Chemical Composition and Cytotoxicity Evaluation of Artemisia judaica L. Essential Oil from Saudi Arabia
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Plant Material
4.3. Essential Oil Extraction
4.4. Chromatographic Analysis
4.5. Compound Identification
4.6. Multivariate Statistical Analyses (MVAs)
4.7. Cytotoxicity Assay
4.7.1. Cell Culture and Treatment
4.7.2. Cell Viability Assay
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Qudah, M.A.; Onizat, M.A.; Alshamari, A.K.; Al-Jaber, H.I.; Bdair, O.M.; Muhaidat, R.; Al Zoubi, M.; Al-Bataineh, N. Chemical composition and antioxidant activity of Jordanian Artemisia judaica L. as affected by different drying methods. Int. J. Food Prop. 2021, 24, 482–492. [Google Scholar] [CrossRef]
- Miara, M.D.; Bendif, H.; Rebbas, K.; Rabah, B.; Hammou, M.A.; Maggi, F. Medicinal plants and their traditional uses in the highland region of Bordj Bou Arreridj (Northeast Algeria). J. Herb. Med. 2019, 16, 100262. [Google Scholar] [CrossRef]
- Guetat, A.; Al-Ghamdi, F.A.; Osman, A.K. The genus Artemisia L. in the northern region of Saudi Arabia: Essential oil variability and antibacterial activities. Nat. Prod. Res. 2017, 31, 598–603. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, H.A.; Qureshi, K.A.; Ali, H.M.; Al-Omar, M.S.; Khan, O.; Mohammed, S.A. Bio-evaluation of the wound healing activity of Artemisia judaica L. as part of the plant’s use in traditional medicine; Phytochemical, antioxidant, anti-inflammatory, and antibiofilm properties of the plant’s essential oils. Antioxidants 2022, 11, 332. [Google Scholar] [CrossRef] [PubMed]
- Abad, M.J.; Bedoya, L.M.; Apaza, L.; Bermejo, P. The Artemisia L. genus: A review of bioactive essential oils. Molecules 2012, 17, 2542–2566. [Google Scholar] [CrossRef]
- Abu-Darwish, M.; Cabral, C.; Gonçalves, M.; Cavaleiro, C.; Cruz, M.; Zulfiqar, A.; Khan, I.; Efferth, T.; Salgueiro, L. Chemical composition and biological activities of Artemisia judaica essential oil from southern desert of Jordan. J. Ethnopharmacol. 2016, 191, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Alan, A.; Saxena, P. Evaluation of in vitro shoots of Artemisia judaica for allelopathic potential. Acta Physiol. Plant. 2009, 31, 1237–1248. [Google Scholar] [CrossRef]
- Youssef, R.S. Medicinal and non-medicinal uses of some plants found in the middle region of Saudi Arabia. J. Med. Plants Res. 2013, 7, 2501–2513. [Google Scholar]
- Moharram, F.A.; Nagy, M.M.; El Dib, R.A.; El-Tantawy, M.M.; El Hossary, G.G.; El-Hosari, D.G. Pharmacological activity and flavonoids constituents of Artemisia judaica L aerial parts. J. Ethnopharmacol. 2021, 270, 113777. [Google Scholar] [CrossRef]
- Janacković, P.; Novaković, J.; Soković, M.; Vujisić, L.; Giweli, A.A.; Dajić-Stevanović, Z.; Marin, P.D. Composition and antimicrobial activity of essential oils of Artemisia judaica, A. herba-alba and A. arborescens from Libya. Arch. Biol. Sci. 2015, 67, 455–466. [Google Scholar] [CrossRef]
- Al-Wahaibi, L.H.N.; Mahmood, A.; Khan, M.; Alkhathlan, H.Z. Comparative study on the essential oils of Artemisia judaica and A. herba-alba from Saudi Arabia. Arab. J. Chem. 2020, 13, 2053–2065. [Google Scholar] [CrossRef]
- Bora, K.S.; Sharma, A. The genus Artemisia: A comprehensive review. Pharm. Biol. 2011, 49, 101–109. [Google Scholar] [CrossRef]
- Irving, R.S.; Adams, R.P. Genetic and biosynthetic relationships of monoterpenes. In Recent Advances in Phytochemistry; Elsevier: Amsterdam, The Netherlands, 1973; Volume 6, pp. 187–214. [Google Scholar]
- Ravid, U.; Putievsky, E.; Katzir, I.; Carmeli, D.; Eshel, A.; Schenk, H.P. The essential oil of Artemisia judaica L. chemotypes. Flavour Fragr. J. 1992, 7, 69–72. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Elshamy, A.; Abd-ElGawad, A.; Mohamed, T.; El Gendy, A.E.N.; Abd El Aty, A.A.; Saleh, I.; Moustafa, M.F.; Hussien, T.A.; Pare, P.W.; F Hegazy, M.E. Extraction development for antimicrobial and phytotoxic essential oils from Asteraceae species: Achillea fragrantissima, Artemisia judaica and Tanacetum sinaicum. Flavour Fragr. J. 2021, 36, 352–364. [Google Scholar] [CrossRef]
- El-Gohary, A.E.; Elsayed, A.A.; El-Garf, I.A.; Sabry, R.M.; Khalid, K.A.; Ahmed, S.S. Evaluation of essential oils in two Artemisia species that are grown wildly in eastern desert of Egypt. J. Essent. Oil Bear. Plants 2021, 24, 186–192. [Google Scholar] [CrossRef]
- El-Sabrout, A.M.; Zoghroban, A.A.; Abdelgaleil, S.A. Chemical composition and effects of four essential oils on mortality, development and physiology of the West Nile virus vector, Culex pipiens. Int. J. Trop. Insect Sci. 2020, 40, 789–799. [Google Scholar] [CrossRef]
- El-Massry, K.F.; El-Ghorab, A.H.; Farouk, A. Antioxidant activity and volatile components of Egyptian Artemisia judaica L. Food Chem. 2002, 79, 331–336. [Google Scholar] [CrossRef]
- Amin, S.M.; Hassan, H.M.; El Gendy, A.E.N.G.; El-Beih, A.A.; Mohamed, T.A.; Elshamy, A.I.; Bader, A.; Shams, K.A.; Mohammed, R.; Hegazy, M.E.F. Comparative chemical study and antimicrobial activity of essential oils of three Artemisia species from Egypt and Saudi Arabia. Flavour Fragr. J. 2019, 34, 450–459. [Google Scholar] [CrossRef]
- Zeragui, B.; Hachem, K.; Halla, N.; Kahloula, K. Essential oil from Artemisia judaica L.(ssp. sahariensis) flowers as a natural cosmetic preservative: Chemical composition, and antioxidant and antibacterial activities. J. Essent. Oil Bear. Plants 2019, 22, 685–694. [Google Scholar]
- Bandeira Reidel, R.V.; Nardoni, S.; Mancianti, F.; Anedda, C.; El Gendy, A.E.-N.G.; Omer, E.A.; Pistelli, L. Chemical composition and antifungal activity of essential oils from four Asteraceae plants grown in Egypt. Z. Naturforschung C 2018, 73, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Hellali, N.; Mahammed, M.H.; Masrouk, H. Physico-Chemical Study and Evaluation of Antimicrobial and Antioxidant Activities of Artemisia judaica L. Essential Oil, Growing in Illizi, Algeria. Asian J. Chem. 2017, 29, 181. [Google Scholar] [CrossRef]
- Benmansour, N.; Benmansour, A.; El Hanbali, F.; González-Mas, M.; Blázquez, M.; El Hakmaoui, A.; Akssira, M. Antimicrobial activity of essential oil of Artemisia judaica L. from Algeria against multi-drug resistant bacteria from clinical origin. Flavour Fragr. J. 2016, 31, 137–142. [Google Scholar] [CrossRef]
- Abd-Elhady, H. Insecticidal activity and chemical composition of essential oil from Artemisia judaica L. against Callosobruchus maculatus (F.)(Coleoptera: Bruchidae). J. Plant Prot. Res. 2012, 52, 347–352. [Google Scholar] [CrossRef]
- Abdallah Sallam, S.M.; Mohamed Abdelgaleil, S.A.; da Silva Bueno, I.C.; Abdelwahab Nasser, M.E.; Araujo, R.C.; Abdalla, A.L. Effect of some essential oils on in vitro methane emission. Arch. Anim. Nutr. 2011, 65, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Dob, T.; Chelghoum, C. Chemical composition of the essential oil of Artemisia judaica L. from Algeria. Flavour Fragr. J. 2006, 21, 343–347. [Google Scholar] [CrossRef]
- Hazam, S.; Touati, S.; Touati, L.; Saher, L.; Khedidji, H.; Ait Kaki, S.; Chemat, S. Promising Algerian essential oils as natural acaricides against the honey bee mite Varroa destructor (Acari: Varroidae). Exp. Appl. Acarol. 2024, 92, 87–107. [Google Scholar] [CrossRef]
- Abdelgaleil, S.A.M.; Abbassy, M.A.; Belal, A.-S.H.; Abdel Rasoul, M.A.A. Bioactivity of two major constituents isolated from the essential oil of Artemisia judaica L. Bioresour. Technol. 2008, 99, 5947–5950. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Wen, D.; Guan, Y.; Jiang, L.; Chen, S.; Chen, F.; Liu, B.; Niinemets, Ü.; Jiang, Y. Heat-stress induced sesquiterpenes of Chrysanthemum nankingense attract herbivores but repel herbivore feeding. Arthropod-Plant Interact. 2023, 17, 111–122. [Google Scholar] [CrossRef]
- Hong, B.; Ma, C.; Yang, Y.; Wang, T.; Yamaguchi-Shinozaki, K.; Gao, J. Over-expression of AtDREB1A in chrysanthemum enhances tolerance to heat stress. Plant Mol. Biol. 2009, 70, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, A.; Jogia, M.K.; Andersen, R.J. Camphor from juvenile white spruce as an antifeedant for snowshoe hares. J. Chem. Ecol. 1988, 14, 1505–1514. [Google Scholar] [CrossRef] [PubMed]
- Reis, M.G.; Pansarim, E.R.; da Silva, U.F.; do Amaral, E.; Marsaioli, J. Pollinator attraction devices (floral fragrances) of some Brazilian orchids. Arkivoc 2004, 6, 89–97. [Google Scholar] [CrossRef]
- Hussain, M.; Kiran, S.; Sayed, I.; Khazir, J.; Maqbool, T.; Ibrahim, M.; Kaur, S.; Mir, B.A.; Rahi, P. Altitude-dependent influence of Artemisia brevifolia on its rhizosphere microbiome in Ladakh region of the Western Himalayas. Rhizosphere 2024, 30, 100918. [Google Scholar] [CrossRef]
- Gaafar, R.M.; Hamouda, M.M.; Ahmed, H.I.S.; El-Shazly, H.H.; Badr, A. Genetic differentiation in the medicinal plant Artemisia judaica L. populations in Saint-Catherine area, South Sinai, Egypt. Plant Gene 2017, 12, 80–87. [Google Scholar] [CrossRef]
- Jadaun, J.S.; Yadav, R.; Yadav, N.; Bansal, S.; Sangwan, N.S. Influence of Genetics on the Secondary Metabolites of Plants. In Natural Secondary Metabolites: From Nature, Through Science, to Industry; Springer: Berlin/Heidelberg, Germany, 2023; pp. 403–433. [Google Scholar]
- Reshi, Z.A.; Ahmad, W.; Lukatkin, A.S.; Javed, S.B. From Nature to lab: A review of secondary metabolite biosynthetic pathways, environmental influences, and in vitro approaches. Metabolites 2023, 13, 895. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.S.; Padalia, R.C.; Chauhan, A.; Upadhyay, R.K.; Singh, V.R. Productivity and essential oil composition of rosemary (Rosmarinus officinalis L.) harvested at different growth stages under the subtropical region of north India. J. Essent. Oil Res. 2020, 32, 144–149. [Google Scholar] [CrossRef]
- Pons, A.; Lavigne, V.; Darriet, P.; Dubourdieu, D. Identification and analysis of piperitone in red wines. Food Chem. 2016, 206, 191–196. [Google Scholar] [CrossRef]
- Burbott, A.J.; Hennessey Jr, J.P.; Johnson Jr, W.C.; Loomis, W.D. Configuration of piperitone from oil of Mentha piperita. Phytochemistry 1983, 22, 2227–2230. [Google Scholar] [CrossRef]
- Ravid, U.; Putievsky, E.; Katzir, I. Enantiomeric distribution of piperitone in essential oils of some Mentha spp., Calamintha incána (Sm.) Heldr. and Artemisia judaica L. Flavour Fragr. J. 1994, 9, 85–87. [Google Scholar] [CrossRef]
- Abdolpour, F.; Shahverdi, A.-R.; Rafii, F.; Fazeli, M.-R.; Amini, M. Effects of Piperitone on the Antimicrobial Activity of Nitrofurantoin and on Nitrofurantoin Metabolism by Enterobacter cloacae. Pharm. Biol. 2007, 45, 230–234. [Google Scholar] [CrossRef]
- Kendra, P.E.; Montgomery, W.S.; Tabanca, N.; Schnell, E.Q.; Vázquez, A.; Menocal, O.; Carrillo, D.; Cloonan, K.R. Piperitone (p-Menth-1-En-3-One): A New Repellent for Tea Shot Hole Borer (Coleoptera: Curculionidae) in Florida Avocado Groves. Biomolecules 2023, 13, 656. [Google Scholar] [CrossRef] [PubMed]
- Ornano, L.; Venditti, A.; Sanna, C.; Ballero, M.; Maggi, F.; Lupidi, G.; Bramucci, M.; Quassinti, L.; Bianco, A. Chemical composition and biological activity of the essential oil from Helichrysum microphyllum Cambess. ssp. tyrrhenicum Bacch., Brullo e Giusso growing in La Maddalena Archipelago, Sardinia. J. Oleo Sci. 2015, 64, 19–26. [Google Scholar] [PubMed]
- Alsharif, B.; Babington, G.A.; Radulović, N.; Boylan, F. Volatiles of Capparis cartilaginea Decne. from Saudi Arabia. Plants 2022, 11, 2518. [Google Scholar] [CrossRef]
- Van Den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 1963, 11, 463–471. [Google Scholar] [CrossRef]
- (NIST) National Institute of Standards and Technology. NIST Chemistry WebBook. Available online: https://webbook.nist.gov/chemistry/name-ser/ (accessed on 2 May 2024).
Compounds | Peak Area % | Retention Time | Retention Index (a) | Class (b) | Identification |
---|---|---|---|---|---|
5-Tert-Butyl-1,3 Cyclopentadiene (1) | 0.2 | 3.4 | 837 | O | GC–MS |
Ethyl-2-Methylbutanoate (2) | 0.6 | 3.4 | 843 | O | GC–MS |
Ethyl Isovalerate (3) | 0.3 | 3.5 | 846 | O | GC–MS |
2,6-Dimethyl-1,5-Heptadiene (4) | 0.1 | 3.8 | 881 | M | GC–MS |
5-Ethyl-5-Methyl-5-Vinyl Tetrahydrofuran (5) | 0.1 | 4.2 | 912 | O | GC–MS |
Tricyclene (6) | 0.2 | 4.6 | 931 | O | GC–MS |
Propyl-2-Methylbutanoate (7) | 0.4 | 4.7 | 941 | O | GC–MS |
Propyl Isovalerate (8) | 0.1 | 4.8 | 945 | O | GC–MS |
Camphene (9) | 0.9 | 5.0 | 955 | O | GC–MS |
Benzaldehyde (10) | 0.5 | 5.2 | 952 | O | GC–MS |
6-Methyl-5-Hepten-2-One (11) | 0.1 | 5.4 | 984 | M | GC–MS |
Pseudocumene (12) | 2.4 | 5.8 | 1002 | O | GC–MS |
O-Allyltoluene (13) | 0.1 | 6.0 | 1015 | O | GC–MS |
Mesitylene (14) | 2.4 | 6.3 | 1028 | O | GC–MS |
6-Methyl-5-Octen-2-One (15) | 0.1 | 6.4 | 1032 | M | GC–MS |
Lavender Lactone (16) | 0.3 | 6.6 | 1039 | O | GC–MS |
cis-Arbusculone (17) | 0.3 | 6.9 | 1052 | O | GC–MS |
2,6-Dimethyl-1,5-Heptadien-3-Ol (18) | 0.2 | 7.0 | 1059 | O | GC–MS |
trans-Arbusculone (19) | 0.3 | 7.3 | 1071 | O | GC–MS |
1-Isopropyl-3-Methylenecyclohexane (20) | 0.2 | 7.3 | 1075 | O | GC–MS |
L-Verbenone (21) | 1.7 | 7.8 | 1094 | M | GC–MS |
Dehydrosabinaketone (22) | 0.6 | 8.0 | 1103 | S | GC–MS |
Filifolone (23) | 1.5 | 8.1 | 1107 | M | GC–MS |
Isophorone (24) | 8.6 | 8.6 | 1129 | O | GC–MS |
1,3,3-Trimethylcyclohex-1-Ene-4-Carboxaldehyde (25) | 0.2 | 8.9 | 1141 | O | GC–MS |
Oxoisophorone (26) | 2.3 | 9.1 | 1156 | O | GC–MS |
(+)-Camphor (27) | 9.7 | 9.3 | 1141 | M | GC–MS |
cis-Chrysanthenol (28) | 0.3 | 9.6 | 1168 | M | GC–MS |
Camphol (29) | 2.6 | 9.9 | 1184 | M | GC–MS |
4-Terneol (30) | 0.2 | 10.1 | 1188 | S | GC–MS |
P-Cymen-8-Ol (31) | 0.4 | 10.2 | 1192 | M | GC–MS |
Cryptone (32) | 0.2 | 10.3 | 1195 | M | GC–MS |
(+)-A-Terpineol (33) | 0.3 | 10.4 | 1248 | M | GC–MS |
Verbenone (34) | 0.7 | 10.8 | 1263 | M | GC–MS |
trans-Carveol (35) | 0.2 | 11.0 | 1272 | M | GC–MS |
Nordavanone (36) | 1.7 | 11.1 | 1276 | S | GC–MS |
Ethyl Phenylacetate (37) | 0.4 | 11.5 | 1293 | O | GC–MS |
Cuminal (38) | 0.1 | 11.7 | 1298 | O | GC–MS |
Piperitone (39) | 16.5 | 12.0 | 1249 | M | GC–MS |
Bornyl Acetate (40) | 2.6 | 12.7 | 1313 | M | GC–MS |
Thymol (41) | 1.0 | 12.8 | 1345 | M | GC–MS |
Carvacrol (42) | 0.3 | 13.1 | 1354 | M | GC–MS |
cis-Methyl Cinnamate (43) | 0.4 | 13.2 | 1358 | M | GC–MS |
Chrysanthenone Epoxide (44) | 6.4 | 13.6 | 1377 | S | GC–MS |
Piperitenone (45) | 1.0 | 14.2 | 1398 | S | GC–MS |
Ethyl Dihydrocinnamate (46) | 0.4 | 14.3 | 1402 | O | GC–MS |
Capric Acid (47) | 0.3 | 14.7 | 1421 | O | GC MS |
Z-Ethyl Cinnamate (48) | 5.1 | 15.0 | 1433 | O | GC–MS |
Davanafuran (49) | 0.8 | 15.8 | 1467 | S | GC–MS |
E-Ethyl Cinnamate (50) | 12.9 | 17.4 | 1543 | O | GC–MS |
Artedouglasia Oxide D (51) | 0.4 | 18.5 | 1581 | S | GC–MS |
Artedouglasia Oxide A (52) | 0.5 | 18.8 | 1593 | S | GC–MS |
Laciniata Furanone H (53) | 0.1 | 19.0 | 1601 | O | GC MS |
Artedouglasia Oxide C (54) | 0.1 | 19.4 | 1618 | S | GC–MS |
Artedouglasia Oxide B (55) | 0.1 | 11.7 | 1641 | S | GC–MS |
Ent-Spathulenol (56) | 16.5 | 12.0 | 1650 | S | GC–MS |
Caryophyllene Oxide (57) | 2.6 | 12.7 | 1706 | S | GC–MS |
Methyl Jasmonate (58) | 1.0 | 12.8 | 1710 | O | GC–MS |
Total | 93.0 | ||||
Monoterpenes (M) | 38.6 | ||||
Sesquiterpenes (S) | 14.1 | ||||
Others (O) | 40.3 |
Taxon | Plant Part | Origin | Location | Code | Reference |
---|---|---|---|---|---|
1. A. judaica | Aerial parts | Saudi Arabia | Jabal el Lawz | A.J0 | Present study |
2. A. judaica | Aerial parts | Jordan | Al-Mudawarth | A.JJ1 | [6] |
3. A. judaica | Aerial parts | Saudi Arabia | Northern region | A.JS1 | [3] |
4. A. judaica | Aerial parts | Saudi Arabia | Northern Qassim region | A.JS2 | [4] |
5. A. judaica | Aerial parts | Egypt | Sinai | A.JE1a | [16] |
6. A. judaica | Aerial parts | Egypt | Gabal Ataka, Suez desert | A.JE2 | [17] |
7. A. judaica | Aerial parts | Saudi-Jordan Border | Near Saudi-Jordan borders | A.JSJ | [1] |
8. A. judaica | Aerial parts | Egypt | Matrouh Governorate | A.JE3 | [18] |
9. A. judaica | Aerial parts | Saudi Arabia | Riyadh region | A.JS3 | [11] |
10. A. judaica | Aerial parts | Egypt | Noarth Coast | A.JE4 | [19] |
11. A. judaica | Aerial parts | Egypt | Saint Catherine in South Sinai | A.JE1b | [20] |
12. A. judaica | Aerial parts | Algeria | Tassili n’Ajjer | A.JA1a | [21] |
13. A. judaica | Aerial parts | Egypt | El Sharkia Governorate | A.JE5 | [22] |
14. A. judaica | Aerial parts | Algeria | Weddi tasset in Illizi | A.JA2a | [23] |
15. A. judaica | Aerial parts | Algeria | Tamenerast desert, south Algeria | A.JA1b | [24] |
16. A. judaica | Aerial parts | Libya | Western Hamada | A.JL1 | [10] |
17. A. judaica | Aerial parts | Egypt | El-Arish Region of Sinai Peninsula | A.JE1c | [25] |
18. A. judaica | Aerial parts | Egypt | Alexandria state and the Sinai Peninsula | A.JE1d | [26] |
19. A. judaica | Aerial parts | Algeria | In Amenas desert, near Illizi city. | A.JA2b | [27] |
20. A. judaica | Aerial parts | Algeria | Tamanrasset | A.JA | [28] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsharif, B.; Bashir, Y.; Boylan, F. Chemical Composition and Cytotoxicity Evaluation of Artemisia judaica L. Essential Oil from Saudi Arabia. Molecules 2024, 29, 2882. https://doi.org/10.3390/molecules29122882
Alsharif B, Bashir Y, Boylan F. Chemical Composition and Cytotoxicity Evaluation of Artemisia judaica L. Essential Oil from Saudi Arabia. Molecules. 2024; 29(12):2882. https://doi.org/10.3390/molecules29122882
Chicago/Turabian StyleAlsharif, Bashaer, Yasmin Bashir, and Fabio Boylan. 2024. "Chemical Composition and Cytotoxicity Evaluation of Artemisia judaica L. Essential Oil from Saudi Arabia" Molecules 29, no. 12: 2882. https://doi.org/10.3390/molecules29122882
APA StyleAlsharif, B., Bashir, Y., & Boylan, F. (2024). Chemical Composition and Cytotoxicity Evaluation of Artemisia judaica L. Essential Oil from Saudi Arabia. Molecules, 29(12), 2882. https://doi.org/10.3390/molecules29122882