Essential Oils of Two Subspecies of Satureja montana L. against Gastrointestinal Parasite Anisakis simplex and Acetylcholinesterase Inhibition
Abstract
:1. Introduction
2. Results
2.1. Larvicidal Activity on A. simplex
2.2. Agar Penetration Assay
2.3. Inhibition of Acetylcholinesterase
3. Discussion
4. Materials and Methods
4.1. Materials and Reagents
4.2. Plant Material and Essential Oils
4.3. Isolation of A. simplex Larvae and Larvicidal Activity
4.4. Agar Penetration Assay
4.5. Inhibition of Acetylcholinesterase
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dodoš, T.; Rajčeviïc, N.; Teševiïc, V.; Matevski, V.; Janäckoviïc, P.; Marin, P.D. Composition of Leaf N-Alkanes in Three Satureja montana L. Subspecies from the Balkan Peninsula: Ecological and Taxonomic Aspects. Chem. Biodivers. 2015, 12, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Caprioli, G.; Lupidi, G.; Maggi, F. Comparison of Chemical Composition and Antioxidant Activities of Two Winter Savory Subspecies (Satureja montana Subsp. Variegata and Satureja montana Subsp. Montana) Cultivated in Northern Italy. Nat. Prod. Res. 2019, 33, 3143–3147. [Google Scholar] [CrossRef] [PubMed]
- Olmstead, R. A Synoptical Classification of the Lamiales; University of Washington: Seattle, WA, USA, 2016. [Google Scholar]
- Aeschimann, D.; Lauber, K.; Moser, D.; Theurillat, J. Flora Alpina: Atlante Delle 4500 Piante Vascolari Delle Alpi; Zanichelli: Bologna, Italy, 2004; ISBN 9788808071590. [Google Scholar]
- Tepe, B.; Cilkiz, M. A Pharmacological and Phytochemical Overview on Satureja. Pharm. Biol. 2016, 54, 375–412. [Google Scholar] [CrossRef] [PubMed]
- Stoilova, I.; Bail, S.; Buchbauer, G.; Krastanov, A.; Stoyanova, A.; Schmidt, E.; Jirovetz, L. Chemical Composition, Olfactory Evaluation and Antioxidant Effects of the Essential Oil of Satureja montana L. Nat. Prod. Commun. 2008, 3, 1035–1042. [Google Scholar] [CrossRef]
- Kremer, D.; Košir, I.J.; Končić, M.Z.; Čerenak, A.; Potočnik, T.; Srečec, S.; Randić, M.; Kosalec, I. Antimicrobial and Antioxidant Properties of Satureja montana L. and S. subspicata Vis. (Lamiaceae). Curr. Drug Targets 2015, 16, 1623–1633. [Google Scholar] [CrossRef]
- Said-Al Ahl, H.A.H.; Kačániova, M.; Mahmoud, A.A.; Hikal, W.M.; Čmiková, N.; Szczepanek, M.; Błaszczyk, K.; Al-Balawi, S.M.; Bianchi, A.; Smaoui, S.; et al. Phytochemical Characterization and Biological Activities of Essential Oil from Satureja montana L., a Medicinal Plant Grown under the Influence of Fertilization and Planting Dates. Biology 2024, 13, 328. [Google Scholar] [CrossRef]
- Cohen, S.M.; Eisenbrand, G.; Fukushima, S.; Gooderham, N.J.; Guengerich, F.P.; Hecht, S.S.; Rietjens, I.M.C.M.; Rosol, T.J.; Davidsen, J.M.; Harman, C.L.; et al. FEMA GRAS Assessment of Natural Flavor Complexes: Origanum Oil, Thyme Oil and Related Phenol Derivative-Containing Flavoring Ingredients. Food Chem. Toxicol. 2021, 155, 112378. [Google Scholar] [CrossRef] [PubMed]
- Cavallero, S.; Bellini, I.; Pizzarelli, A.; D’amelio, S. What Do In Vitro and In Vivo Models Tell Us about Anisakiasis? New Tools Still to Be Explored. Pathogens 2022, 11, 285. [Google Scholar] [CrossRef]
- Rama, T.A.; Silva, D. Anisakis Allergy: Raising Awareness. Acta Med. Port. 2021, 35, 578–583. [Google Scholar] [CrossRef]
- Juneja, V.K.; Dwivedi, H.P.; Yan, X. Novel Natural Food Antimicrobials. Annu. Rev. Food Sci. Technol. 2012, 3, 381–403. [Google Scholar] [CrossRef]
- Valero, A.; Romero, M.C.; Gómez-Mateos, M.; Hierro, I.; Navarro, M.C. Natural Products: Perspectives in the Pharmacological Treatment of Gastrointestinal Anisakiasis. Asian Pac. J. Trop. Med. 2015, 8, 612–617. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.-P.; Brimijoin, S.; Ragsdale, D.W.; Yan Zhu, K.; Suranyi, R. Novel and Viable Acetylcholinesterase Target Site for Developing Effective and Environmentally Safe Insecticides. Curr. Drug Targets 2012, 13, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Alinezhad, H.; Azimi, R.; Zare, M.; Ebrahimzadeh, M.A.; Eslami, S.; Nabavi, S.F.; Nabavi, S.M. Antioxidant and Antihemolytic Activities of Ethanolic Extract of Flowers, Leaves, and Stems of Hyssopus officinalis L. Var. angustifolius. Int. J. Food Prop. 2013, 16, 1169–1178. [Google Scholar] [CrossRef]
- Ebadollahi, A.; Jalali Sendi, J.; Ziaee, M.; Krutmuang, P. Acaricidal, Insecticidal, and Nematicidal Efficiency of Essential Oils Isolated from the Satureja Genus. Int. J. Environ. Res. Public Health 2021, 18, 6050. [Google Scholar] [CrossRef]
- Faria, J.M.S.; Rodrigues, A.M.; Sena, I.; Moiteiro, C.; Bennett, R.N.; Mota, M.; Figueiredo, A.C. Bioactivity of Ruta Graveolens and Satureja Montana Essential Oils on Solanum Tuberosum Hairy Roots and Solanum Tuberosum Hairy Roots with Meloidogyne Chitwoodi Co-Cultures. J. Agric. Food Chem. 2016, 64, 7452–7458. [Google Scholar] [CrossRef]
- Barbosa, P.; Faria, J.M.S.; Mendes, M.D.; Dias, L.S.; Tinoco, M.T.; Barroso, J.G.; Pedro, L.G.; Figueiredo, A.C.; Mota, M. Bioassays against Pinewood Nematode: Assessment of a Suitable Dilution Agent and Screening for Bioactive Essential Oils. Molecules 2012, 17, 12312–12329. [Google Scholar] [CrossRef]
- Barbosa, P.; Lima, A.S.; Vieira, P.; Dias, L.S.; Tinoco, M.T.; Barroso, J.G.; Pedro, L.G.; Figueiredo, A.C.; Mota, M. Nematicidal Activity of Essential Oils and Volatiles Derived from Portuguese Aromatic Flora against the Pinewood Nematode, Bursaphelenchus Xylophilus. J. Nematol. 2010, 42, 8. [Google Scholar]
- Štrbac, F.; Bosco, A.; Maurelli, M.P.; Ratajac, R.; Stojanović, D.; Simin, N.; Orčić, D.; Pušić, I.; Krnjajić, S.; Sotiraki, S.; et al. Anthelmintic Properties of Essential Oils to Control Gastrointestinal Nematodes in Sheep-In Vitro and In Vivo Studies. Vet. Sci. 2022, 9, 93. [Google Scholar] [CrossRef]
- Silva, F.V.M.; Martins, A.; Salta, J.; Neng, N.R.; Nogueira, J.M.F.; Mira, D.; Gaspar, N.; Justino, J.; Grosso, C.; Urieta, J.S.; et al. Phytochemical Profile and Anticholinesterase and Antimicrobial Activities of Supercritical versus Conventional Extracts of Satureja Montana. J. Agric. Food Chem. 2009, 57, 11557–11563. [Google Scholar] [CrossRef]
- Jukic, M.; Politeo, O.; Maksimovic, M.; Milos, M.; Milos, M. In Vitro Acetylcholinesterase Inhibitory Properties of Thymol, Carvacrol and Their Derivatives Thymoquinone and Thymohydroquinone. Phytother. Res. 2007, 21, 259–261. [Google Scholar] [CrossRef]
- López, V.; Pavela, R.; Gómez-Rincón, C.; Les, F.; Bartolucci, F.; Galiffa, V.; Petrelli, R.; Cappellacci, L.; Maggi, F.; Canale, A.; et al. Efficacy of Origanum Syriacum Essential Oil against the Mosquito Vector Culex Quinquefasciatus and the Gastrointestinal Parasite Anisakis Simplex, with Insights on Acetylcholinesterase Inhibition. Molecules 2019, 24, 2563. [Google Scholar] [CrossRef] [PubMed]
- Arizono, N.; Yamada, M.; Tegoshi, T.; Yoshikawa, M. Anisakis Simplex Sensu Stricto and Anisakis Pegreffii: Biological Characteristics and Pathogenetic Potential in Human Anisakiasis. Foodborne Pathog. Dis. 2012, 9, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Jeon, C.H.; Kim, J.H. Pathogenic Potential of Two Sibling Species, Anisakis Simplex (s.s.) and Anisakis Pegreffii (Nematoda: Anisakidae): In Vitro and in Vivo Studies. Biomed. Res. Int. 2015, 2015, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Feather-Stone, R.M. A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Les, F.; Prieto, J.M.; Arbonés-Mainar, J.M.; Valero, M.S.; López, V. Bioactive Properties of Commercialised Pomegranate (Punica granatum) Juice: Antioxidant, Antiproliferative and Enzyme Inhibiting Activities. Food Funct. 2015, 6, 2049–2057. [Google Scholar] [CrossRef]
- Greenblatt, H.M.; Kryger, G.; Lewis, T.; Silman, I.; Sussman, J.L. Structure of Acetylcholinesterase Complexed with (-)-Galanthamine at 2.3 A Resolution. FEBS Lett. 1999, 463, 321–326. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Les, F.; Galiffa, V.; Cásedas, G.; Moliner, C.; Maggi, F.; López, V.; Gómez-Rincón, C. Essential Oils of Two Subspecies of Satureja montana L. against Gastrointestinal Parasite Anisakis simplex and Acetylcholinesterase Inhibition. Molecules 2024, 29, 4640. https://doi.org/10.3390/molecules29194640
Les F, Galiffa V, Cásedas G, Moliner C, Maggi F, López V, Gómez-Rincón C. Essential Oils of Two Subspecies of Satureja montana L. against Gastrointestinal Parasite Anisakis simplex and Acetylcholinesterase Inhibition. Molecules. 2024; 29(19):4640. https://doi.org/10.3390/molecules29194640
Chicago/Turabian StyleLes, Francisco, Veronica Galiffa, Guillermo Cásedas, Cristina Moliner, Filippo Maggi, Víctor López, and Carlota Gómez-Rincón. 2024. "Essential Oils of Two Subspecies of Satureja montana L. against Gastrointestinal Parasite Anisakis simplex and Acetylcholinesterase Inhibition" Molecules 29, no. 19: 4640. https://doi.org/10.3390/molecules29194640
APA StyleLes, F., Galiffa, V., Cásedas, G., Moliner, C., Maggi, F., López, V., & Gómez-Rincón, C. (2024). Essential Oils of Two Subspecies of Satureja montana L. against Gastrointestinal Parasite Anisakis simplex and Acetylcholinesterase Inhibition. Molecules, 29(19), 4640. https://doi.org/10.3390/molecules29194640