A Spin-Labeled Derivative of Gossypol
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General
3.2. Synthesis of (8Z,8′Z)-1,1′,6,6′-Tetrahydroxy-8,8′-bis{[(1-oxyl-2,2,6,6-tetramethylpiperidin-4-yl)amino]methylene}-5,5′-diisopropyl-3,3′-dimethyl-2,2′-binaphthalene-7,7′(8H,8′H)-dione (2)
3.3. Crystal Structure Determination and Refinement
3.4. Antiproliferative Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karoui, H.; Le Moigne, F.; Ouari, O.; Tordo, P. Nitroxide Radicals: Properties, Synthesis and Applications. In Stable Radicals. Fundamentals and Applied Aspects of Odd-Electron Compounds; Robin, G.H., Ed.; John Wiley & Sons, Inc.: Chichester, UK, 2010; pp. 173–229. Available online: https://onlinelibrary.wiley.com/doi/10.1002/9780470666975.ch5 (accessed on 1 October 2024).
- Tretyakov, E.V.; Ovcharenko, V.I.; Terent’ev, A.O.; Krylov, I.B.; Magdesieva, T.V.; Mazhukin, D.G.; Gritsan, N.P. Conjugated nitroxides. Russ. Chem. Rev. 2022, 91, RCR5025. [Google Scholar] [CrossRef]
- Leifert, D.; Studer, A. Organic Synthesis Using Nitroxides. Chem. Rev. 2023, 123, 10302. [Google Scholar] [CrossRef] [PubMed]
- Romero, K.J.; Galliher, M.S.; Pratt, D.A.; Stephenson, C.R.J. Radicals in natural product synthesis. Chem. Soc. Rev. 2018, 47, 7851. [Google Scholar] [CrossRef] [PubMed]
- Goujon, N.; Casado, N.; Patil, N.; Marcilla, R.; Mecerreyes, D. Organic batteries based on just redox polymers. Progress in Polymer Science 2021, 122, 101449. [Google Scholar] [CrossRef]
- Xue, W.; Mutlu, H.; Li, H.; Wenzel, W.; Theato, P. Structural design of pyrene-functionalized TEMPO-containing polymers for enhanced electrochemical storage performance. Polym. Chem. 2021, 12, 2643. [Google Scholar] [CrossRef]
- Luo, G.; Sun, L.; Li, H.; Chen, J.; He, P.; Zhao, L.; Tang, W.; Qiu, H. The potent radioprotective agents: Novel nitronyl nitroxide radical spin-labeled resveratrol derivatives. Fitoterapia 2021, 155, 105053. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Xu, M.; Da, Q.; Jing, L.; Wang, H. Mitochondria-Targeted Nitronyl Nitroxide Radical Nanoparticles for Protection against Radiation-Induced Damage with Antioxidant Effects. Cancers 2024, 16, 351. [Google Scholar] [CrossRef] [PubMed]
- Shi, F.; Guo, P.; Qiao, X.; Yao, G.; Zhang, T.; Lu, Q.; Wang, Q.; Wang, X.; Rikhsibaev, J.; Wang, E.; et al. A Nitroxide Radical Conjugated Polymer as an Additive to Reduce Nonradiative Energy Loss in Organic Solar Cells. Adv. Mater. 2023, 35, 2212084. [Google Scholar] [CrossRef] [PubMed]
- Miao, Q.; Nitsche, C.; Orton, H.; Overhand, M.; Otting, G.; Ubbink, M. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Chem. Rev. 2022, 122, 9571. [Google Scholar] [CrossRef] [PubMed]
- Mutlu, H. Chemical design and synthesis of macromolecular profluorescent nitroxide systems as self-reporting probes. Polym. Chem. 2022, 13, 1648. [Google Scholar] [CrossRef]
- Verderosa, A.D.; Dhouib, R.; Fairfull-Smith, K.E.; Totsika, M. Profluorescent Fluoroquinolone-Nitroxides for Investigating Antibiotic–Bacterial Interactions. Antibiotics 2019, 8, 19. [Google Scholar] [CrossRef] [PubMed]
- Agliulin, K.V.; Stepanov, A.V.; Yarovenko, V.N.; Krayushkin, M.M.; Tretyakov, E.V.; Nasyrova, D.I.; Ilyushenkova, V.V.; Ait, A.O.; Valova, T.M. Synthesis, structure and properties of spin-labeled photosensitive chromone derivative. Mendeleev Commun. 2024; in press. [Google Scholar]
- Agliulin, K.V.; Stepanov, A.V.; Zayakin, I.A.; Yarovenko, V.N.; Krayushkin, M.M.; Tretyakov, E.V.; Nasyrova, D.I.; Ait, A.O.; Valova, T.M. Synthesis, structure and phototransformation study of 3-acyl-2-hetarylchromones with nitroxide substituents. Russ. Chem. Bull. 2024; in press. [Google Scholar]
- Hideg, K.; Kálai, T.; Sár, C.P. Recent results in chemistry and biology of nitroxides. J. Heterocycl. Chem. 2005, 42, 437. [Google Scholar] [CrossRef]
- Kálai, T.; Jekő, J.; Hideg, K. Synthesis of Pyrroline Nitroxide Annulated Carbocycles and Heterocycles. Synthesis 2000, 2000, 831. [Google Scholar] [CrossRef]
- Hideg, K.; Csekó, J.; Hankovszky, H.O. Synthesis of Nitroxide Paramagnetic Ketones from Nitroxide Acid Chlorides and Anhydrides by Fiedel-Crafts Acylation. Synth. Commun. 1986, 16, 1839. [Google Scholar] [CrossRef]
- Hankovszky, H.O.; Hideg, K.; Jerkovich, G. Synthesis of 3-Substituted 2,5-Dihydro-2,2,5,5-tetramethyl-1H-pyrrol-1-yloxyl Radicals, Useful for Spin-Labelling of Biomolecules. Synthesis 1989, 1989, 526. [Google Scholar] [CrossRef]
- Fairfull-Smith, K.E.; Bottle, S.E. The Synthesis and Physical Properties of Novel Polyaromatic Profluorescent Isoindoline Nitroxide Probes. Eur. J. Org. Chem. 2008, 2008, 5391. [Google Scholar] [CrossRef]
- Keddie, D.J.; Fairfull-Smith, K.E.; Bottle, S.E. The palladium-catalysed copper-free Sonogashira coupling of isoindoline nitroxides: A convenient route to robust profluorescent carbon–carbon frameworks. Org. Biomol. Chem. 2008, 6, 3135. [Google Scholar] [CrossRef] [PubMed]
- Keddie, D.J.; Johnson, T.E.; Arnold, D.P.; Bottle, S.E. Synthesis of profluorescent isoindoline nitroxides via palladium-catalysed Heck alkenylation. Org. Biomol. Chem. 2005, 3, 2593. [Google Scholar] [CrossRef] [PubMed]
- Morris, J.C.; McMurtrie, J.C.; Bottle, S.E.; Fairfull-Smith, K.E. Generation of Profluorescent Isoindoline Nitroxides Using Click Chemistry. J. Org. Chem. 2011, 76, 4964. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhao, J.; Barbon, A.; Toffoletti, A.; Liu, Y.; An, Y.; Xu, L.; Karatay, A.; Yaglioglu, H.G.; Yildiz, E.A.; et al. Radical-Enhanced Intersystem Crossing in New Bodipy Derivatives and Application for Efficient Triplet–Triplet Annihilation Upconversion. J. Am. Chem. Soc. 2017, 139, 7831. [Google Scholar] [CrossRef] [PubMed]
- Fall, A.; Sene, M.; Gaye, M.; Gómez, G.; Fall, Y. Ionic liquid-supported TEMPO as catalyst in the oxidation of alcohols to aldehydes and ketones. Tetrahedron Lett. 2010, 51, 4501. [Google Scholar] [CrossRef]
- Thomas, K.; Moody, T.W.; Jensen, R.T.; Tong, J.; Rayner, C.L.; Barnett, N.L.; Fairfull-Smith, K.E.; Ridnour, L.A.; Wink, D.A.; Bottle, S.E. Design, synthesis and biological evaluation of hybrid nitroxide-based non-steroidal anti-inflammatory drugs. Eur. J. Med. Chem. 2018, 147, 34. [Google Scholar] [CrossRef] [PubMed]
- Tretyakov, E.V. Chapter 5—Preparation and Characterization of Magnetic and Magnetophotonic Materials based on Organic Free Radicals. In Organic Radicals; Wang, C., Labidi, A., Lichtfouse, E., Eds.; Elsevier: Amsterdam, The Netherlands; London, UK; Cambridge, MA, USA, 2024; pp. 61–181. [Google Scholar] [CrossRef]
- Usatov, M.S.; Dobrynin, S.A.; Polienko, Y.F.; Morozov, D.A.; Glazachev, Y.I.; An’kov, S.V.; Tolstikova, T.G.; Gatilov, Y.V.; Bagryanskaya, I.Y.; Raizvikh, A.E.; et al. Hydrophilic Reduction-Resistant Spin Labels of Pyrrolidine and Pyrroline Series from 3,4-Bis-hydroxymethyl-2,2,5,5-tetraethylpyrrolidine-1-oxyl. Int. J. Mol. Sci. 2024, 25, 1550. [Google Scholar] [CrossRef] [PubMed]
- Amar, M.; Bar, S.; Iron, M.A.; Toledo, H.; Tumanskii, B.; Shimon, L.J.W.; Botoshansky, M.; Fridman, N.; Szpilman, A.M. Design concept for α-hydrogen-substituted nitroxides. Nat. Commun. 2015, 6, 6070. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Lucini, P.A.; Adler, A.; Yao, R.; Zhang, W.; Beriashvili, D.; Safeer, A.; Gurinov, A.; Rockenbauer, A.; Song, Y.; et al. Highly Efficient Trityl-Nitroxide Biradicals for Biomolecular High-Field Dynamic Nuclear Polarization. Chem. Eur. J. 2021, 27, 1. [Google Scholar] [CrossRef] [PubMed]
- Yao, R.; Beriashvili, D.; Zhang, W.; Li, S.; Safeer, A.; Gurinov, A.; Rockenbauer, A.; Yang, Y.; Song, Y.; Baldus, M.; et al. Highly bioresistant, hydrophilic and rigidly linked trityl-nitroxide biradicals for cellular high-field dynamic nuclear polarization. Chem. Sci. 2022, 13, 14157. [Google Scholar] [CrossRef] [PubMed]
- Asanbaeva, N.B.; Dobrynin, S.A.; Morozov, D.A.; Haro-Mares, N.; Gutmann, T.; Buntkowsky, G.; Bagryanskaya, E.G. An EPR Study on Highly Stable Nitroxyl-Nitroxyl Biradicals for Dynamic Nuclear Polarization Applications at High Magnetic Fields. Molecules 2023, 28, 1926. [Google Scholar] [CrossRef] [PubMed]
- Prescott, C.; Bottle, S.E. Biological Relevance of Free Radicals and Nitroxides. Cell Biochem Biophys 2017, 75, 227. [Google Scholar] [CrossRef] [PubMed]
- Soule, B.P.; Hyodo, F.; Matsumoto, K.; Simone, N.L.; Cook, J.A.; Krishna, M.C.; Mitchell, J.B. The chemistry and biology of nitroxide compounds. Free Radical Biol. Med. 2007, 42, 1632. [Google Scholar] [CrossRef] [PubMed]
- Haugland, M.M.; Lovett, J.E.; Anderson, E.A. Advances in the synthesis of nitroxide radicals for use in biomolecule spin labelling. Chem. Soc. Rev. 2018, 47, 668. [Google Scholar] [CrossRef] [PubMed]
- Han, W.J.; Chen, L.; Wang, H.B.; Liu, X.Z.; Hu, S.J.; Sun, X.L.; Luo, C. A Novel Nitronyl Nitroxide with Salicylic Acid Framework Attenuates Pain Hypersensitivity and Ectopic Neuronal Discharges in Radicular Low Back Pain. Neural Plast. 2015, 2015, 752782. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Ma, S.; Shi, M.; Wang, Q.; Miao, Y. A new nitronyl nitroxide radical with salicylic acid framework attenuates blood-brain barrier disruption and oxidative stress in a rat model of middle cerebral artery occlusion. Neuroreport 2022, 33, 129. [Google Scholar] [CrossRef] [PubMed]
- Lewandowski, M.; Gwozdzinski, K. Nitroxides as Antioxidants and Anticancer Drugs. Int. J. Mol. Sci. 2017, 22, 2490. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Zhang, P.; Yang, H.; Zhang, Y.; Yao, T.; Liu, K.; Wang, Y.; Zhang, X.; Qin, X. Design, synthesis and biological evaluation of novel nitric oxide donors with antioxidative activity. Eur. J. Med. Chem. 2022, 236, 114331. [Google Scholar] [CrossRef] [PubMed]
- Kiriliuk, I.A.; Sviatchenko, V.A.; Morozov, D.A.; Kazachinskaia, E.I.; Kiselev, N.N.; Bakunova, S.M.; Voĭnov, M.A.; Loktev, V.B.; Grigor’ev, I.A. [In vitro cytotoxicity of nitroxyl radicals with respect to tumor and diploid human cells and estimation of their antiviral activity]. Antibiot Khimioter. 2012, 57, 3. (In Russian) [Google Scholar] [PubMed]
- Wang, H.; Wang, J.; Yang, Q.; Zhang, X.; Gao, P.; Xu, S.; Sun, X.; Wang, Y. Synthesis of a Novel Nitronyl Nitroxide Radical and Determination of its Protective Effects Against Infrasound-Induced Injury. Neurochem Res. 2015, 40, 1526. [Google Scholar] [CrossRef] [PubMed]
- Przybylski, P.; Wojciechowski, G.; Brzezinski, B.; Kozubek, H.; Marciniak, B.; Paszyc, S. Spectroscopic and semiempirical studies of gossypol complexes with Fe2+ and Fe3+ cations. J. Mol. Struct. 2001, 569, 147. [Google Scholar] [CrossRef]
- Paunovic, D.; Rajkovic, J.; Novakovic, R.; Grujic-Milanovic, J.; Mekky, R.H.; Popa, D.; Calina, D.; Sharifi-Rad, J. The potential roles of gossypol as anticancer agent: Advances and future directions. Chin. Med. 2023, 18, 163. [Google Scholar] [CrossRef]
- Wang, W.; Li, W.; Wen, Z.; Wang, C.; Liu, W.; Zhang, Y.; Liu, J.; Ding, T.; Shuai, L.; Zhong, G.; et al. Gossypol Broadly Inhibits Coronaviruses by Targeting RNA-Dependent RNA Polymerases. Adv. Sci. 2022, 9, 2203499. [Google Scholar] [CrossRef]
- Keshmiri-Neghab, H.; Goliaei, B. Therapeutic potential of gossypol: An overview. Pharm. Biol. 2014, 52, 124. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Li, J.; Dong, C.E.; Huang, J.; Zhou, H.B.; Wang, W. Recent advances in gossypol derivatives and analogs: A chemistry and biology view. Future Med. Chem. 2017, 9, 1243. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, L.; Zhao, L.; Zhang, Y. Structure, properties of gossypol and its derivatives-from physiological activities to drug discovery and drug design. Nat. Prod. Rep. 2022, 39, 1282. [Google Scholar] [CrossRef] [PubMed]
- Ilkevych, N.S.; Schroeder, G.; Rybachenko, V.I.; Chotiy, K.Y.; Makarova, R.A. Vibrational spectra, structure and antioxidant activity of gossypol imine derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012, 86, 328. [Google Scholar] [CrossRef] [PubMed]
- Dodou, K.; Anderson, R.J.; Lough, W.J.; Small, D.A.; Shelley, M.D.; Groundwater, P.W. Synthesis of gossypol atropisomers and derivatives and evaluation of their anti-proliferative and anti-oxidant activity. Bioorg. Med. Chem. 2005, 13, 4228. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liang, B.; Sang, X.; An, J.; Huang, Z. Discovery of Potential Inhibitors of SARS-CoV-2 Main Protease by a Transfer Learning Method. Viruses 2023, 15, 891. [Google Scholar] [CrossRef]
- Renner, O.; Mayer, M.; Leischner, C.; Burkard, M.; Berger, A.; Lauer, U.M.; Venturelli, S.; Bischoff, S.C. Systematic Review of Gossypol/AT-101 in Cancer Clinical Trials. Pharmaceuticals 2022, 15, 144. [Google Scholar] [CrossRef] [PubMed]
- Pal, D.; Sahu, P.; Sethi, G.; Wallace, C.E.; Bishayee, A. Gossypol and Its Natural Derivatives: Multitargeted Phytochemicals as Potential Drug Candidates for Oncologic Diseases. Pharmaceutics 2022, 14, 2624. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, Z.; Wang, K.; Liu, Y.; Li, Y.; Wang, Q. Synthesis and antiviral, insecticidal, and fungicidal activities of gossypol derivatives containing alkylimine, oxime or hydrazine moiety. Bioorg. Med. Chem. 2016, 24, 474. [Google Scholar] [CrossRef] [PubMed]
- Tien, V.D.; Vu, V.V.; Koeckritz, A.; Nhung, T.T.; Thao, D.T.; Vu, T.K. Novel (-)-gossypol derived hydrazones: Synthesis and biological evaluation. AIP Conf. Proc. 2017, 1878, 020010. [Google Scholar] [CrossRef]
- Stepanov, A.V.; Yarovenko, V.N.; Krayushkin, M.M. Reaction of gossypol with thiohydrazides of oxamic acids. Russ. Chem. Bull. 2024, 73, 437. [Google Scholar] [CrossRef]
- Ziyaev, K.L.; Kamaev, F.G.; Baram, N.I.; Biktimirov, L.; Ismailov, A.I. New gossypol imines. Chem. Nat. Compd. 1997, 33, 545. [Google Scholar] [CrossRef]
- N-Substituted Derivatives of Oxamic Acid Thiohydrazides, Synthesis Method and Use Thereof. Russian Patent RU2400471C1. Available online: https://yandex.ru/patents/doc/RU2400471C1_20100927 (accessed on 17 October 2024).
- Pathogenic Bacteria Inhibiting Biologically Active Substances. Russian Patent RU2402531C2. Available online: https://patents.google.com/patent/RU2402531C2/ru (accessed on 17 October 2024).
- Pathogenic Bacteria-Inhibiting Biologically Active Substances and Method of Inhibiting Pathogenic Bacteria Type iii Secretion. Russian Patent RU2447066C2. Available online: https://patents.google.com/patent/RU2447066C2/ru (accessed on 17 October 2024).
- Lu, Y.; Wu, S.; Yue, Y.; He, S.; Li, J.; Tang, J.; Wang, W.; Zhou, H.B. Gossypol with Hydrophobic Linear Esters Exhibits Enhanced Antitumor Activity as an Inhibitor of Antiapoptotic Proteins. ACS Med. Chem. Lett. 2016, 7, 1185. [Google Scholar] [CrossRef] [PubMed]
- Przybylski, P.; Schroeder, G.; Brzezinski, B. The Schiff base of gossypol with 2-(aminomethyl)-15-crown-5 complexes with monovalent cations studied by MS, 1H NMR, FT-IR and PM5 semiempirical methods. Phys. Chem. Chem. Phys. 2002, 4, 6137. [Google Scholar] [CrossRef]
- Beketov, K.M.; Talipov, S.A.; Ibragimov, B.T.; Aripov, T.F.; Praliev, K.D. Polymorphism of dianilinegossypol. Crystallography Reports. 2003, 48, 641. [Google Scholar] [CrossRef]
- Przybylski, P.; Pyta, K.; Wicher, B.; Gdaniec, M.; Brzezinski, B. Structure of a new Schiff base of gossypol with 1-(3-aminopropyl)-2-pyrrolidinone studied by the X-ray, FT-IR, NMR, ESI-MS and PM5 methods. J. Mol. Struct. 2008, 889, 332. [Google Scholar] [CrossRef]
- Przybylski, P.; Ratajczak-Sitarz, M.; Katrusiak, A.; Wojciechowski, G.; Schilf, W.; Brzezinski, B. Crystal structure of Schiff base derivative of gossypol with 3,6,9-trioxa-decylamine. J. Mol. Struct. 2003, 655, 293. [Google Scholar] [CrossRef]
- Druzhkov, N.O.; Egorova, E.N.; Arsen’ev, M.V.; Baranov, E.V.; Cherkasov, V.K. Functionalization of sterically hindered catechol and o-benzoquinone with 2,2,6,6-tetramethylpiperidine 1-oxyl. Russ. Chem. Bull. 2016, 65, 2855. [Google Scholar] [CrossRef]
- Chernick, E.T.; Casillas, R.; Zirzlmeier, J.; Gardner, D.M.; Gruber, M.; Kropp, H.; Meyer, K.; Wasielewski, M.R.; Guldi, D.M.; Tykwinski, R.R. Pentacene appended to a TEMPO stable free radical: The effect of magnetic exchange coupling on photoexcited pentacene. J. Am. Chem. Soc. 2015, 137, 857. [Google Scholar] [CrossRef] [PubMed]
- Przybylski, P.; Pyta, K.; Stefańska, J.; Ratajczak-Sitarz, M.; Katrusiak, A.; Huczyński, A.; Brzezinski, B. Synthesis, crystal structures and antibacterial activity studies of aza-derivatives of phytoalexin from cotton plant—Gossypol. Eur. J. Med. Chem. 2009, 44, 4393. [Google Scholar] [CrossRef] [PubMed]
- Gafurov, M.; Lyubenova, S.; Denysenkov, V.; Ouari, O.; Karoui, H.; Le Moigne, F.; Tordo, P.; Prisner, T. EPR Characterization of a Rigid Bis-TEMPO–Bis-Ketal for Dynamic Nuclear Polarization. Appl. Magn. Reson. 2010, 37, 505. [Google Scholar] [CrossRef]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55. [Google Scholar] [CrossRef] [PubMed]
- Volodina, Y.L.; Dezhenkova, L.G.; Tikhomirov, A.S.; Tatarskiy, V.V.; Kaluzhny, D.N.; Moisenovich, A.M.; Moisenovich, M.M.; Isagulieva, A.K.; Shtil, A.A.; Tsvetkov, V.B.; et al. New anthra[2,3-b]furancarboxamides: A role of positioning of the carboxamide moiety in antitumor properties. Eur. J. Med. Chem. 2019, 165, 31. [Google Scholar] [CrossRef] [PubMed]
- Zhidkov, M.E.; Sidorova, M.A.; Smirnova, P.A.; Tryapkin, O.A.; Kachanov, A.V.; Kantemirov, A.V.; Dezhenkova, L.G.; Grammatikova, N.E.; Isakova, E.B.; Shchekotikhin, A.E.; et al. Comparative evaluation of the antibacterial and antitumor activities of 9-phenylfascaplysin and its analogs. Mar. Drugs. 2024, 22, 53. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Andreeva, D.V.; Tikhomirov, A.S.; Shchekotikhin, A.E. Synthesis and antiproliferative activity of thiazole-fused anthraquinones. Org. Biomol. Chem. 2024; Advance Article. [Google Scholar] [CrossRef]
- Adams, R.; Morris, R.C.; Geissman, T.A.; Butterbaugh, D.J.; Kirkpatrick, K.C. Structure of Gossypol. XV. An Interpretation of its Reactions. J. Am. Chem. Soc. 1938, 60, 2193. [Google Scholar] [CrossRef]
- Guo, J.; Abdinejad, M.; Farzi, A.; Salehi, M.; Seifitokaldani, A. Effective electro-oxidation of hydroxymethylfurfural using the electrografted immobilized aminoxyl radical. Energy Adv. 2023, 2, 877. [Google Scholar] [CrossRef]
- CrysAlisPro, Version 1.171.41. Rigaku Oxford Diffraction. Rigaku: Tokyo, Japan, 2021.
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 229. [Google Scholar] [CrossRef]
Bond Lengths | |||
O(1)–C(6) | 1.3549(15) | C(8)–C(25) | 1.4135(18) |
O(2)–C(7) | 1.2765(15) | C(9)–C(10) | 1.4142(17) |
O(3)–C(10) | 1.3684(14) | C(13)–O(7B) | 1.346(3) |
O(4)–N(2) | 1.2903(17) | C(14)–C(15) | 1.4554(16) |
O(5)–C(16) | 1.3656(14) | C(14)–C(19) | 1.4256(17) |
O(6)–C(17) | 1.2884(15) | C(15)–C(16) | 1.3641(18) |
O(8)–N(4) | 1.2933(16) | C(16)–C(17) | 1.4440(18) |
N(1)–C(25) | 1.3164(16) | C(17)–C(18) | 1.4230(17) |
N(1)–C(26) | 1.4575(17) | C(18)–C(19) | 1.4573(17) |
N(3)–C(39) | 1.3124(17) | C(18)–C(39) | 1.4205(18) |
N(3)–C(40) | 1.4621(17) | C(20)–O(7A) | 1.3577(15) |
C(1)–C(10) | 1.3912(17) | C(4)–C(9) | 1.4274(17) |
C(1)–C(11) | 1.4955(16) | C(5)–C(6) | 1.3619(17) |
C(2)–C(3) | 1.3812(17) | C(6)–C(7) | 1.4475(18) |
C(3)–C(4) | 1.4124(17) | C(7)–C(8) | 1.4223(17) |
C(4)–C(5) | 1.4555(17) | C(8)–C(9) | 1.4609(16) |
Bond angles | |||
C(6)–O(1)–H(1) | 108.1(14) | O(5)–C(16)–C(17) | 115.24(11) |
C(10)–O(3)–H(3) | 112.1(13) | C(15)–C(16)–O(5) | 121.05(11) |
C(16)–O(5)–H(5) | 105.9(14) | O(6)–C(17)–C(16) | 116.94(11) |
C(25)–N(1)–H(1A) | 117.6(12) | O(6)–C(17)–C(18) | 123.82(12) |
C(25)–N(1)–C(26) | 124.77(12) | C(39)–C(18)–C(19) | 123.99(11) |
C(26)–N(1)–H(1A) | 116.8(12) | C(20)–C(19)–C(18) | 123.44(11) |
C(39)–N(3)–H(3A) | 111.5(13) | O(7A)–C(20)–C(19) | 117.71(11) |
C(39)–N(3)–C(40) | 125.36(11) | C(5)–C(22)–C(23) | 111.54(11) |
C(40)–N(3)–H(3A) | 123.2(13) | N(1)–C(25)–C(8) | 123.45(12) |
O(1)–C(6)–C(5) | 121.76(11) | N(1)–C(26)–C(27) | 109.69(12) |
O(1)–C(6)–C(7) | 115.61(11) | N(1)–C(26)–C(30) | 109.36(12) |
O(2)–C(7)–C(6) | 117.03(11) | N(3)–C(39)–C(18) | 123.15(12) |
O(2)–C(7)–C(8) | 123.52(12) | N(3)–C(40)–C(41) | 110.85(11) |
O(3)–C(10)–C(1) | 119.65(11) | N(3)–C(40)–C(44) | 107.55(11) |
O(3)–C(10)–C(9) | 117.21(10) | C(20)–O(7A)–H(7A) | 109.5 |
D–H⋯A | d(D–H) | d(H⋯A) | d(D⋯A) | ∠(DHA) |
---|---|---|---|---|
O(1)–H(1)⋯O(2) | 0.84(2) | 2.12(2) | 2.6146(14) | 117.7(17) |
O(1)–H(1)⋯O(2) i | 0.84(2) | 1.93(2) | 2.6609(13) | 145.7(19) |
O(3)–H(3)⋯O(6) ii | 0.88(2) | 1.92(2) | 2.6367(12) | 137.7(19) |
O(5)–H(5)⋯O(3) ii | 0.95(2) | 2.11(3) | 3.0209(14) | 160(2) |
O(5)–H(5)⋯O(6) | 0.95(2) | 2.03(2) | 2.6115(14) | 117.8(18) |
N(1)–H(1A)⋯O(2) | 0.95(2) | 1.78(2) | 2.5314(15) | 133.6(17) |
N(3)–H(3A)⋯O(6) | 0.90(2) | 1.76(2) | 2.5400(15) | 143.8(19) |
Compound | IC50 *, μM | ||||
---|---|---|---|---|---|
K-562 | A-549 | HCT-116 | HEK293 | hFB-hTERT6 | |
2 | 15.5 ± 2.2 | 31.2 ± 3.2 | 28.2 ± 3.9 | 30.2 ± 3.3 | 16.3 ± 2.1 |
Gossypol 1 | 0.80 ± 0.11 | 4.8 ± 0.4 | 5.3 ± 0.6 | 2.8 ±0.3 | 3.0 ± 0.4 |
Doxorubicin | 0.10 ± 0.01 | 0.35 ± 0.04 | 0.42 ± 0.02 | 0.15 ± 0.02 | 0.12 ± 0.01 |
Empirical formula | C48H64N4O8 |
Formula weight | 825.03 |
Temperature | 99.98(11) K |
Wavelength | 1.54184 Å |
Crystal system, space group | Trigonal, R-3 |
Unit cell dimensions | a = 37.2827(3) Å |
b = 37.2827(3) Å | |
c = 20.4854(2) Å | |
Angles | α = 90° |
β = 90° | |
γ = 120° | |
Volume | 24,659.8(5) Å3 |
Z | 18 |
Density (calculated) | 1.000 g/cm3 |
Absorption coefficient | 0.546 mm−1 |
F(000) | 7992 |
Crystal size | 0.15 × 0.13 × 0.09 mm3 |
Theta range for data collection | 2.370° to 79.875° |
Index ranges | −43 ≤ h ≤ 47, −43 ≤ k ≤ 46, −25 ≤ l ≤ 26 |
Reflections collected | 55,651 |
Independent reflections | 11,783 [R(int) = 0.0270] |
Completeness to theta = 67.684° | 99.9% |
Absorption correction | Analytical |
Max. and min. transmission | 0.998 and 0.997 |
Refinement method | Full-matrix least-squares on F2 |
Data/restraints/parameters | 11,783/9/587 |
Goodness of fit on F2 | 1.044 |
Final R indices [I > 2sigma(I)] | R1 = 0.0478, wR2 = 0.1283 |
R indices (all data) | R1 = 0.0525, wR2 = 0.1317 |
Largest diff. peak and hole | 0.421 and −0.285 e·Å−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stepanov, A.V.; Yarovenko, V.N.; Nasyrova, D.I.; Dezhenkova, L.G.; Akchurin, I.O.; Krayushkin, M.M.; Ilyushenkova, V.V.; Shchekotikhin, A.E.; Tretyakov, E.V. A Spin-Labeled Derivative of Gossypol. Molecules 2024, 29, 4966. https://doi.org/10.3390/molecules29204966
Stepanov AV, Yarovenko VN, Nasyrova DI, Dezhenkova LG, Akchurin IO, Krayushkin MM, Ilyushenkova VV, Shchekotikhin AE, Tretyakov EV. A Spin-Labeled Derivative of Gossypol. Molecules. 2024; 29(20):4966. https://doi.org/10.3390/molecules29204966
Chicago/Turabian StyleStepanov, Andrey V., Vladimir N. Yarovenko, Darina I. Nasyrova, Lyubov G. Dezhenkova, Igor O. Akchurin, Mickhail M. Krayushkin, Valentina V. Ilyushenkova, Andrey E. Shchekotikhin, and Evgeny V. Tretyakov. 2024. "A Spin-Labeled Derivative of Gossypol" Molecules 29, no. 20: 4966. https://doi.org/10.3390/molecules29204966
APA StyleStepanov, A. V., Yarovenko, V. N., Nasyrova, D. I., Dezhenkova, L. G., Akchurin, I. O., Krayushkin, M. M., Ilyushenkova, V. V., Shchekotikhin, A. E., & Tretyakov, E. V. (2024). A Spin-Labeled Derivative of Gossypol. Molecules, 29(20), 4966. https://doi.org/10.3390/molecules29204966