy, J.G.; Davies, S.K.; Viney, J.M.; Swire, J.S.; Leroi, A.M. A metabolic signature of long life in Caenorhabditis elegans. BMC Biol. 2010, 8, 14. [Google Scholar] [CrossRef] [PubMed]
- Watson, E.; MacNeil, L.T.; Arda, H.E.; Zhu, L.J.; Walhout, A.J. Integration of metabolic and gene regulatory networks modulates the C. elegans dietary response. Cell 2013, 153, 253–266. [Google Scholar] [CrossRef]
- Germoglio, M.; Adamo, A.; Incerti, G.; Cartenì, F.; Gigliotti, S.; Storlazzi, A.; Mazzoleni, S. Self-DNA exposure induces developmental defects and germline DNA damage response in Caenorhabditis elegans. Biology 2022, 11, 262. [Google Scholar] [CrossRef]
- Eriksson, L.; Byrne, T.; Johansson, E.; Trygg, J.; Vikström, C. Multi-and Megavariate Data Analysis Basic Principles and Applications; Umetrics Academy: Göttingen, Germany, 2013; Volume 1. [Google Scholar]
- Yang, J.; Zhao, X.; Liu, X.; Wang, C.; Gao, P.; Wang, J.; Li, L.; Gu, J.; Yang, S.; Xu, G. High performance liquid chromatography− mass spectrometry for metabonomics: Potential biomarkers for acute deterioration of liver function in chronic hepatitis B. J. Proteome Res. 2006, 5, 554–561. [Google Scholar] [CrossRef]
- Liu, Y.J.; Janssens, G.E.; McIntyre, R.L.; Molenaars, M.; Kamble, R.; Gao, A.W.; Jongejan, A.; Weeghel, M.V.; MacInnes, A.W.; Houtkooper, R.H. Glycine promotes longevity in Caenorhabditis elegans in a methionine cycle-dependent fashion. PLoS Genet. 2019, 15, e1007633. [Google Scholar] [CrossRef]
- Pathan, H.; Williams, J. Basic opioid pharmacology: An update. Br. J. Pain. 2012, 6, 11–16. [Google Scholar] [CrossRef]
- Day, R.; Lazure, C.; Basak, A.; Boudreault, A.; Limperis, P.; Dong, W.; Lindberg, I. Prodynorphin processing by proprotein convertase 2. Cleavage at single basic residues and enhanced processing in the presence of carboxypeptidase activity. J. Biol. Chem. 1988, 273, 829–836. [Google Scholar] [CrossRef]
- Tejeda, H.A.; Shippenberg, T.S.; Henriksson, R. The dynorphin/kappa-opioid receptor system and its role in psychiatric disorders. Cell. Mol. Life Sci. 2012, 69, 857–896. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, J.M.; Cheer, J.F. Endocannabinoid regulation of reward and reinforcement through interaction with dopamine and endogenous opioid signaling. Neuropsychopharmacology 2018, 43, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Cheong, M.C.; Artyukhin, A.B.; You, Y.J.; Avery, L. An opioid-like system regulating feeding behaviour in C. elegans. Elife 2015, 4, e06683. [Google Scholar] [CrossRef] [PubMed]
- Dallman, M.F.; Akana, S.F.; Bhatnagar, S.; Bell, M.E.; Choi, S.; Chu, A.; Horsley, C.; Levin, N.; Meijer, O.; Soriano, L.R.; et al. Starvation: Early signals, sensors, and sequelae. Endocrinology 1999, 140, 4015–4023. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.B.; Evangelista, W.S.; Barras, R.; Guedes, R.N. Dispersal of Podisus nigrispinus (Het., Pentatomidae) nymphs preyino on tomato leafminer: Effect of predator release time, density and satiation level. J. Appl. Entomol. 2002, 126, 326–332. [Google Scholar] [CrossRef]
- Farrell, E.K.; Chen, Y.; Barazanji, M.; Jeffries, K.A.; Cameroamortegui, F.; Merkler, D.J. Primary fatty acid amide metabolism: Conversion of fatty acids and an ethanolamine in N18TG2 and SCP cells 1. J. Lipid Res. 2012, 53, 247–256. [Google Scholar] [CrossRef]
- Peymen, K.; Watteyne, J.; Frooninckx, L.; Schoofs, L.; Beets, I. The FMRFamide-like peptide family in nematodes. Front. Endocrinol. 2014, 5, 90. [Google Scholar] [CrossRef]
- Li, C.; Kim, K. Family of FLP peptides in Caenorhabditis elegans and related nematodes. Front. Endocrinol. 2014, 5, 150. [Google Scholar] [CrossRef]
- Liu, T.; Kim, K.; Li, C.; Barr, M.M. FMRFamide-like neuropeptides and mechanosensory touch receptor neurons regulate male sexual turning behavior in Caenorhabditis elegans. J. Neurosci. 2007, 27, 7174–7182. [Google Scholar] [CrossRef]
- Suo, S.; Ishiura, S.; Van Tol, H.H. Dopamine receptors in C. elegans. Eur. J. Pharmacol. 2004, 500, 159–166. [Google Scholar] [CrossRef]
- Sawin, E.R.; Ranganathan, R.; Horvitz, H.R. C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 2000, 26, 619–631. [Google Scholar] [CrossRef] [PubMed]
- Bhat, U.S.; Shahi, N.; Surendran, S.; Babu, K. Neuropeptides and behaviors: How small peptides regulate nervous system function and behavioral outputs. Front. Mol. Neurosci. 2021, 14, 786471. [Google Scholar] [CrossRef] [PubMed]
- Brenner, S. The genetics of Caenorhabditis elegans. Genetics 1974, 77, 71–94. [Google Scholar] [CrossRef] [PubMed]
- Grauso, L.; Yegdaneh, A.; Sharifi, M.; Mangoni, A.; Zolfaghari, B.; Lanzotti, V. Molecular networking-based analysis of cytotoxic saponins from sea cucumber Holothuria atra. Mar. Drugs 2019, 17, 86. [Google Scholar] [CrossRef] [PubMed]
- Scarpato, S.; Teta, R.; Della Sala, G.; Pawlik, J.R.; Costantino, V.; Mangoni, A. New tricks with an old sponge: Feature-based molecular networking led to fast identification of new stylissamide L from Stylissa caribica. Mar. Drugs 2020, 18, 443. [Google Scholar] [CrossRef]
- Sumner, L.W.; Lei, Z.; Nikolau, B.J.; Saito, K.; Roessner, U.; Trengove, R. Proposed quantitative and alphanumeric metabolite identification metrics. Metabolomics 2014, 10, 1047–1049. [Google Scholar] [CrossRef]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed minimum reporting standards for chemical analysis: Chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef]
- van den Berg, R.A.; Hoefsloot, H.C.; Westerhuis, J.A.; Smilde, A.K.; van der Werf, M.J. Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genom. 2006, 7, 142. [Google Scholar] [CrossRef]
- Dempsey, D.R.; Carpenter, A.M.; Ospina, S.R.; Merkler, D.J. Probing the chemical mechanism and critical regulatory amino acid residues of Drosophila melanogaster arylalkylamine N-acyltransferase like 2. Insect Biochem. Mol. Biol. 2015, 66, 1–12. [Google Scholar] [CrossRef]
- Andersen, S.O. Insect cuticular sclerotization: A review. Insect Biochem. Mol. Biol. 2010, 40, 66–178. [Google Scholar] [CrossRef]
- Brunet, P.C. The metabolism of the aromatic amino acids concerned in the cross-linking of insect cuticle. Insect Biochem. 1980, 10, 467–500. [Google Scholar] [CrossRef]
- Wright, T.R. The genetics of biogenic amine metabolism, sclerotization, and melanization in Drosophila melanogaster. Adv. Genet. 1987, 24, 27–222. [Google Scholar]
- Duran-Flores, D.; Heil, M. Extracellular self-DNA as a damage-associated molecular pattern (DAMP) that triggers self-specific immunity induction in plants. Brain Behav. Immun. 2018, 72, 78–88. [Google Scholar] [CrossRef] [PubMed]
- Paungfoo-Lonhienne, C.; Lonhienne, T.G.; Mudge, S.R.; Schenk, P.M.; Christie, M.; Carroll, B.J.; Schmidt, S. DNA is taken up by root hairs and pollen, and stimulates root and pollen tube growth. Plant Physiol. 2010, 153, 799–805. [Google Scholar] [CrossRef]
- Zárate-López, M.A.; Quintana-Rodríguez, E.; Orona-Tamayo, D.; Aguilar-Hernández, V.; Araujo-León, J.A.; Brito-Argáez, L.; Molina-Torres, J.; Hernández-Flores, J.L.; Loyola-Vargas, V.M.; Lozoya-Pérez, N.E.; et al. Metabolic Responses of the Microalga Neochloris oleoabundans to Extracellular Self-and Nonself-DNA. Int. J. Mol. Sci. 2023, 24, 14172. [Google Scholar] [CrossRef]
Annotation | Formula | RT [min] | m/z | Reference Ion | ∆ Mass [ppm] | Id. Level |
---|---|---|---|---|---|---|
Glycin-N-formyl * | C3H3NO3 | 29.28 | 101.00830 | M+ | −0.38 | 2 |
L-(+)-Valine | C5H11NO2 | 0.79 | 118.08622 | [M + H]+ | −0.33 | 1 |
Threonine * | C4H9NO3 | 0.79 | 120.06540 | [M + H]+ | −0.32 | 2 |
Indoline * | C8H9N | 2.32 | 120.08082 | [M + H]+ | 0.34 | 2 |
D-(+)-Pyroglutamic acid | C5H7NO3 | 0.80 | 130.04981 | [M + H]+ | −0.04 | 1 |
L-(+)-Leucine | C6H13NO2 | 1.30 | 132.10187 | [M + H]+ | −0.26 | 2 |
Pipecolic acid | C6H11NO2 | 0.72 | 147.11288 | [M + NH4]+ | 0.37 | 2 |
DL-Glutamic acid * | C5H9NO4 | 0.79 | 148.06043 | [M + H]+ | −0.02 | 1 |
3-Methylsulfolene | C5H8O2S | 0.86 | 150.05826 | [M + NH4]+ | −0.55 | 2 |
L-Methionine | C5H11NO2S | 0.94 | 150.05843 | [M + H]+ | 0.67 | 2 |
DL-Histidine | C6H9N3O2 | 0.76 | 156.07680 | [M + H]+ | 0.33 | 2 |
Fucosamine | C6H13NO4 | 0.80 | 164.09181 | [M + H]+ | 0.49 | 2 |
DL-Phenylalanine * | C9H11NO2 | 2.35 | 166.08637 | [M + H]+ | 0.72 | 1 |
Uric acid * | C5H4N4O3 | 1.18 | 169.03575 | [M + H]+ | 0.8 | 2 |
Aminolevulinic acid | C5H9NO3 | 0.81 | 173.09230 | [M + ACN + H]+ | 0.95 | 2 |
Unknown * | C3H2N4O3S | 0.93 | 174.99155 | [M + H]+ | −2.82 | 4 |
N~2~-Acetyl-L-ornithine | C7H14N2O3 | 0.78 | 175.10774 | [M + H]+ | 0.13 | 1 |
DL-Arginine * | C6H14N4O2 | 0.74 | 175.11912 | [M + H]+ | 0.96 | 1 |
4-Methyleneglutamine | C6 H10 N2 O3 | 0.79 | 176.10300 | [M + NH4]+ | 0.14 | 2 |
DL-Citrulline | C6H13N3 O3 | 0.82 | 176.10312 | [M + H]+ | 1.09 | 1 |
DL-Tyrosine * | C9H11 NO3 | 1.37 | 182.08135 | [M + H]+ | 0.99 | 1 |
N(1)-acetylspermidine | C9H21N3O | 0.74 | 188.17575 | [M + H]+ | 0.06 | 2 |
α-Aminoadipic acid | C6H11NO4 | 0.79 | 194.10240 | [M + H + MeOH]+ | 0.57 | 2 |
N-Acetyl-L-histidine | C8H11 N3O3 | 0.79 | 198.08754 | [M + H]+ | 1.13 | 2 |
N-(3.4-Dimethoxyphenethyl) acetamide * | C12H17NO3 | 0.72 | 224.12828 | [M + H]+ | 0.73 | 2 |
N-Acetylcystathionine | C9H16N2O5S | 1.59 | 265.08543 | [M + H]+ | 0.62 | 2 |
Adenosine | C10H13N5O4 | 1.85 | 268.10422 | [M + H]+ | 0.7 | 1 |
2-Amino-1.3-hexadecanediol | C16H35 NO2 | 25.65 | 274.27418 | [M + H]+ | 0.45 | 2 |
(9Z)-9-Octadecenamide | C18H35NO | 32.15 | 282.27942 | [M + H]+ | 0.99 | 2 |
Oleic acid | C18H34O2 | 34.19 | 283.26340 | [M + H]+ | 0.85 | 2 |
Argininosuccinic acid | C10H18 N4O6 | 0.83 | 291.13004 | [M + H]+ | 0.43 | 2 |
Methyl (9E)-9-octadecenoate | C19H36O2 | 34.56 | 297.27921 | [M + H]+ | 1.34 | 2 |
Glutathione * | C10H17N3O6S | 0.86 | 308.09130 | [M + H]+ | 0.72 | 2 |
Fatty amide * | C20H39NO | 33.37 | 310.31053 | [M + H]+ | 0.28 | 3 |
Eicosapentanoic acid | C20H30O2 | 31.70 | 325.21451 | [M + Na]+ | 1.42 | 2 |
Erucamide | C22H43NO | 34.49 | 338.34205 | [M + H]+ | 0.9 | 2 |
Tetrapeptide * | C19H38N6O4 | 29.82 | 415.30330 | [M + H]+ | 1.37 | 3 |
Tripeptide-like * | C17H25N3O9 | 20.66 | 416.16670 | [M + H]+ | 0.83 | 3 |
1-Myristoyl-2-hydroxy-sn-glycero-3-PE | C19H40NO7P | 29.46 | 426.26204 | [M + H]+ | 1.24 | 2 |
(2R)-1-(Octanoyloxy)-3-(phosphonooxy)-2-propanyl decanoate | C21H41O8P | 31.05 | 435.25079 | [M + H − H2O]+ | 0.47 | 2 |
Glycochenodeoxycholic acid | C26H43NO5 | 27.63 | 450.32214 | [M + H]+ | 1.64 | 2 |
(2R)-3-{[(2-Aminoethoxy)(hydroxy) phosphoryl]oxy}-2-hydroxypropyl (9Z)-9-hexadecenoate * | C21H42NO7P | 29.65 | 452.27783 | [M + H]+ | 1.48 | 2 |
LysoPC(18:3(9Z.12Z.15Z)) | C26H48NO7P | 29.88 | 518.32428 | [M + H]+ | 0.32 | 2 |
1-[(8Z.11Z.14Z)-icosatrienoyl]-sn-glycero-3-phosphocholine | C28H52NO7P | 31.46 | 546.35559 | [M + H]+ | 0.32 | 2 |
Neuropeptide FMRF amide * | C32H54N10O6 | 28.86 | 675.42920 | [M + H]+ | −1.27 | 2 |
1-6-Dynorphin * | C34H49N9O8 | 31.84 | 711.37065 | [M + H]+ | 0.41 | 2 |
6–8 peptide-like residues * | C30H44N12O10 | 30.07 | 733.33700 | [M + H]+ | −0.83 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Falco, B.; Adamo, A.; Anzano, A.; Grauso, L.; Carteni, F.; Lanzotti, V.; Mazzoleni, S. Self-DNA in Caenorhabditis elegans Affects the Production of Specific Metabolites: Evidence from LC-MS and Chemometric Studies. Molecules 2024, 29, 4947. https://doi.org/10.3390/molecules29204947
de Falco B, Adamo A, Anzano A, Grauso L, Carteni F, Lanzotti V, Mazzoleni S. Self-DNA in Caenorhabditis elegans Affects the Production of Specific Metabolites: Evidence from LC-MS and Chemometric Studies. Molecules. 2024; 29(20):4947. https://doi.org/10.3390/molecules29204947
Chicago/Turabian Stylede Falco, Bruna, Adele Adamo, Attilio Anzano, Laura Grauso, Fabrizio Carteni, Virginia Lanzotti, and Stefano Mazzoleni. 2024. "Self-DNA in Caenorhabditis elegans Affects the Production of Specific Metabolites: Evidence from LC-MS and Chemometric Studies" Molecules 29, no. 20: 4947. https://doi.org/10.3390/molecules29204947
APA Stylede Falco, B., Adamo, A., Anzano, A., Grauso, L., Carteni, F., Lanzotti, V., & Mazzoleni, S. (2024). Self-DNA in Caenorhabditis elegans Affects the Production of Specific Metabolites: Evidence from LC-MS and Chemometric Studies. Molecules, 29(20), 4947. https://doi.org/10.3390/molecules29204947