Preparation and Application of Volatilized Wormwood Essence Derived Naturally into Green Insecticide
Abstract
:1. Introduction
2. Results and Discussion
2.1. Insecticidal Test Results
2.1.1. Anti Powdery Mildew Effect
2.1.2. The Effectiveness of Aphid Prevention and Control
2.2. Determination of Biomarkers and Estimation of Quality Specifications
2.2.1. Detection Results
2.2.2. Quality Specification Evaluation
2.3. Experimental Optimization
2.3.1. Extraction Optimization of Essential Oil Substances
2.3.2. Confirmation of Effective Insecticidal Substances
2.3.3. Optimization of the Formulation of Insecticidal Essential Oils
3. Materials and Methods
3.1. Instruments and Reagents
3.2. Preparation of Wormwood Essential Oil Extract
3.3. Determination of Effective Substances in the Wormwood Essential Oil Extract
3.3.1. Preparation of Standard Reference Solution
3.3.2. Sample Processing
3.3.3. GC-MS Conditions
3.4. Comparative Trials of Hothouse Plants
3.4.1. Powdery Mildew
3.4.2. Aphid Disease
3.4.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahemad, M.; Khan, M.S. Effects of insecticides on plant-growth-promoting activities of phosphate solubilizing rhizobacterium Klebsiella sp. Strain ps19. Pestic. Biochem. Phys. 2011, 100, 51–56. [Google Scholar] [CrossRef]
- Ahemad, M.; Khan, M.S. Comparative toxicity of selected insecticides to pea plants and growth promotion in response to insecticide-tolerant and plant growth promoting Rhizobium leguminosarum. Crop Prot. 2010, 29, 325–329. [Google Scholar] [CrossRef]
- Guedes, R.N.C.; Biondi, A.; Agathokleous, E.; Nunes-Nesi, A. (Systemic) insecticides in plants: Phytotoxicity, bioactivation, or hormesis? Agric. Commun. 2023, 1, 100002. [Google Scholar] [CrossRef]
- Rima, M.; Chbani, A.; Roques, C.; El Garah, F. Comparative study of the insecticidal activity of a high green plant (Spinacia oleracea) and a chlorophytae algae (Ulva lactuca) extracts against Drosophila melanogaster fruit fly. Ann. Pharm. Françaises 2021, 79, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Bharathithasan, M.; Kotra, V.; Atif Abbas, S.; Mathews, A. Review on biologically active natural insecticides from malaysian tropical plants against Aedes aegypti and Aedes albopictus. Arab. J. Chem. 2024, 17, 105345. [Google Scholar] [CrossRef]
- Tobyn, G.; Denham, A.; Whitelegg, M. Chapter 12—Artemisia vulgaris, mugwort. In Medical Herbs; Tobyn, G., Denham, A., Whitelegg, M., Eds.; Churchill Livingstone: Edinburgh, UK, 2011; pp. 123–134. [Google Scholar]
- Szopa, A.; Pajor, J.; Klin, P.; Rzepiela, A.; Elansary, H.O.; Al-Mana, F.A.; Mattar, M.A.; Ekiert, H. Artemisia absinthium L.—Importance in the history of medicine, the latest advances in phytochemistry and therapeutical, cosmetological and culinary uses. Plants 2020, 9, 1063. [Google Scholar] [CrossRef] [PubMed]
- Dib, I.; El Alaoui-Faris, F.E. Artemisia campestris L.: Review on taxonomical aspects, cytogeography, biological activities and bioactive compounds. Biomed. Pharmacother. 2019, 109, 1884–1906. [Google Scholar] [CrossRef] [PubMed]
- Bendifallah, L.; Merah, O. Phytochemical and biocidal properties of Artemisia campestris subsp. Campestris L. (Asteraceae) essential oil at the southern region of algeria. J. Nat. Pestic. Res. 2023, 4, 100035. [Google Scholar]
- Ojo, O.; Ojo, O.O.; Adebowale, F.; Wang, X. The effect of dietary glycaemic index on glycaemia in patients with type 2 diabetes: A systematic review and meta-analysis of randomized controlled trials. Nutrients 2018, 10, 373. [Google Scholar] [CrossRef]
- Batiha, G.E.; Olatunde, A.; El-Mleeh, A.; Hetta, H.F.; Al-Rejaie, S.; Alghamdi, S.; Zahoor, M.; Magdy Beshbishy, A.; Murata, T.; Zaragoza-Bastida, A.; et al. Bioactive compounds, pharmacological actions, and pharmacokinetics of wormwood (Artemisia absinthium). Antibiotics 2020, 9, 353. [Google Scholar] [CrossRef]
- Trendafilova, A.; Moujir, L.M.; Sousa, P.M.C.; Seca, A.M.L. Research advances on health effects of edible Artemisia species and some sesquiterpene lactones constituents. Foods 2021, 10, 65. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Chen, H.; Wei, N.; Mei, X.; Zhang, S.; Liu, D.L.; Gao, Y.; Bai, S.F.; Liu, X.G.; Zhou, Y.X. Anti-inflammatory and immunomodulatory mechanisms of artemisinin on contact hypersensitivity. Int. Immunopharmacol. 2011, 12, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.S.; Choi, W.J.; Lee, S.; Kim, W.J.; Lee, D.C.; Sohn, U.D.; Shin, H.S.; Kim, W. Anti-inflammatory, antioxidant and antimicrobial effects of artemisinin extracts from Artemisia annua L. Korean Physiol. Soc. Korean Soc. Pharmacol. 2014, 19, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Ekiert, H.; Knut, E.; Świątkowska, J.; Klin, P.; Rzepiela, A.; Tomczyk, M.; Szopa, A. Artemisia abrotanum L. (Southern wormwood)—History, current knowledge on the chemistry, biological activity, traditional use and possible new pharmaceutical and cosmetological applications. Molecules 2021, 26, 2503. [Google Scholar] [CrossRef] [PubMed]
- Taleghani, A.; Emami, S.A.; Tayarani-Najaran, Z. Artemisia: A promising plant for the treatment of cancer. Bioorgan. Med. Chem. 2020, 28, 115180. [Google Scholar] [CrossRef] [PubMed]
- Dogra, S.; Singh, J.; Koul, B.; Yadav, D. Artemisia vestita: A folk medicine with hidden herbal fortune. Molecules 2023, 28, 2788. [Google Scholar] [CrossRef] [PubMed]
- Kamarauskaite, J.; Baniene, R.; Raudone, L.; Vilkickyte, G.; Vainoriene, R.; Motiekaityte, V.; Trumbeckaite, S. Antioxidant and mitochondria-targeted activity of caffeoylquinic-acid-rich fractions of wormwood (Artemisia absinthium L.) and silver wormwood (Artemisia ludoviciana nutt.). Antioxidants 2021, 10, 1405. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, H.A. Phytochemical analysis, antioxidant potential, and cytotoxicity evaluation of traditionally used Artemisia absinthium L. (Wormwood) growing in the central region of saudi arabia. Plants 2022, 11, 1028. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.; Wang, S.; Zhang, X.; Fu, X.; Zhang, W. Evaluation of biological pretreatment of wormwood rod reies with white rot fungi for preparation of porous carbon. J. Fungi 2023, 9, 43. [Google Scholar] [CrossRef]
- Banožić, M.; Wronska, A.W.; Jakovljević Kovač, M.; Aladić, K.; Jerković, I.; Jokić, S. Comparative evaluation of different extraction techniques for separation of artemisinin from sweet wormwood (Artemisia annua L.). Horticulturae 2023, 9, 629. [Google Scholar] [CrossRef]
- El-Houseiny, W.; Anter, R.G.A.; Arisha, A.H.; Mansour, A.T.; Safhi, F.A.; Alwutayd, K.M.; Elshopakey, G.E.; Abd El-Hakim, Y.M.; Mohamed, E.M.M. Growth retardation, oxidative stress, immunosuppression, and inflammatory disturbances induced by herbicide exposure of catfish, Clarias gariepinus, and the alleviation effect of dietary wormwood, Artemisia cina. Fishes 2023, 8, 297. [Google Scholar] [CrossRef]
- Beniaich, G.; Beniken, M.; Salim, R.; Arrousse, N.; Ech-Chihbi, E.; Rais, Z.; Sadiq, A.; Nafidi, H.; Bin Jardan, Y.A.; Bourhia, M.; et al. Anticorrosive effects of essential oils obtained from white wormwood and arâr plants. Separations 2023, 10, 396. [Google Scholar] [CrossRef]
- Beshay, E.V.N. Therapeutic efficacy of Artemisia absinthium against Hymenolepis nana: In vitro and in vivo studies in comparison with the anthelmintic praziquantel. J. Helminthol. 2018, 92, 298–308. [Google Scholar] [CrossRef]
- Elwardani, H.; Oubihi, A.; Haida, S.; Ez-Zriouli, R.; Kabous, K.E.; Ouhssine, M. Seasonal variation in essential oil composition of Artemisia herba-alba and their effects on antioxidant, antibacterial, and antifungal activities. Chem. Data Collect. 2024, 50, 101118. [Google Scholar] [CrossRef]
- Aziz, A.T.; Alshehri, M.A.; Panneerselvam, C.; Murugan, K.; Trivedi, S.; Mahyoub, J.A.; Hassan, M.M.; Maggi, F.; Sut, S.; Dall’Acqua, S.; et al. The desert wormwood (Artemisia herba-alba)—From arabian folk medicine to a source of green and effective nanoinsecticides against mosquito vectors. J. Photochem. Photobiol. B Biol. 2018, 180, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zheng, J.; You, L.; Qiu, T.; Christoforo, T.; Wei, Y. Wormwood-infused porous-caco3 for synthesizing antibacterial natural rubber latex. Int. J. Biol. Macromol. 2024, 260, 129322. [Google Scholar] [CrossRef]
- Hu, M.; Feng, G.; Xie, L.; Shi, X.; Lu, B.; Li, Y.; Shi, S.; Zhang, J. Green and efficient extraction of wormwood essential oil using natural deep eutectic solvent: Process optimization and compositional analysis. J. Mol. Liq. 2023, 382, 121977. [Google Scholar] [CrossRef]
- Luo, D.; Yan, Z.; Che, L.; Zhu, J.J.; Chen, B. Repellency and insecticidal activity of seven mugwort (Artemisia argyi) essential oils against the malaria vector Anopheles sinensis. Sci. Rep. 2022, 12, 5337. [Google Scholar] [CrossRef]
- Riahi, L.; Chograni, H.; Elferchichi, M.; Zaouali, Y.; Zoghlami, N.; Mliki, A. Variations in tunisian wormwood essential oil profiles and phenolic contents between leaves and flowers and their effects on antioxidant activities. Ind. Crops Prod. 2013, 46, 290–296. [Google Scholar] [CrossRef]
- Chizzola, R.; Gansinger, D. Chemical composition and antioxidant activity of Artemisia argyi essential oil and hydrolate. Compounds 2023, 3, 521–531. [Google Scholar] [CrossRef]
- Zhang, J.; Li, B.; Lu, X.; Zheng, Y.; Wang, D.; Zhang, Z.; Zeng, D.; Du, S. Chemical diversity and anti-insect activity evaluation of essential oils extracted from five Artemisia species. Plants 2022, 11, 1627. [Google Scholar] [CrossRef]
- Boukraa, N.; Ladjel, S.; Benlamoudi, W.; Goudjil, M.B.; Berrekbia, M.; Eddoud, A. Insecticidal and repellent activities of Artemisia herba alba asso, Juniperus phoenicea L. and Rosmarinus officinalis L. essential oils in synergized combinations against adults of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Biocatal. Agric. Biotechnol. 2022, 45, 102513. [Google Scholar] [CrossRef]
- Xiao, J.; Li, Y.; Jeong, B.R. Foliar silicon spray before summer cutting propagation enhances resistance to powdery mildew of daughter plants. Int. J. Mol. Sci. 2022, 23, 3803. [Google Scholar] [CrossRef]
- Moriondo, M.; Orlandini, S.; Giuntoli, A.; Bindi, M. The effect of downy and powdery mildew on grapevine (Vitis vinifera L.) Leaf gas exchange. J. Phytopathol. 2010, 153, 350–357. [Google Scholar] [CrossRef]
- Saharan, G.S.; Mehta, N.K.; Meena, P.D. The disease: Powdery mildew. In Powdery Mildew Disease of Crucifers: Biology, Ecology and Disease Management; Saharan, G.S., Mehta, N.K., Meena, P.D., Eds.; Springer: Singapore, 2019; pp. 17–51. [Google Scholar]
- Lv, N.; Yang, Q.; Li, C.; Zhang, T.; Ali, S.; Liu, C.; Abid, I.; Ragab Abdelgawwad, M. Effects of different host plants on population fitness of pea aphid (Acyrthosiphon pisum). J. King Saud Univ. Sci. 2023, 35, 102764. [Google Scholar] [CrossRef]
- Willden, S.A.; Zablah, A.; Wallingford, A.; Ingwell, L.L. Management of aphids on winter high tunnel crops. Biol. Control 2024, 192, 105511. [Google Scholar] [CrossRef]
- Pan, F.; Gao, L.; Zhu, K.; Du, G.; Zhu, M.; Zhao, L.; Gao, Y.; Tu, X.; Zhang, Z. Regional selection of insecticides and fungal biopesticides to control aphids and thrips and improve the forage quality of alfalfa crops. J. Integr. Agric. 2023, 22, 185–194. [Google Scholar] [CrossRef]
- Pekas, A.; De Smedt, L.; Verachtert, N.; Boonen, S. The brown lacewing micromus angulatus: A new predator for the augmentative biological control of aphids. Biol. Control 2023, 186, 105342. [Google Scholar] [CrossRef]
- Durak, R.; Materowska, M.; Borowiak-Sobkowiak, B.; Bartoszewski, S. Two distinct aphid diapause strategies: Slow development or development arrest. J. Insect Physiol. 2023, 150, 104569. [Google Scholar] [CrossRef]
- Silva, J.R.; Oliveira, A.A.; França, L.P.; Da Cruz, J.D.; Amaral, A.C. Exploring the larvicidal and adulticidal activity against Aedes aegypti of essential oil from Bocageopsis multiflora. Molecules 2024, 29, 2240. [Google Scholar] [CrossRef]
- Kačániová, M.; Vukovic, N.L.; Miková, N.; Bianchi, A.; Garzoli, S.; Ben Saad, R.; Ben Hsouna, A.; Elizondo-Luévano, J.H.; Said-Al Ahl, H.A.H.; Hikal, W.M.; et al. Biological activity and phytochemical characteristics of star anise (Illicium verum) essential oil and its anti-Salmonella activity on sous vide pumpkin model. Foods 2024, 13, 1505. [Google Scholar] [CrossRef] [PubMed]
- Nechita, M.; Pralea, I.; Igu, A.; Iuga, C.; Pop, C.R.; Gál, E.; Vârban, R.; Nechita, V.; Oniga, O.; Toiu, A.; et al. Agastache species (lamiaceae) as a valuable source of volatile compounds: GC–MS profiling and investigation of in vitro antibacterial and cytotoxic activities. Int. J. Mol. Sci. 2024, 25, 5366. [Google Scholar] [CrossRef] [PubMed]
- Cai, K.; Liu, Q.; Lin, Y.; Yang, X.; Liu, Q.; Pan, W.; Gao, W. Amine switchable hydrophilic solvent vortex-assisted homogeneous liquid–liquid microextraction and gc-ms for the enrichment and determination of 2,6-dipa additive in biodegradable film. Molecules 2024, 29, 2068. [Google Scholar] [CrossRef] [PubMed]
- Casals, G.; Ballesteros, M.A.; Zamora, A.; Martínez, I.; Fernández-Varo, G.; Mora, M.; Hanzu, F.A.; Morales-Ruiz, M. LC-HRMS and GC-MS profiling of urine free cortisol, cortisone, 6β-, and 18-hydroxycortisol for the evaluation of glucocorticoid and mineralocorticoid disorders. Biomolecules 2024, 14, 558. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; He, L.; Huang, Z.; Wang, H.; Yu, L.; Zhu, W. Investigating the impact of origins on the quality characteristics of celery seeds based on metabolite analysis through HS-GC-IMS, HS-SPME-GC-MS and UPLC-ESI-MS/MS. Foods 2024, 13, 1428. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.; Yang, Q.; Chen, J.; Tu, T.; Lian, H.; He, B.; Cai, Y. Unpredictable chemical diversity of essential oils in Cinnamomum burmanni (lauraceae) living collections: Beyond maternally inherited phylogenetic relationships. Molecules 2024, 29, 1206. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Liu, B.; Zhang, S.; Zhang, R.; Wu, C.; Qiao, K. Increasing spray volume and ozone spray of tetraconazole improve control against strawberry powdery mildew. Crop Prot. 2024, 179, 106602. [Google Scholar] [CrossRef]
- Sylla, J.; Alsanius, B.W.; Krüger, E.; Becker, D.; Wohanka, W. In vitro compatibility of microbial agents for simultaneous application to control strawberry powdery mildew (Podosphaera aphanis). Crop Prot. 2013, 51, 40–47. [Google Scholar] [CrossRef]
- Park, J.; Kim, H. Harnessing crispr/cas9 for enhanced disease resistance in hot peppers: A comparative study on camlo2-gene-editing efficiency across six cultivars. Int. J. Mol. Sci. 2023, 24, 16775. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, F.; Zhang, Y.; Temir, E.; Zhou, X.; Shangguan, Y.; Zhang, D.; Cai, Z. Combination of functional plants conserves predators, repels pests, and enhances biological control of Aphis spiraecola in apple orchards. Biol. Control 2024, 192, 105512. [Google Scholar] [CrossRef]
- Bouvet, J.P.R.; Urbaneja, A.; Monzo, C. Life history traits of the coccinellids Scymnus subvillosus and S. interruptus on their prey Aphis spiraecola and A. Gossypii: Implications for biological control of aphids in clementine citrus. Biol. Control 2019, 132, 49–56. [Google Scholar] [CrossRef]
- Leman, A.; Mouratidis, A.; Pijnakker, J.; Vervoorn, K.; Wäckers, F.; Messelink, G.J. Sugar and pollen supply enhances aphid control by hoverflies in strawberry. Biol. Control 2023, 186, 105347. [Google Scholar] [CrossRef]
- Mou, D.; Kundu, P.; Pingault, L.; Puri, H.; Shinde, S.; Louis, J. Monocot crop–aphid interactions: Plant resilience and aphid adaptation. Curr. Opin. Insect Sci. 2023, 57, 101038. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, S.; Wang, Y.; Liu, T.; Ning, X.; Liang, R.; Hu, K.; Cao, J. Preparation and Application of Volatilized Wormwood Essence Derived Naturally into Green Insecticide. Molecules 2024, 29, 2877. https://doi.org/10.3390/molecules29122877
Jin S, Wang Y, Liu T, Ning X, Liang R, Hu K, Cao J. Preparation and Application of Volatilized Wormwood Essence Derived Naturally into Green Insecticide. Molecules. 2024; 29(12):2877. https://doi.org/10.3390/molecules29122877
Chicago/Turabian StyleJin, Shaoming, Yaonan Wang, Tongtong Liu, Xiao Ning, Ruiqiang Liang, Kang Hu, and Jin Cao. 2024. "Preparation and Application of Volatilized Wormwood Essence Derived Naturally into Green Insecticide" Molecules 29, no. 12: 2877. https://doi.org/10.3390/molecules29122877
APA StyleJin, S., Wang, Y., Liu, T., Ning, X., Liang, R., Hu, K., & Cao, J. (2024). Preparation and Application of Volatilized Wormwood Essence Derived Naturally into Green Insecticide. Molecules, 29(12), 2877. https://doi.org/10.3390/molecules29122877