Nitrogen-Doped Graphene Uniformly Loaded with Large Interlayer Spacing MoS2 Nanoflowers for Enhanced Lithium–Sulfur Battery Performance
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology and Structure of Materials
2.2. Catalytic Conversion Kinetics of MoS2-NG for Polysulfides
2.3. Electrochemical Performance of MoS2-NG/PP Separator in Lithium–Sulfur Batteries
3. Materials and Methods
3.1. Material Preparation
3.2. Material Characterization
3.3. Li2S6 Adsorption Experiment
3.4. Li2S6 Symmetric Cell Assembly and Testing
3.5. Li2S Nucleation Experiment
3.6. Cell Assembly and Electrochemical Testing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ni, H.; Wang, Y.; Yao, K.; Wang, L.; Huang, J.; Xiao, Y.; Chen, H.; Liu, B.; Yang, C.Y.; Zhao, J. Chlorine bridge bond-enabled binuclear copper complex for electrocatalyzing lithium–sulfur reactions. Nat. Commun. 2024, 15, 3231. [Google Scholar]
- Zhou, L.; Danilov, D.L.; Qiao, F.; Wang, J.; Li, H.; Eichel, R.A.; Notten, P.H.L. Sulfur reduction reaction in lithium-sulfur batteries: Mechanisms, catalysts, and characterization. Adv. Energy Mater. 2022, 12, 2202094. [Google Scholar] [CrossRef]
- Xia, W.; Chen, Y.; Han, M.; Wu, X.; Yang, H.; Fu, K.; Chen, M.; Wang, X.; Shu, H. MoC-MoSe2 heterostructures as multifunc-tional catalyst toward promoting the stepwise polysulfide conversion for lithium-sulfur batteries. Adv. Funct. Mater. 2024, 34, 2400262. [Google Scholar] [CrossRef]
- Li, S.; Lin, J.; Chang, B.; Yang, D.; Wu, D.-Y.; Wang, J.; Zhou, W.; Liu, H.; Sun, S.; Zhang, L. Implanting single-atom N2-Fe-B2 catalytic sites in carbon hosts to stabilize high-loading and lean-electrolyte lithium-sulfur batteries. Energy Storage Mater. 2023, 55, 94–104. [Google Scholar] [CrossRef]
- Song, Y.; Song, L.; Wang, M.; Cai, W. Chemical vapor deposition making better lithium–sulfur batteries. Sci. Bull. 2024, 69, 2013–2016. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, Q.; Li, P.; Linghu, R.; Fan, X.; Lin, H.; Bian, J.; Han, S.; Sun, G.; Kong, L. Lithium polysulfide solvation and speciation in the aprotic lithium-sulfur batteries. Particuology 2024, 89, 238–245. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Shi, K.; Wu, Y.; Huang, W.; Min, Y.; Liu, Q.; Liang, Z. Nanoreactors encapsulating built-in electric field as a “bridge” for Li–S batteries: Directional migration and rapid conversion of polysulfides. Adv. Energy Mater. 2024, 14, 2303546. [Google Scholar] [CrossRef]
- Yang, Q.; Shen, S.; Han, Z.; Li, G.; Liu, D.; Zhang, Q.; Song, L.; Wang, D.; Zhou, G.; Song, Y. An electrolyte engineered homonuclear copper complex as homogeneous catalyst for lithium-sulfur batteries. Adv. Mater. 2024, 36, e2405790. [Google Scholar] [CrossRef]
- Shaibani, M.; Mirshekarloo, M.S.; Singh, R.; Easton, C.D.; Cooray, M.C.D.; Eshraghi, N.; Abendroth, T.; Dörfler, S.; Althues, H.; Kaskel, S.; et al. Expansion-tolerant architectures for stable cycling of ultrahigh-loading sulfur cathodes in lithium-sulfur batteries. Sci. Adv. 2020, 6, 2757. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, N.; Jiang, X.; Duan, S.; Li, T.; Zhou, Q.; Chen, M.; Diao, G.; Wu, Z.; Ni, L. Bifunctional K3PW12O40/graphene oxide-modified separator for inhibiting polysulfide diffusion and stabilizing lithium anode. Inorg. Chem. 2023, 62, 15440–15449. [Google Scholar] [CrossRef]
- Zhou, S.; Shi, J.; Liu, S.; Li, G.; Pei, F.; Chen, Y.; Deng, J.; Zheng, Q.; Li, J.; Zhao, C.; et al. Visualizing interfacial collective reaction behaviour of Li–S batteries. Nature 2023, 621, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Ye, T.; Wang, Y.; Yang, P.; Wang, Q.; Kuang, W.; Chen, X.; Duan, G.; Yu, L.; Jin, Z.; et al. Understanding the catalytic kinetics of polysulfide redox reactions on transition metal compounds in Li-S batteries. ACS Nano 2022, 16, 15734–15759. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xiang, K.; Zhou, W.; Deng, W.; Zhu, H.; Chen, H. High-voltage and long-life cathode material in aqueous ammonium-ion and hybrid-ion batteries. Small 2023, 19, 2308741. [Google Scholar]
- Chen, K.; Zhang, G.; Xiao, L.; Li, P.; Li, W.; Xu, Q.; Xu, J. Polyaniline encapsulated amorphous V2O5 nanowire-modified multi-functional separators for lithium-sulfur batteries. Small Methods 2021, 5, 2001056. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Guo, X.; Wu, W.; Wang, G. 2D metal carbides and nitrides (MXenes) as high-performance electrode materials for Lithium-based batteries. Adv. Energy Mater. 2018, 8, 1801897. [Google Scholar] [CrossRef]
- He, J.R.; Manthiram, A. Long-life, high-rate lithium-sulfur cells with a carbon-free VN host as an efficient polysulfide adsorbent and lithium dendrite inhibitor. Adv. Energy Mater. 2020, 10, 1903241. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, G.; Zhang, Q.; Li, X.; Yang, Y.; Yang, L.; Huang, J.; Zhou, G. Mo-O-C between MoS2 and graphene toward accelerated polysulfide catalytic conversion for advanced lithium-sulfur batteries. Adv. Sci. 2022, 9, 2201579. [Google Scholar] [CrossRef]
- Wang, H.; Tran, D.; Qian, J.; Ding, F.; Losic, D. MoS2/graphene composites as promising materials for energy storage and conversion applications. Adv. Mater. Inter. 2019, 6, 1900915. [Google Scholar] [CrossRef]
- Chen, L.; Sun, Y.; Wei, X.; Song, L.; Tao, G.; Cao, X.; Wang, D.; Zhou, G.; Song, Y. Dual-functional V2C MXene assembly in facilitating sulfur evolution kinetics and li-ion sieving toward practical lithium–sulfur batteries. Adv. Mater. 2023, 35, 2300771. [Google Scholar] [CrossRef]
- Chen, G.; Li, Y.; Zhong, W.; Zheng, F.; Hu, J.; Ji, X.; Liu, W.; Yang, C.; Lin, Z.; Liu, M. MOFs-derived porous Mo2C-C nano-octahedrons enable high-performance lithium-sulfur batteries. Energy Storage Mater. 2020, 25, 547–554. [Google Scholar] [CrossRef]
- Xiang, K.; Wen, X.; Hu, J.; Wang, S.; Chen, H. Rational fabrication of nitrogen, sulfur co-doped carbon nanotubes/MoS2 for high-performance lithium-sulfur batteries. ChemSusChem 2019, 12, 3602–3614. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Lin, J.; Wang, H.; Li, S.; Wang, J.; Mao, Y.; Zhan, X.; Wu, D.-Y.; Zhang, L. Construction of strong built-in electric field in binary metal sulfide heterojunction to propel high-loading lithium-sulfur batteries. J. Energy Chem. 2023, 81, 492–501. [Google Scholar] [CrossRef]
- Cao, Y.; Lin, Y.; Wu, J.; Huang, X.; Pei, Z.; Zhou, J.; Wang, G. Two-dimensional MoS2 for Li-S batteries: Structural design and electronic modulation. ChemSusChem 2020, 13, 1392–1408. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.; He, Q.; Wei, Q.; Liu, W.; Zhou, B.; Zou, Y. Anchoring and catalyzing polysulfides by rGO/MoS2/C modified separator in lithium-sulfur batteries. Carbon 2023, 214, 118361. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, W.; Wang, Y.; Chen, C.; Li, K.; Zhao, G.; Sun, C.; Chen, W.; Ni, L.; Diao, G. Three-dimensional graphene hollow spheres with high sulfur loading for high-performance lithium-sulfur batteries. Electrochim. Acta 2017, 224, 527–533. [Google Scholar] [CrossRef]
- Guo, Y.; Niu, Q.; Pei, F.; Wang, Q.; Zhang, Y.; Du, L.; Zhang, Y.; Zhang, Y.; Zhang, Y.; Fan, L.; et al. Interface engineering toward stable lithium-sulfur batteries. Energy Environ. Sci. 2024, 17, 1330–1367. [Google Scholar] [CrossRef]
- Majumder, S.; Shao, M.; Deng, Y.; Chen, G. Ultrathin sheets of MoS2/g-C3N4 composite as a good hosting material of sulfur for lithium-sulfur batteries. J. Power Sources 2019, 431, 93–104. [Google Scholar] [CrossRef]
- Cho, J.; Ryu, S.; Gong, Y.J.; Pyo, S.; Yun, H.; Kim, H.; Lee, J.; Yoo, J.; Kim, Y.S. Nitrogen-doped MoS2 as a catalytic sulfur host for lithium-sulfur batteries. Chem. Eng. J. 2022, 439, 135568. [Google Scholar] [CrossRef]
- Wu, Z.; He, W.; Yang, J.; Gu, Y.; Yang, R.; Sun, Y.; Yuan, J.; Wang, X.; Zhu, J.; Fu, Y. Ribosome-inspired electrocatalysts inducing preferential nucleation and growth of three-dimensional lithium sulfide for high-performance lithium-sulfur batteries. J. Energy Chem. 2024, 94, 517–526. [Google Scholar] [CrossRef]
- Pan, Y.; Gong, L.; Cheng, X.; Zhou, Y.; Fu, Y.; Feng, J.; Ahmed, H.; Zhang, H. Layer-spacing-enlarged MoS2 superstructural nanotubes with further enhanced catalysis and immobilization for Li-S batteries. ACS Nano 2020, 14, 5917–5925. [Google Scholar] [CrossRef]
- Wang, J.; Gan, T.; Liao, Y.; Wu, F.; Lin, Z.; Ai, G. Synergistic catalysis of MoS2-Ni3S2 heterojunctions to accelerate polysulfide conversion for high-performance Li-S Battery. J. Alloys Compd. 2023, 960, 170546. [Google Scholar] [CrossRef]
- Liang, S.; Zhang, S.; Liu, Z.; Feng, J.; Jiang, Z.; Shi, M.; Chen, L.; Wei, T.; Fan, Z. Approaching the theoretical sodium storage capacity and ultrahigh rate of layer-expanded MoS2 by interfacial engineering on N-doped graphene. Adv. Energy Mater. 2021, 11, 2002600. [Google Scholar] [CrossRef]
- Pandey, A.; Dutta, S.; Kumar, A.; Raman, R.; Kapoor, A.K.; Muralidhran, R. Structural and optical properties of bulk MoS2 for 2D layer growth. Adv. Mater. Lett. 2016, 7, 777–782. [Google Scholar] [CrossRef]
- Yang, X.; Chen, S.; Gong, W.; Meng, X.; Ma, J.; Zhang, J.; Zheng, L.; Abruña, H.D.; Geng, J. Kinetic enhancement of sulfur cathodes by N-doped porous graphitic carbon with bound VN nanocrystals. Small 2020, 16, 2004950. [Google Scholar] [CrossRef] [PubMed]
- Shang, Z.; An, X.; Nie, S.; Li, N.; Cao, H.; Cheng, Z.; Liu, H.; Ni, Y.; Liu, L. Design of B/N co-doped micro/meso porous carbon electrodes from CNF/BNNS/ZIF-8 nanocomposites for advanced supercapacitors. J. Bioresour. Bioprod. 2023, 8, 292–305. [Google Scholar] [CrossRef]
- Jiang, W.; Li, Y.; Li, J.; Ding, G.; Zhan, Y.; Peng, J.; Yan, X.; Deng, X.; Tan, J.; Xu, J.; et al. O-doping induced abundant active-sites in MoS2 nanosheets for propelling polysulfide conversion of Li-S batteries. J. Alloys Compd. 2023, 941, 168880. [Google Scholar] [CrossRef]
- Xie, F.W.; Xu, C.J.; Song, Y.C.; Liang, Q.; Ji, J.J.; Wan, S.Z. 2D-2D heterostructure of ionic liquid-exfoliated MoS2/MXene as lithium polysulfide barrier for Li-S batteries. J. Colloid Interface Sci. 2023, 636, 528–536. [Google Scholar] [CrossRef]
- Wu, G.; Wang, F.; Yang, J.; Wang, T.; Li, S.; Huang, J. Preparation of MoS2 nanosheets/nitrogen-doped carbon nanotubes/MoS2 nanoparticles and their electrochemical energy storage properties. J. Alloys Compd. 2024, 1005, 176240. [Google Scholar] [CrossRef]
- Guo, P.; Liu, D.; Liu, Z.; Shang, X.; Liu, Q.; He, D. Dual functional MoS2/graphene interlayer as an efficient polysulfide barrier for advanced lithium-sulfur batteries. Electrochim. Acta 2017, 256, 28–36. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; He, W.; Xie, R.; Xiong, X.; Wang, Z.; Zhou, L.; Qiao, F.; Wang, J.; Zhou, Y.; Wang, X.; et al. Nitrogen-Doped Graphene Uniformly Loaded with Large Interlayer Spacing MoS2 Nanoflowers for Enhanced Lithium–Sulfur Battery Performance. Molecules 2024, 29, 4968. https://doi.org/10.3390/molecules29204968
Wu Z, He W, Xie R, Xiong X, Wang Z, Zhou L, Qiao F, Wang J, Zhou Y, Wang X, et al. Nitrogen-Doped Graphene Uniformly Loaded with Large Interlayer Spacing MoS2 Nanoflowers for Enhanced Lithium–Sulfur Battery Performance. Molecules. 2024; 29(20):4968. https://doi.org/10.3390/molecules29204968
Chicago/Turabian StyleWu, Zhen, Wenfeng He, Renjie Xie, Xuan Xiong, Zihan Wang, Lei Zhou, Fen Qiao, Junfeng Wang, Yan Zhou, Xinlei Wang, and et al. 2024. "Nitrogen-Doped Graphene Uniformly Loaded with Large Interlayer Spacing MoS2 Nanoflowers for Enhanced Lithium–Sulfur Battery Performance" Molecules 29, no. 20: 4968. https://doi.org/10.3390/molecules29204968
APA StyleWu, Z., He, W., Xie, R., Xiong, X., Wang, Z., Zhou, L., Qiao, F., Wang, J., Zhou, Y., Wang, X., Yuan, J., Tang, T., Hu, C., Tong, W., Ni, L., Wang, X., & Fu, Y. (2024). Nitrogen-Doped Graphene Uniformly Loaded with Large Interlayer Spacing MoS2 Nanoflowers for Enhanced Lithium–Sulfur Battery Performance. Molecules, 29(20), 4968. https://doi.org/10.3390/molecules29204968