A Zn(II) Coordination Polymer for Fluorescent Turn-Off Selective Sensing of Heavy Metal Cation and Toxic Inorganic Anions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Crystal Structure of CP 1
2.2. TG Analysis
2.3. PXRD of CP 1
2.4. Fluorescence Spectrum
2.5. Selective Sensing of Fe3+
2.6. Mechanism of Fluorescence Response to Fe3+
2.7. Selective Sensing of Cr2O72− and MnO4−
2.8. Mechanism of Fluorescence Response to Cr2O72−/MnO4−
2.9. Comparison with Other, Related Sensors
3. Experimental Section
3.1. Materials and Methods
3.2. Synthesis of CP 1
3.3. X-ray Crystallography
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhao, X.Y.; Wu, J.F.; Tian, W. Terbium(III)-based coordination polymer with millimeter-size single crystals and high selectivity and sensitivity for folic acid. CrystEngComm 2023, 25, 945–952. [Google Scholar] [CrossRef]
- Liu, L.J.; Zhu, H.; Han, C.; Cui, G.H.; Fu, L.S. Luminescent detecting of Fe3+ and Cr2O72− ions by three ternary 2D coordination polymers. Polyhedron 2021, 198, 115074. [Google Scholar] [CrossRef]
- Zhou, H.C.; Long, J.R.; Yaghi, O.M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673–674. [Google Scholar] [CrossRef] [PubMed]
- Barnett, B.R.; Gonzalez, M.I.; Long, J.R. Recent progress towards light hydrocarbon separations using metal-organic frameworks. Trends Chem. 2019, 1, 159–171. [Google Scholar] [CrossRef]
- Zhao, Q.; Li, Q.Y.; Li, J. Structures, fluorescence and magnetism of a series of coordination polymers driven by a tricarboxypyridine ligand. CrystEngComm 2022, 24, 6751–6761. [Google Scholar] [CrossRef]
- Andac, O.; Gorduk, S.; Yilmaz, H. Synthesis, characterization and H2 adsorption performances of polymeric Co(II) and Ni(II) complexes of pyrazine-2,3-dicarboxylic acid and 1-vinylimidazole. J. Iran. Chem. Soc. 2018, 15, 1699–1708. [Google Scholar] [CrossRef]
- Liu, H.J.; Yi, R.; Chen, D.M.; Huang, C.; Zhu, B.X. Self-assembly by tridentate or bidentate ligand: Synthesis and vapor adsorption properties of Cu(II), Zn(II), Hg(II) and Cd(II) complexes derived from a bis(pyridylhydrazone) compound. Molecules 2021, 26, 109. [Google Scholar] [CrossRef] [PubMed]
- Kuwamura, N.; Konno, T. Heterometallic coordination polymers as heterogeneous electrocatalysts. Inorg. Chem. Front. 2021, 8, 2634–2649. [Google Scholar] [CrossRef]
- Sun, Y.Q.; Cheng, Y.; Yin, X.B. Dual-ligand lanthanide metal-organic framework for sensitive ratiometric fluorescence detection of hypochlorous acid. Anal. Chem. 2021, 93, 3559–3566. [Google Scholar] [CrossRef]
- Zhang, D.C.; Li, X. A Zn(II) complex with large channels based on 3′-nitro-biphenyl-3,5,4′-tricarboxylic acid: Synthesis, crystal structure, fluorescence sensing of ATP, ADP, GTP, and UTP in aqueous solution and drug delivery. CrystEngComm 2017, 19, 6673–6680. [Google Scholar] [CrossRef]
- Wen, M.Y.; Ren, L.; Cui, G.H. Two Co(II) complexes containing pyridylbenzimidazole ligands as chemosensors for the sensing of levofloxacin, acetylacetone, and Ni2+ with high selectivity and sensitivity. CrystEngComm 2021, 23, 8563–8571. [Google Scholar] [CrossRef]
- Xu, N.; Zhang, Q.H.; Zhang, G.A. A carbazole-functionalized metal-organic framework for efficient detection of antibiotics, pesticides and nitroaromatic compounds. Dalton Trans. 2019, 48, 2683–2691. [Google Scholar] [CrossRef] [PubMed]
- Arici, M. Multifunctional luminescent coordination polymers based on tricarboxylic acid for the detection of 2,4-dinitrophenol and iron(III) and aluminum(III) ions. New J. Chem. 2019, 43, 3690–3697. [Google Scholar] [CrossRef]
- Goshisht, M.K.; Tripathi, N. Fluorescence-based sensors as an emerging tool for anion detection: Mechanism, sensory materials and applications. J. Mater. Chem. C 2021, 9, 9820–9850. [Google Scholar] [CrossRef]
- Jana, A.K.; Natarajan, S. Fluorescent metal-organic frameworks for selective sensing of toxic cations (Tl3+, Hg2+) and highly oxidizing anions [(CrO4)2−, (Cr2O7)2−, (MnO4)−]. ChemPlusChem 2017, 82, 1153–1163. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.C.; Mandal, S. Europium-based metal-organic framework as a dual luminescence sensor for the selective detection of the phosphate anion and Fe3+ ion in aqueous media. Inorg. Chem. 2018, 57, 11855–11858. [Google Scholar]
- Alexandrov, E.V.; Shevchenko, A.P.; Nekrasova, N.A.; Blatov, V.A. Topological methods for analysis and design of coordination polymers. Russ. Chem. Rev. 2022, 91, RCR5032. [Google Scholar] [CrossRef]
- Sokolov, A.V.; Vologzhanina, A.V.; Sudakova, T.V.; Popova, Y.V.; Alexandrov, E.V. Design and synthesis of coordination polymers with Cu(II) and heterocyclic N-oxides. CrystEngComm 2022, 24, 2505–2515. [Google Scholar] [CrossRef]
- Tran, M.; Kline, K.; Qin, Y.; Shen, Y.X.; Green, M.D.; Tongay, S. 2D coordination polymers: Design guidelines and materials perspective. Appl. Phys. Rev. 2019, 6, 041311. [Google Scholar] [CrossRef]
- Fan, Y.R.; Li, H.B.; Ji, Z.Y.; Liu, J.Y.; Wu, M.Y. Syntheses, structures and photoluminescence of three Zn(II) coordination polymers based on N-containing heterocyclic ligand and varied auxiliary ligands. Inorg. Chem. Commun. 2019, 102, 229–232. [Google Scholar] [CrossRef]
- Li, J.D.; Bai, C.; Hu, H.M.; Yang, Z.H.; Xue, G.L. Solvothermal syntheses, crystal structures and luminescence properties of Zn(II) coordination compounds based on imidazophenanthroline carboxylate derivative ligand. J. Solid State Chem. 2019, 227, 1–8. [Google Scholar] [CrossRef]
- Wang, Y.N.; Xu, H.; Wang, S.D.; Chang, X.P.; Wang, Y.T.; Qiu, Q.C.; Bai, J.T.; Mo, Y.; Feng, W.Y.; Zhang, M.H.; et al. Efficient antibiotics, small organic molecules and inorganic anions detection with a fluorescent Ni(II) coordination polymer based multiple sensor system. J. Mol. Struct. 2024, 1296, 136829. [Google Scholar] [CrossRef]
- Saini, K.; Singh, J.; Malik, S.; Saharan, Y.; Goyat, R.; Umar, A.; Akbar, S.; Ibrahim, A.A.; Baskoutas, S. Metal-Organic Frameworks: A promising solution for efficient removal of heavy metal ions and organic pollutants from industrial wastewater. J. Mol. Liquids 2024, 399, 124365. [Google Scholar] [CrossRef]
- Devi, M.K.; Yaashikaa, P.R.; Kumar, P.S.; Oviyapriya, M.; Varshika, V.; Rangasamy, G. Recent advances in carbon-based nanomaterials for the treatment of toxic inorganic pollutants in wastewater. New J. Chem. 2023, 47, 7655–7667. [Google Scholar] [CrossRef]
- Agarwal, R.A. One Dimensional Coordination Polymer of Zn(II) for Developing Multifunctional Nanoparticles. Sci. Rep. 2017, 7, 13212. [Google Scholar] [CrossRef] [PubMed]
- Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 2014, 14, 3576–3586. [Google Scholar] [CrossRef]
- Cao, H.Y.; Liu, Q.Y.; Li, L.Q.; Wang, Y.L.; Chen, L.L.; Yao, Y. Two cadmium coordination compounds with 5-sulfonyl-1,2,4- benzenetricarboxylate ligand: Syntheses, structures, and photoluminescence. Z. Anorg. Allg. Chem. 2014, 640, 1420–1425. [Google Scholar] [CrossRef]
- Zhu, C.Y.; Wang, C.L.; Chen, L.; Gao, W.; Li, P.; Zhang, X.M. A water-stable Zn(II) coordination polymer for a high sensitivity detection of Fe3+ and 2,4,6-trinitrophenol. J. Solid State Chem. 2022, 310, 123079. [Google Scholar] [CrossRef]
- Liu, N.; Xing, G.E.; Huang, X.X.; Guo, J. A new Zn(II) coordination polymer constructed from 4-(1H-pyrazol-3-yl)pyridine as fluorescent sensor for Fe3+. Chin. J. Struct. Chem. 2019, 38, 660–666. [Google Scholar]
- Zhang, X.Q.; Chen, F.M.; Wen, Q.; Zhou, C.C.; He, X.; Li, Y.; Liu, H.F. Zn-based coordination polymers with tricarboxylic acid ligand: Fluorescence sensor toward Fe3+ and MnO4−. J. Struct. Chem. 2022, 1252, 132183. [Google Scholar] [CrossRef]
- Wang, Y.N.; Ma, Y.L.; Zhang, S.S.; Li, S.F.; Du, L.; Zhao, Q.H. A multifunctional Zn-based coordination polymer showing luminescence detection toward multiple pollutants in water. Inorg. Chem. Commun. 2021, 126, 108476. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Zhang, X.S.; Luan, J.; Yang, A.A.; Li, W.Z. Effect of secondary bis-pyridine-bis-amide ligand on the construction of Zn-based coordination polymers and the enhancement of ultrasensitive luminescent sensing properties. J. Solid State Chem. 2022, 315, 123516. [Google Scholar] [CrossRef]
- Liu, G.C.; Han, S.W.; Gao, Y.; Xu, N.; Wang, X.L.; Chen, B.K. Multifunctional fluorescence responses of phenylamide-bridged d10 coordination polymers structurally regulated by dicarboxylates and metal ions. CrystEngComm 2020, 22, 7952–7961. [Google Scholar] [CrossRef]
- Chai, Y.H.; Liu, X.Y.; Cui, Z.Y.; Zhao, Y.; Ma, L.F.; Zhao, B.T. Design and syntheses of two luminescent metal-organic frameworks for detecting nitro-antibiotic, Fe3+ and Cr2O72−. J. Solid State Chem. 2022, 312, 123211. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT-integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef]
1 | |
---|---|
Chemical formula | C10H8N6O6S2Zn |
Mr | 437.71 |
Crystal system, | Orthorhombic |
Space group | Pbcn |
Temperature(K) | 253 |
a, b, c (Å) | 11.6451(16), 7.2951(8), 16.761(2) |
Z | 4 |
V (Å3) | 1423.9(3) |
µ (mm−1) | 2.07 |
No. of measured, independent and obverted [I > 2σ(I)] reflection | 32,248, 1631, 1500 |
Rint | 0.057 |
(sinθ/λ)max (Å−1) | 0.650 |
R[F2 > 2σ(F2)], ωR(F2), S | 0.035, 0.098, 1.08 |
No. of reflections | 1631 |
No. of parameters | 115 |
No. of restraints | 1 |
R1, ωR2 [I ≥ 2σ(I)] | 0.0349, 0.0956 |
R1, ωR2 (all data) | 0.0378, 0.0978 |
Δρmax, Δρmin (e·Å−3) | 1.63, −1.37 |
Atom1-Atom2 | Distance | Atom1-Atom2 | Distance | Atom1-Atom2 | Distance |
Zn1-O1i | 2.2504(17) | Zn1-N2 | 2.050(2) | Zn1-N3 | 2.169(2) |
Zn1-O1ii | 2.2504(17) | Zn1-N2iii | 2.050(2) | Zn1-N3iii | 2.169(2) |
Atom1-Atom2-Atom3 | Angle | Atom1-Atom2-Atom3 | Angle | Atom1-Atom2-Atom3 | Angle |
O1i-Zn1-O1ii | 79.32(7) | N2iii-Zn1-N2 | 169.18(13) | N3iii-Zn1-O1ii | 162.22(8) |
N2-Zn1-O1ii | 90.24(8) | N2-Zn1-N3 | 76.20(9) | N3-Zn1-O1i | 162.22(8) |
N2iii-Zn1-O1i | 90.24(8) | N2iii-Zn1-N3 | 97.77(9) | N3-Zn1-O1ii | 83.84(8) |
N2iii-Zn1-O1ii | 98.10(8) | N2iii-Zn1-N3iii | 76.20(9) | N3iii-Zn1-O1i | 83.84(8) |
N2-Zn1-O1i | 98.10(8) | N2-Zn1-N3iii | 97.77(9) | N3iii-Zn1-N3 | 113.44(14) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhang, M.; Wang, Y.; Guan, L.; Zhao, D.; Hao, X.; Guo, Y. A Zn(II) Coordination Polymer for Fluorescent Turn-Off Selective Sensing of Heavy Metal Cation and Toxic Inorganic Anions. Molecules 2024, 29, 2943. https://doi.org/10.3390/molecules29122943
Li Y, Zhang M, Wang Y, Guan L, Zhao D, Hao X, Guo Y. A Zn(II) Coordination Polymer for Fluorescent Turn-Off Selective Sensing of Heavy Metal Cation and Toxic Inorganic Anions. Molecules. 2024; 29(12):2943. https://doi.org/10.3390/molecules29122943
Chicago/Turabian StyleLi, Yaxin, Mouyi Zhang, Ying Wang, Lei Guan, Di Zhao, Xinyu Hao, and Yuting Guo. 2024. "A Zn(II) Coordination Polymer for Fluorescent Turn-Off Selective Sensing of Heavy Metal Cation and Toxic Inorganic Anions" Molecules 29, no. 12: 2943. https://doi.org/10.3390/molecules29122943
APA StyleLi, Y., Zhang, M., Wang, Y., Guan, L., Zhao, D., Hao, X., & Guo, Y. (2024). A Zn(II) Coordination Polymer for Fluorescent Turn-Off Selective Sensing of Heavy Metal Cation and Toxic Inorganic Anions. Molecules, 29(12), 2943. https://doi.org/10.3390/molecules29122943