PhI(OAc)2-Promoted 1,2-Transfer Reaction between 1,1-Disubstituted Allylic Alcohols and Thiophenols
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. General Information
3.2. General Procedure for the 1,2-Transfer Reaction of 1,1-Diphenylprop-2-en-1-ol with Various Thiophenols
3.3. General Procedure for the 1,2-Transfer Reaction of Various Allyl Alcohols with 4-Methylthiophenol
3.4. Scale-Up Experiment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, N.; Saidhareddy, P.; Jiang, X. Construction of sulfur-containing moieties in the total synthesis of natural products. Nat. Prod. Rep. 2020, 37, 246–275. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Tamayo, J.C.; Cordomí, A.; Olivella, M.; Mayol, E.; Fourmy, D.; Pardo, L. Analysis of the interactions of sulfur-containing amino acids in membrane proteins. Protein Sci. 2016, 25, 1517–1524. [Google Scholar] [CrossRef]
- Abbehausen, C.; Manzano, C.M.; Corbi, P.P.; Farrell, N.P. Effects of coordination mode of 2-mercaptothiazoline on reactivity of Au(I) compounds with thiols and sulfur-containing proteins. J. Inorg. Biochem. 2016, 165, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Ma, W.; Hu, D.; Zhang, X.; Yuan, W.; He, X.; Kan, G.; Yu, D. QTL Mapping for Protein and Sulfur-Containing Amino Acid Contents Using a High-Density Bin-Map in Soybean (Glycine max L. Merr.). J. Agric. Food Chem. 2019, 67, 12313–12321. [Google Scholar] [CrossRef]
- Sarver, P.J.; Bissonnette, N.B.; MacMillan, D.W.C. Decatungstate-Catalyzed C(sp3)–H Sulfinylation: Rapid Access to Diverse Organosulfur Functionality. J. Am. Chem. Soc. 2021, 143, 9737–9743. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Cui, H.; Meng, N.; Yue, H.; Wei, W. Recent advances in the application of sulfinic acids for the construction of sulfur-containing compounds. Chin. Chem. Lett. 2022, 33, 97–114. [Google Scholar] [CrossRef]
- Li, Y.; Rizvi, S.A.; Hu, D.; Sun, D.; Gao, A.; Zhou, Y.; Li, J.; Jiang, X. Selective Late-Stage Oxygenation of Sulfides with Ground-State Oxygen by Uranyl Photocatalysis. Angew. Chem. Int. Ed. 2019, 58, 13499–13506. [Google Scholar] [CrossRef] [PubMed]
- Milito, A.; Brancaccio, M.; D’Argenio, G.; Castellano, I. Natural Sulfur-Containing Compounds: An Alternative Therapeutic Strategy against Liver Fibrosis. Cells 2019, 8, 1356. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, M.; Jiang, X. Sulfur-containing peptides: Synthesis and application in the discovery of potential drug candidates. Curr. Opin. Chem. Biol. 2023, 75, 102336. [Google Scholar] [CrossRef]
- Nikitina, L.E.; Pavelyev, R.S.; Startseva, V.A.; Kiselev, S.V.; Galiullina, L.F.; Aganova, O.V.; Timerova, A.F.; Boichuk, S.V.; Azizova, Z.R.; Klochkov, V.V.; et al. Structural details on the interaction of biologically active sulfur-containing monoterpenoids with lipid membranes. J. Mol. Liq. 2020, 301, 112366. [Google Scholar] [CrossRef]
- Xie, J.; Liao, B.; Tang, R.-Y. Functional Application of Sulfur-Containing Spice Compounds. J. Agric. Food Chem. 2020, 68, 12505–12526. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Ma, Z.; Zhang, Y.; Wang, Y.; Ding, Y.; Wang, C.; Cao, S. Sulfur-Containing Compounds from Endophytic Fungi: Sources, Structures and Bioactivities. J. Fungi 2022, 8, 628. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, Y.; Xu, C.; Hsu, C.S. Molecular characterization of sulfur-containing compounds in petroleum. Fuel 2018, 221, 144. [Google Scholar] [CrossRef]
- Zhu, C.; Gutiérrez, O.Y.; Santosa, D.M.; Flake, M.; Weindl, R.; Kutnyakov, I.; Shi, H.; Wang, H. Kinetics of nitrogen-, oxygen- and sulfur-containing compounds hydrotreating during co-processing of bio-crude with petroleum stream. Appl. Catal. B Environ. 2022, 307, 121197. [Google Scholar] [CrossRef]
- Liu, Q.; Fu, Z.; Wang, Z.; Chen, J.; Cai, X. Rapid and selective oxidation of refractory sulfur-containing micropollutants in water using Fe-TAML/H2O2. Appl. Catal. B Environ. 2022, 315, 121535. [Google Scholar] [CrossRef]
- Mazumder, K.; Voit, B.; Banerjee, S. Recent Progress in Sulfur-Containing High Refractive Index Polymers for Optical Applications. ACS Omega 2024, 9, 6253. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, Y.; Hu, Y.; Xia, L.; Li, G. Silver nanoparticles modified sulfur-containing POSS polymer membrane substrate for adsorption and surface-enhanced Raman scattering analysis of chrysoidine in food samples. Talanta 2024, 271, 125653. [Google Scholar] [CrossRef]
- Yue, T.-J.; Ren, W.-M.; Lu, X.-B. Copolymerization Involving Sulfur-Containing Monomers. Chem. Rev. 2023, 123, 14038. [Google Scholar] [CrossRef]
- Lauder, K.; Toscani, A.; Qi, Y.; Lim, J.; Charnock, S.J.; Korah, K.; Castagnolo, D. Photo-biocatalytic One-Pot Cascades for the Enantioselective Synthesis of 1,3-Mercaptoalkanol Volatile Sulfur Compounds. Angew. Chem. Int. Ed. 2018, 57, 5803. [Google Scholar] [CrossRef]
- Ulendeeva, A.D.; Baeva, L.A.; Valiullin, O.R.; Nikitina, T.S.; Arslanova, D.D.; Spirikhin, L.V.; Lyapina, N.K. Synthesis of γ-ketosulfide derivatives from natural mercaptans. Pet. Chem. 2006, 46, 122. [Google Scholar] [CrossRef]
- Trost, B.M. α-Sulfenylated carbonyl compounds in organic synthesis. Chem. Rev. 1978, 78, 363. [Google Scholar] [CrossRef]
- Vargas, R.R.; Bechara, E.J.H.; Marzorati, L.; Wladislaw, B. Asymmetric sulfoxidation of a β-carbonyl sulfide series by chloroperoxidase. Tetrahedron Asymmetry 1999, 10, 3219. [Google Scholar] [CrossRef]
- Li, L.; Li, D.; Luan, Y.; Gu, Q.; Zhu, T. Cytotoxic Metabolites from the Antarctic Psychrophilic Fungus Oidiodendron truncatum. J. Nat. Prod. 2012, 75, 920. [Google Scholar] [CrossRef] [PubMed]
- Park, H.B.; Kim, Y.-J.; Park, J.-S.; Yang, H.O.; Lee, K.R.; Kwon, H.C. Glionitrin B, a Cancer Invasion Inhibitory Diketopiperazine Produced by Microbial Coculture. J. Nat. Prod. 2011, 74, 2309. [Google Scholar] [CrossRef] [PubMed]
- Nörenberg, S.; Kiske, C.; Reichardt, B.; Andelfinger, V.; Pfeiffer, A.; Schmidts, F.; Eisenreich, W.; Engel, K.-H. Analysis and Sensory Evaluation of the Stereoisomers of a Homologous Series (C5–C10) of 4-Mercapto-2-alkanols. J. Agric. Food Chem. 2017, 65, 8913. [Google Scholar] [CrossRef]
- Takoi, K.; Degueil, M.; Shinkaruk, S.; Thibon, C.; Maeda, K.; Ito, K.; Bennetau, B.; Dubourdieu, D.; Tominaga, T. Identification and Characteristics of New Volatile Thiols Derived from the Hop (Humulus luplus L.) Cultivar Nelson Sauvin. J. Agric. Food Chem. 2009, 57, 2493. [Google Scholar] [CrossRef] [PubMed]
- Yadav, J.S.; Reddy, B.V.S.; Baishya, G. Green Protocol for Conjugate Addition of Thiols to α,β-Unsaturated Ketones Using a [Bmim]PF6/H2O System. J. Org. Chem. 2003, 68, 7098. [Google Scholar] [CrossRef]
- Ranu, B.C.; Mandal, T. Water-Promoted Highly Selective Anti-Markovnikov Addition of Thiols to Unactivated Alkenes. Synlett 2007, 2007, 925. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, Y.; Zhang, Q.; Pan, W.; Guo, H.; Pei, K. Bi(OTf)3 catalyzed synthesis of acyclic β-sulfanyl ketones via a tandem Meyer-Schuster rearrangement/conjugate addition reaction. Tetrahedron Lett. 2019, 60, 2030. [Google Scholar] [CrossRef]
- Okragla, E.; Demkowicz, S.; Rachon, J.; Witt, D. A Convenient and Efficient α-Sulfenylation of Carbonyl Compounds. Synthesis 2009, 2009, 1720. [Google Scholar]
- Lin, Y.-M.; Lu, G.-P.; Cai, C.; Yi, W.-B. An odorless thia-Michael addition using Bunte salts as thiol surrogates. RSC Adv. 2015, 5, 27107. [Google Scholar] [CrossRef]
- Kitanosono, T.; Sakai, M.; Ueno, M.; Kobayashi, S. Chiral-Sc catalyzed asymmetric Michael addition/protonation of thiols with enones in water. Org. Biomol. Chem. 2012, 10, 7134. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, V.; Sreenilayam, G.; Bajaj, P.; Tinoco, A.; Fasan, R. Biocatalytic Synthesis of Allylic and Allenyl Sulfides through a Myoglobin-Catalyzed Doyle–Kirmse Reaction. Angew. Chem. Int. Ed. 2016, 55, 13562. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Borah, A.J.; Wang, L.; Pan, Z.; Chen, S.; Shen, X.; Wu, X. α-Arylchalcogenation of acetone with diaryl dichalcogenide via metal-free oxidative C(sp3)–H bond functionalization. Tetrahedron Lett. 2015, 56, 4305. [Google Scholar] [CrossRef]
- Chen, Z.-M.; Bai, W.; Wang, S.-H.; Yang, B.-M.; Tu, Y.-Q.; Zhang, F.-M. Copper-catalyzed Tandem trifluoromethylation/Semipinacol rearrangement of allylic alcohols. Angew. Chem. Int. Ed. 2013, 52, 9781–9785. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.-Q.; Zi, Y.; Meng, H.; Xu, X.-P.; Ji, S.-J. Radical phosphinylation of α,α-diaryl allylic alcohols with concomitant 1,2-aryl migration. Chem. Commun. 2014, 50, 7642–7645. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Qin, H.; Lin, Z.; Huang, M.; Weng, W.; Cai, S. Visible-Light-Enabled Oxidative Alkylation of Unactivated Alkenes with Dimethyl Sulfoxide through Concomitant 1,2-Aryl Migration. Org. Lett. 2018, 20, 7611–7615. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.; Wang, H.; Huang, Y.; Wang, Y.; Wang, S.; Lei, A. Electrochemical Oxidative Aryl(alkyl)trifluoromethylation of Allyl Alcohols via 1,2-Migration. Org. Lett. 2019, 21, 4619–4622. [Google Scholar] [CrossRef]
- Zhao, J.; Fang, H.; Song, R.; Zhou, J.; Han, J.; Pan, Y. Metal-free oxidative C(sp3)–H bond functionalization of alkanes and alkylation-initiated radical 1,2-aryl migration in α,α-diaryl allylic alcohols. Chem. Commun. 2015, 51, 599–602. [Google Scholar] [CrossRef]
- Guo, G.; Yuan, Y.; Wan, S.; Cao, X.; Sun, Y.; Huo, C. K2S2O8 promoted dehydrative cross-coupling between α,α-disubstituted allylic alcohols and thiophenols/thiols. Org. Chem. Front. 2021, 8, 2990. [Google Scholar] [CrossRef]
- Yoshimura, A.; Zhdankin, V.V. Advances in Synthetic Applications of Hypervalent Iodine Compounds. Chem. Rev. 2016, 116, 3328. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, P.; Liu, G. Recent advances in hypervalent iodine(III)-catalyzed functionalization of alkenes. Beilstein J. Org. Chem. 2018, 14, 1813. [Google Scholar] [CrossRef] [PubMed]
Entry | Deviation from Standard Conditions | 3aa Yield (%) b |
---|---|---|
1 | None | 89 |
2 | No oxidant | 0 |
3 | PhI(O2CCF3)2 as the oxidant | trace |
4 | K2S2O8 as the oxidant | 0 |
5 | DDQ as the oxidant | 0 |
6 | Using 1.0 equiv. of PhI(OAc)2 | 9 |
7 | Using 3.0 equiv. of PhI(OAc)2 | 52 |
8 | 0 °C instead of rt | 27 |
9 | 40 °C instead of rt | 29 |
10 | 60 °C instead of rt | 2 |
11 | Toluene as the solvent | trace |
12 | DCE as the solvent | trace |
13 | Dioxane as the solvent | trace |
14 | DMF as the solvent | trace |
15 | Air instead of Ar | 75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, G.; Li, W.; Zheng, J.; Liu, A.; Zhang, Q.; Wang, Y. PhI(OAc)2-Promoted 1,2-Transfer Reaction between 1,1-Disubstituted Allylic Alcohols and Thiophenols. Molecules 2024, 29, 3112. https://doi.org/10.3390/molecules29133112
Guo G, Li W, Zheng J, Liu A, Zhang Q, Wang Y. PhI(OAc)2-Promoted 1,2-Transfer Reaction between 1,1-Disubstituted Allylic Alcohols and Thiophenols. Molecules. 2024; 29(13):3112. https://doi.org/10.3390/molecules29133112
Chicago/Turabian StyleGuo, Guozhe, Wenduo Li, Jingjing Zheng, Aping Liu, Qi Zhang, and Yatao Wang. 2024. "PhI(OAc)2-Promoted 1,2-Transfer Reaction between 1,1-Disubstituted Allylic Alcohols and Thiophenols" Molecules 29, no. 13: 3112. https://doi.org/10.3390/molecules29133112
APA StyleGuo, G., Li, W., Zheng, J., Liu, A., Zhang, Q., & Wang, Y. (2024). PhI(OAc)2-Promoted 1,2-Transfer Reaction between 1,1-Disubstituted Allylic Alcohols and Thiophenols. Molecules, 29(13), 3112. https://doi.org/10.3390/molecules29133112