Evaluation of the Effectiveness of Innovative Sorbents in Restoring Enzymatic Activity of Soil Contaminated with Bisphenol A (BPA)
Abstract
:1. Introduction
2. Results
2.1. Enzymatic Activity of Soil
2.2. Zea mays
2.3. The Relationships between the Examined Properties: Percentage of Variability of the Analyzed Variable (η2) and PCA
3. Discussion
3.1. Soil Enzymes
3.2. Zea mays
4. Materials and Methods
4.1. Materials
4.1.1. Soil
4.1.2. BPA
4.1.3. Characteristics of Remediating Substances
4.1.4. Characteristics of Zea Mays
4.2. Methods
4.2.1. Design and Procedure for Conducting a Greenhouse Experiment Using Zea mays
4.2.2. Measurement of SPAD and Zea mays Biomass
4.2.3. Determination of Soil Enzyme Activities
4.2.4. Methodology for Calculations and Statistical Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- FOA. Sustainable Food And Agriculture [Online]. Food and Agriculture Organization of the United Nations. 2020. Available online: https://www.fao.org/sustainability/news/detail/en/c/1274219/ (accessed on 31 January 2024).
- Mason, A.R.G.; Salomon, M.J.; Lowe, A.J.; Cavagnaro, T.R. Microbial Solutions to Soil Carbon Sequestration. J. Clean. Prod. 2023, 417, 137993. [Google Scholar] [CrossRef]
- Willer, H.; Schlatter, B.; Trávníček, J. The World of Organic Agriculture. Statistics and Emerging Trends 2023; Willer, H., Schlatter, B., Trávníček, J., Eds.; Research Institute of Organic Agriculture FiBL: Frick, Switzerland; IFOAM—Organics International: Bonn, Germany, 2023; pp. 1–358. [Google Scholar]
- Sagheer, U.; Al-Kindi, S.; Abohashem, S.; Phillips, C.T.; Rana, J.S.; Bhatnagar, A.; Gulati, M.; Rajagopalan, S.; Kalra, D.K. Environmental Pollution and Cardiovascular Disease: Part 2 of 2: Soil, Water, and Other Forms of Pollution. JACC Adv. 2024, 3, 100815. [Google Scholar] [CrossRef] [PubMed]
- Maddela, N.R.; Ramakrishnan, B.; Kadiyala, T.; Venkateswarlu, K.; Megharaj, M. Do Microplastics and Nanoplastics Pose Risks to Biota in Agricultural Ecosystems? Soil Syst. 2023, 7, 19. [Google Scholar] [CrossRef]
- Bodor, A.; Feigl, G.; Kolossa, B.; Mészáros, E.; Laczi, K.; Kovács, E.; Perei, K.; Rákhely, G. Soils in Distress: The Impacts and Ecological Risks of (Micro)Plastic Pollution in the Terrestrial Environment. Ecotoxicol. Environ. Saf. 2024, 269, 115807. [Google Scholar] [CrossRef] [PubMed]
- Corrales, J.; Kristofco, L.A.; Steele, W.B.; Yates, B.S.; Breed, C.S.; Williams, E.S.; Brooks, B.W. Global Assessment of Bisphenol A in the Environment: Review and Analysis of Its Occurrence and Bioaccumulation. Dose-Response 2015, 13, 1559325815598308. [Google Scholar] [CrossRef] [PubMed]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An Overview of Chemical Additives Present in Plastics: Migration, Release, Fate and Environmental Impact during Their Use, Disposal and Recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef]
- ChemSpider. Search and Share Chemistry. 2020. Available online: https://www.chemspider.com/ (accessed on 31 January 2024).
- Xue, J.; Liu, W.; Kannan, K. Bisphenols, Benzophenones, and Bisphenol A Diglycidyl Ethers in Textiles and Infant Clothing. Environ. Sci. Technol. 2017, 51, 5279–5286. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.Q.; Wong, C.K.C.; Zheng, J.S.; Bouwman, H.; Barra, R.; Wahlström, B.; Neretin, L.; Wong, M.H. Bisphenol A (BPA) in China: A Review of Sources, Environmental Levels, and Potential Human Health Impacts. Environ. Int. 2012, 42, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Da Costa, J.P.; Avellan, A.; Mouneyrac, C.; Duarte, A.; Rocha-Santos, T. Plastic Additives and Microplastics as Emerging Contaminants: Mechanisms and Analytical Assessment. TrAC Trends Anal. Chem. 2023, 158, 116898. [Google Scholar] [CrossRef]
- Bisphenol-A (BPA) Market—Growth. Trends. COVID-19 Impact. and Forecasts (2022–2027). 2022. Report ID 5318392:150. Available online: https://www.reportlinker.com/market-report/Chemicals/522572/Bisphenol-A (accessed on 31 January 2024).
- Wang, L.; Zhang, Z.-F.; Liu, L.-Y.; Zhu, F.-J.; Ma, W.-L. National-Scale Monitoring of Historic Used Organochlorine Pesticides (OCPs) and Current Used Pesticides (CUPs) in Chinese Surface Soil: Old Topic and New Story. J. Hazard. Mater. 2023, 443, 130285. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Gao, A.; Ma, Y.; Ding, Z.; Wang, S.; Seif, M.; Xu, X. Nonspecific Immune, Histology and Accumulation of Marine Worm, Urechis Unicinctus in Response to Bisphenol A (BPA). Ecotoxicol. Environ. Saf. 2024, 271, 115993. [Google Scholar] [CrossRef] [PubMed]
- Kearns, K.A.; Naeher, L.P.; McCracken, J.P.; Boyd Barr, D.; Saikawa, E.; Hengstermann, M.; Mollinedo, E.; Panuwet, P.; Yakimavets, V.; Lee, G.E.; et al. Estimating Personal Exposures to Household Air Pollution and Plastic Garbage Burning among Adolescent Girls in Jalapa, Guatemala. Chemosphere 2024, 348, 140705. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Re-Evaluation of the Risks to Public Health Related to the Presence of Bisphenol A (PBA) in Foodstuffs. EFSA J. 2023, 21, 6857. [Google Scholar] [CrossRef]
- Vaccher, V.; Lopez, M.E.; Castaño, A.; Mol, H.; Haji-Abbas-Zarrabi, K.; Bury, D.; Koch, H.M.; Dvorakova, D.; Hajslova, J.; Nübler, S.; et al. European Interlaboratory Comparison Investigations (ICI) and External Quality Assurance Schemes (EQUAS) for the Analysis of Bisphenol A, S and F in Human Urine: Results from the HBM4EU Project. Environ. Res. 2022, 210, 112933. [Google Scholar] [CrossRef] [PubMed]
- ECHA. European Chemicals Agency. 2020. Available online: https://echa.europa.eu/substanceinformation/-/substanceinfo/100.001.133 (accessed on 1 February 2024).
- Roy, N.; Sinha, A.; Mukherjee, A. Insights into the Removal of Endocrine Disruptor, Bisphenol A (BPA) from Aqueous Solution Using Fc-rGO/nZVI Nanocomposite System. Surf. Interfaces 2024, 44, 103708. [Google Scholar] [CrossRef]
- Castro, B.; Sánchez, P.; Torres, J.M.; Ortega, E. Bisphenol A, Bisphenol F and Bisphenol S Affect Differently 5α-Reductase Expression and Dopamine–Serotonin Systems in the Prefrontal Cortex of Juvenile Female Rats. Environ. Res. 2015, 142, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Sendra, M.; Cavia-Saiz, M.; Múñiz, P. Are the BPA Analogues an Alternative to Classical BPA? Comparison between 2D and Alternative 3D in Vitro Neuron Model to Assess Cytotoxic and Genotoxic Effects. Toxicology 2024, 502, 153715. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhao, K.; Han, T.; Zhang, X.; Xu, X.; Liu, Z.; Ren, X.; Zhang, X.; Lu, Z.; Qin, C. Bisphenol A Promote the Cell Proliferation and Invasion Ability of Prostate Cancer Cells via Regulating the Androgen Receptor. Ecotoxicol. Environ. Saf. 2024, 269, 115818. [Google Scholar] [CrossRef]
- Wade, M.; Delawder, V.; Reneau, P.; dos Santos, J.M. The Effect of BPA Exposure on Insulin Resistance and Type 2 Diabetes—The Impact of Muscle Contraction. Med. Hypotheses 2020, 140, 109675. [Google Scholar] [CrossRef] [PubMed]
- Kiwitt-Cárdenas, J.; Arense-Gonzalo, J.J.; Adoamnei, E.; Sarabia-Cos, L.; Vela-Soria, F.; Fernández, M.F.; Gosálvez, J.; Mendiola, J.; Torres-Cantero, A.M. Urinary Concentrations of Bisphenol A, Parabens and Benzophenone-Type Ultra Violet Light Filters in Relation to Sperm DNA Fragmentation in Young Men: A Chemical Mixtures Approach. Sci. Total Environ. 2024, 912, 169314. [Google Scholar] [CrossRef] [PubMed]
- Vasiljevic, T.; Harner, T. Bisphenol A and Its Analogues in Outdoor and Indoor Air: Properties, Sources and Global Levels. Sci. Total Environ. 2021, 789, 148013. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.; Kawamura, K. Ubiquity of Bisphenol A in the Atmosphere. Environ. Pollut. 2010, 158, 3138–3143. [Google Scholar] [CrossRef] [PubMed]
- Evangeliou, N.; Grythe, H.; Klimont, Z.; Heyes, C.; Eckhardt, S.; Lopez-Aparicio, S.; Stohl, A. Atmospheric Transport Is a Major Pathway of Microplastics to Remote Regions. Nat. Commun. 2020, 11, 3381. [Google Scholar] [CrossRef] [PubMed]
- Lalwani, D.; Ruan, Y.; Taniyasu, S.; Yamazaki, E.; Kumar, N.J.I.; Lam, P.K.S.; Wang, X.; Yamashita, N. Nationwide Distribution and Potential Risk of Bisphenol Analogues in Indian Waters. Ecotoxicol. Environ. Saf. 2020, 200, 110718. [Google Scholar] [CrossRef] [PubMed]
- Esteban, S.; Gorga, M.; Petrovic, M.; González-Alonso, S.; Barceló, D.; Valcárcel, Y. Analysis and Occurrence of Endocrine-Disrupting Compounds and Estrogenic Activity in the Surface Waters of Central Spain. Sci. Total Environ. 2014, 466–467, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.-Y.; Zhao, H.-Q.; Liu, C.-P.; Sun, C.-X. Characteristics, Sources, and Transport of Tetrabromobisphenol A and Bisphenol A in Soils from a Typical e-Waste Recycling Area in South China. Environ. Sci. Pollut. Res. 2014, 21, 5818–5826. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Xu, P.; Zeng, G.; Yang, C.; Huang, D.; Zhang, J. Bioremediation of Soils Contaminated with Polycyclic Aromatic Hydrocarbons, Petroleum, Pesticides, Chlorophenols and Heavy Metals by Composting: Applications, Microbes and Future Research Needs. Biotechnol. Adv. 2015, 33, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Bisphenol, S. National Toxicology Program. 2014. Available online: https://Ntpsearch.Niehs.Nih.Gov/?query=bisphenol+S&e=False&suffixes=false (accessed on 1 February 2024).
- Pérez, R.A.; Albero, B.; Férriz, M.; Tadeo, J.L. Rapid Multiresidue Determination of Bisphenol Analogues in Soil with On-Line Derivatization. Anal. Bioanal. Chem. 2017, 409, 4571–4580. [Google Scholar] [CrossRef] [PubMed]
- Vero, C. Biosolids Production and Use Survey. In Australia and New Zealand Biosolids Partnership; Pollution Solutions & Designs (PSD) Pty Ltd.: Northern Territor, Australia, 2021. [Google Scholar]
- Hušek, M.; Moško, J.; Pohořelý, M. Sewage Sludge Treatment Methods and P-Recovery Possibilities: Current State-of-the-Art. J. Environ. Manag. 2022, 315, 115090. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; He, Z.L.; Stoffella, P.J. Land Application of Biosolids in the USA: A Review. Appl. Environ. Soil Sci. 2012, 2012, e201462. [Google Scholar] [CrossRef]
- Staples, C.; van der Hoeven, N.; Clark, K.; Mihaich, E.; Woelz, J.; Hentges, S. Distributions of Concentrations of Bisphenol A in North American and European Surface Waters and Sediments Determined from 19 Years of Monitoring Data. Chemosphere 2018, 201, 448–458. [Google Scholar] [CrossRef] [PubMed]
- Oustriere, N.; Marchand, L.; Lottier, N.; Motelica, M.; Mench, M. Long-Term Cu Stabilization and Biomass Yields of Giant Reed and Poplar after Adding a Biochar, Alone or with Iron Grit, into a Contaminated Soil from a Wood Preservation Site. Sci. Total Environ. 2017, 579, 620–627. [Google Scholar] [CrossRef] [PubMed]
- Siedt, M.; Schäffer, A.; Smith, K.E.C.; Nabel, M.; Roß-Nickoll, M.; van Dongen, J.T. Comparing Straw, Compost, and Biochar Regarding Their Suitability as Agricultural Soil Amendments to Affect Soil Structure, Nutrient Leaching, Microbial Communities, and the Fate of Pesticides. Sci. Total Environ. 2021, 751, 141607. [Google Scholar] [CrossRef] [PubMed]
- Kranz, C.N.; McLaughlin, R.A.; Johnson, A.; Miller, G.; Heitman, J.L. The Effects of Compost Incorporation on Soil Physical Properties in Urban Soils—A Concise Review. J. Environ. Manag. 2020, 261, 110209. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Williams, P.N.; Zhan, Y.; Coughlin, S.A.; McGrath, J.W.; Chin, J.P.; Xu, Y. Municipal Solid Waste Compost: Global Trends and Biogeochemical Cycling. Soil Environ. Health 2023, 1, 100038. [Google Scholar] [CrossRef]
- Thorenz, A.; Wietschel, L.; Stindt, D.; Tuma, A. Assessment of Agroforestry Residue Potentials for the Bioeconomy in the European Union. J. Clean. Prod. 2018, 176, 348–359. [Google Scholar] [CrossRef] [PubMed]
- Borrega, M.; Kalliola, A.; Määttänen, M.; Borisova, A.S.; Mikkelson, A.; Tamminen, T. Alkaline Extraction of Polyphenols for Valorization of Industrial Spruce Bark. Bioresour. Technol. Rep. 2022, 19, 101129. [Google Scholar] [CrossRef]
- Şen, U.; Esteves, B.; Pereira, H. Pyrolysis and Extraction of Bark in a Biorefineries Context: A Critical Review. Energies 2023, 16, 4848. [Google Scholar] [CrossRef]
- DeLuca, T.H.; Pingree, M.R.A.; Gao, S. Chapter 16—Assessing Soil Biological Health in Forest Soils. In Developments in Soil Science; Busse, M., Giardina, C.P., Morris, D.M., Page-Dumroese, D.S., Eds.; Global Change and Forest Soils; Elsevier: Amsterdam, The Netherlands, 2019; Volume 36, pp. 397–426. [Google Scholar]
- Zaborowska, M.; Wyszkowska, J.; Borowik, A.; Kucharski, J. Bisphenol A—A Dangerous Pollutant Distorting the Biological Properties of Soil. Int. J. Mol. Sci. 2021, 22, 12753. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Wang, L.; Zhou, Q.; Huang, X. Hazards of Bisphenol A (BPA) Exposure: A Systematic Review of Plant Toxicology Studies. J. Hazard. Mater. 2020, 384, 121488. [Google Scholar] [CrossRef]
- Zuccarini, P.; Sardans, J.; Asensio, L.; Peñuelas, J. Altered Activities of Extracellular Soil Enzymes by the Interacting Global Environmental Changes. Glob. Chang. Biol. 2023, 29, 2067–2091. [Google Scholar] [CrossRef] [PubMed]
- Wallenstein, M.D.; Burns, R.G. Ecology of Extracellular Enzyme Activities and Organic Matter Degradation in Soil: A Complex Community-Driven Process. In Methods of Soil Enzymology; Dick, R.P., Ed.; Soil Science Society of America: Madi-Son, WI, USA, 2011; pp. 35–55. [Google Scholar]
- Zaborowska, M.; Wyszkowska, J.; Borowik, A. Soil Microbiome Response to Contamination with Bisphenol A, Bisphenol F and Bisphenol S. Int. J. Mol. Sci. 2020, 21, 3529. [Google Scholar] [CrossRef] [PubMed]
- Daudzai, Z.; Treesubsuntorn, C.; Thiravetyan, P. Inoculated Clitoria Ternatea with Bacillus Cereus ERBP for Enhancing Gaseous Ethylbenzene Phytoremediation: Plant Metabolites and Expression of Ethylbenzene Degradation Genes. Ecotoxicol. Environ. Saf. 2018, 164, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Zhao, J.; Wang, L.; Wang, H.; Zou, X.; Zhang, J. Effect of Bisphenol A and Pentachlorophenol on Different Enzymes of Activated Sludge. Sci. Total Environ. 2019, 671, 1170–1178. [Google Scholar] [CrossRef]
- Carvalho, M.B.; Tavares, S.; Medeiros, J.; Núñez, O.; Gallart-Ayala, H.; Leitão, M.C.; Galceran, M.T.; Hursthouse, A.; Silva Pereira, C. Degradation Pathway of Pentachlorophenol by Mucor Plumbeus Involves Phase II Conjugation and Oxidation–Reduction Reactions. J. Hazard. Mater. 2011, 198, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Zaborowska, M.; Wyszkowska, J.; Kucharski, J. Role of Chlorella Sp. and Rhamnolipid 90 in Maintaining Homeostasis in Soil Contaminated with Bisphenol A. J. Soils Sediments 2021, 21, 27–41. [Google Scholar] [CrossRef]
- Zaborowska, M.; Wyszkowska, J.; Borowik, A.; Kucharski, J. Effect of Separate and Combined Toxicity of Bisphenol A and Zinc on the Soil Microbiome. Int. J. Mol. Sci. 2022, 23, 5937. [Google Scholar] [CrossRef] [PubMed]
- Perotti, E.B.R. Impact of Hydroquinone Used as a Redox Effector Model on Potential Denitrification, Microbial Activity and Redox Condition of a Cultivable Soil. Rev. Argent. Microbiol. 2015, 47, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, S.; Perveen, S.; Khan, A. Synthesis, Enzyme Inhibition and Anticancer Investigation of Unsymmetrical 1,3-Disubstituted Ureas. J. Serbian Chem. Soc. 2014, 79, 1–10. [Google Scholar] [CrossRef]
- Perveen, S.; Khan, K.M.; Lodhi, M.A.; Choudhary, M.I.; Atta-ur-Rahman; Voelter, W. Urease and α-Chymotrypsin Inhibitory Effects of Selected Urea Derivatives. Lett. Drug Des. Discov. 2008, 5, 401–405. [Google Scholar] [CrossRef]
- Khadem, A.; Raiesi, F. Response of Soil Alkaline Phosphatase to Biochar Amendments: Changes in Kinetic and Thermodynamic Characteristics. Geoderma 2019, 337, 44–54. [Google Scholar] [CrossRef]
- Wang, G.; Post, W.M.; Mayes, M.A. Development of Microbial-Enzyme-Mediated Decomposition Model Parameters through Steady-State and Dynamic Analyses. Ecol. Appl. 2013, 23, 255–272. [Google Scholar] [CrossRef] [PubMed]
- Menezes-Blackburn, D.; Giles, C.; Darch, T.; George, T.S.; Blackwell, M.; Stutter, M.; Shand, C.; Lumsdon, D.; Cooper, P.; Wendler, R.; et al. Opportunities for Mobilizing Recalcitrant Phosphorus from Agricultural Soils: A Review. Plant Soil 2018, 427, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Moeskops, B.; Sukristiyonubowo; Buchan, D.; Sleutel, S.; Herawaty, L.; Husen, E.; Saraswati, R.; Setyorini, D.; De Neve, S. Soil Microbial Communities and Activities under Intensive Organic and Conventional Vegetable Farming in West Java, Indonesia. Appl. Soil Ecol. 2010, 45, 112–120. [Google Scholar] [CrossRef]
- Kappaun, K.; Piovesan, A.R.; Carlini, C.R.; Ligabue-Braun, R. Ureases: Historical Aspects, Catalytic, and Non-Catalytic Properties—A Review. J. Adv. Res. 2018, 13, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Ali, S.; Rizvi, H.; Rinklebe, J.; Tsang, D.C.W.; Meers, E.; Ok, Y.S.; Ishaque, W. Phytomanagement of Heavy Metals in Contaminated Soils Using Sunflower: A Review. Crit. Rev. Environ. Sci. Technol. 2016, 46, 1498–1528. [Google Scholar] [CrossRef]
- Zhao, C.; Shi, Y.; Xu, Y.; Lin, N.; Dong, H.; Bei, L. Effects of Bisphenol A on Antioxidation and Nitrogen Assimilation of Maize Seedlings Roots. Ecotoxicol. Environ. Saf. 2022, 247, 114255. [Google Scholar] [CrossRef] [PubMed]
- Bahmani, R.; Kim, D.; Modareszadeh, M.; Thompson, A.J.; Park, J.H.; Yoo, H.H.; Hwang, S. The Mechanism of Root Growth Inhibition by the Endocrine Disruptor Bisphenol A (BPA). Environ. Pollut. 2020, 257, 113516. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, L.; Shen, F.; Zhou, Q.; Huang, X. Impacts of Exogenous Pollutant Bisphenol A on Characteristics of Soybeans. Ecotoxicol. Environ. Saf. 2018, 157, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Wang, L.; Hu, D.; Zhou, Q.; Huang, X. Effects of Exogenous Bisphenol A on the Function of Mitochondria in Root Cells of Soybean (Glycine Max L.) Seedlings. Chemosphere 2019, 222, 619–627. [Google Scholar] [CrossRef]
- Rosalie, R.; Joas, J.; Deytieux-Belleau, C.; Vulcain, E.; Payet, B.; Dufossé, L.; Léchaudel, M. Antioxidant and Enzymatic Responses to Oxidative Stress Induced by Pre-Harvest Water Supply Reduction and Ripening on Mango (Mangifera Indica L. Cv. ’Cogshall’) in Relation to Carotenoid Content. J. Plant Physiol. 2015, 184, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Saleem, M.; Fariduddin, Q.; Castroverde, C.D.M. Salicylic Acid: A Key Regulator of Redox Signalling and Plant Immunity. Plant Physiol. Biochem. 2021, 168, 381–397. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, F.; Wu, W.; Hu, Y.; Liao, R.; Chen, G.; Wang, J.; Li, J. Migration and Health Risks of Nonylphenol and Bisphenol a in Soil-Winter Wheat Systems with Long-Term Reclaimed Water Irrigation. Ecotoxicol. Environ. Saf. 2018, 158, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Goeppert, N.; Dror, I.; Berkowitz, B. Fate and Transport of Free and Conjugated Estrogens during Soil Passage. Environ. Pollut. 2015, 206, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Tossounian, M.-A.; Wahni, K.; Van Molle, I.; Vertommen, D.; Astolfi Rosado, L.; Messens, J. Redox-Regulated Methionine Oxidation of Arabidopsis Thaliana Glutathione Transferase Phi9 Induces H-Site Flexibility. Protein Sci. 2019, 28, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Zanganeh, R.; Jamei, R.; Rahmani, F. Role of Salicylic Acid and Hydrogen Sulfide in Promoting Lead Stress Tolerance and Regulating Free Amino Acid Composition in Zea mays L. Acta Physiol. Plant. 2019, 41, 94. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, L.; Zhou, Q.; Huang, X. Reactive Oxygen Species Initiate a Protective Response in Plant Roots to Stress Induced by Environmental Bisphenol A. Ecotoxicol. Environ. Saf. 2018, 154, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Li, W.; Jiang, N.; Yu, H.; Morohashi, K.; Ouma, W.Z.; Morales-Mantilla, D.E.; Gomez-Cano, F.A.; Mukundi, E.; Prada-Salcedo, L.D.; et al. A Maize Gene Regulatory Network for Phenolic Metabolism. Mol. Plant 2017, 10, 498–515. [Google Scholar] [CrossRef] [PubMed]
- Bourgeade, P.; Aleya, E.; Alaoui-Sosse, L.; Herlem, G.; Alaoui-Sosse, B.; Bourioug, M. Growth, Pigment Changes, and Photosystem II Activity in the Aquatic Macrophyte Lemna Minor Exposed to Bisphenol A. Environ. Sci. Pollut. Res. 2021, 28, 68671–68678. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Kwak, J.I.; An, Y.-J. Effects of Bisphenol A in Soil on Growth, Photosynthesis Activity, and Genistein Levels in Crop Plants (Vigna Radiata). Chemosphere 2018, 209, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kumar, V.; Shahzad, B.; Ramakrishnan, M.; Singh Sidhu, G.P.; Bali, A.S.; Handa, N.; Kapoor, D.; Yadav, P.; Khanna, K.; et al. Photosynthetic Response of Plants Under Different Abiotic Stresses: A Review. J. Plant Growth Regul. 2020, 39, 509–531. [Google Scholar] [CrossRef]
- Jiao, L.; Ding, H.; Wang, L.; Zhou, Q.; Huang, X. Bisphenol A Effects on the Chlorophyll Contents in Soybean at Different Growth Stages. Environ. Pollut. 2017, 223, 426–434. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, L.; Li, M.; Jiao, L.; Zhou, Q.; Huang, X. Effects of Bisphenol A on Chlorophyll Fluorescence in Five Plants. Environ. Sci. Pollut. Res. 2015, 22, 17724–17732. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-T.; Liang, Y.; Li, Y.-N.; Che, X.-K.; Zhao, S.-J.; Zhang, Z.-S.; Gao, H.-Y. Mechanisms by Which Bisphenol A Affect the Photosynthetic Apparatus in Cucumber (Cucumis Sativus L.) Leaves. Sci. Rep. 2018, 8, 4253. [Google Scholar] [CrossRef] [PubMed]
- PN-R-04032; Soil and Mineral Materials—Sampling and Determination of Particle Size Distribution. Polish Committee for Standardization: Warsaw, Poland, 1998.
- ISO 11464; Soil Quality—Pre-Treatment of Samples for Physico-Chemical Analysis. International Organization for Standardization: Geneva, Switzerland, 2006.
- Klute, A. Methods of Soil Analysis. In Agronomy Monograph 9; American Society of Agronomy: Madison, WI, USA, 1996. [Google Scholar]
- ISO 10390; In Soil Quality—Determination of PH. International Organization for Standardization: Geneva, Switzerland, 2005. Available online: https://www.iso.org/standard/75243.html (accessed on 10 July 2023).
- Öhlinger, R. Dehydrogenase Activity with the Substrate TTC. In Methods in Soil Biology; Schinner, F., Ohlinger, R., Kandler, E., Margesin, R., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; pp. 241–243. [Google Scholar]
- Johnson, J.L.; Temple, K.L. Some Variables Affecting the Measurement of “Catalase Activity” in Soil. Soil Sci. Soc. Am. J. 1964, 28, 207–209. [Google Scholar] [CrossRef]
- Alef, K.; Nannipieri, P. (Eds.) Methods in Applied Soil Microbiology and Biochemistry; Academic London: London, UK, 1988; pp. 316–365. [Google Scholar]
- Hu, Y.; Zhu, Q.; Yan, X.; Liao, C.; Jiang, G. Occurrence, Fate and Risk Assessment of BPA and Its Substituents in Wastewater Treatment Plant: A Review. Environ. Res. 2019, 178, 108732. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liu, Z.; Zhang, J.; Huang, R.; Yin, H.; Dang, Z.; Wu, P.; Liu, Y. Insights into Removal Mechanisms of Bisphenol A and Its Analogues in Municipal Wastewater Treatment Plants. Sci. Total Environ. 2019, 692, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Strachel, R.; Wyszkowska, J.; Baćmaga, M. An Evaluation of the Effectiveness of Sorbents in the Remediation of Soil Contaminated with Zinc. Water Air Soil Pollut. 2018, 229, 235. [Google Scholar] [CrossRef] [PubMed]
- Boros-Lajszner, E.; Wyszkowska, J.; Kucharski, J. Use of a Zeolite and Molecular Sieve to Restore Homeostasis of Soil Contaminated with Cobalt. Minerals 2020, 10, 53. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Borowik, A.; Kucharski, J. The Role of Grass Compost and Zea Mays in Alleviating Toxic Effects of Tetracycline on the Soil Bacteria Community. Int. J. Environ. Res. Public Health 2022, 19, 7357. [Google Scholar] [CrossRef] [PubMed]
- Kennett, D.J.; Prufer, K.M.; Culleton, B.J.; George, R.J.; Robinson, M.; Trask, W.R.; Buckley, G.M.; Moes, E.; Kate, E.J.; Harper, T.K.; et al. Early Isotopic Evidence for Maize as a Staple Grain in the Americas. Sci. Adv. 2020, 6, eaba3245. [Google Scholar] [CrossRef] [PubMed]
- FAO (Food and Agricultural Organization). FAOSTAT: Production: Crops and Livestock Products; FAO: Rome, Italy, 2023; Available online: https://www.fao.org/3/cc9205en/cc9205en.pdf (accessed on 17 February 2024).
- Basnet, B.; Khanal, S. Quantitative Trait Loci and Candidate Genes for Iron and Zinc Bio-Fortification in Genetically Diverse Germplasm of Maize (Zea Mays L): A Systematic Review. Heliyon 2022, 8. [Google Scholar] [CrossRef] [PubMed]
- Borowik, A.; Wyszkowska, J.; Wyszkowski, M. Resistance of Aerobic Microorganisms and Soil Enzyme Response to Soil Contamination with Ekodiesel Ultra Fuel. Environ. Sci. Pollut. Res. 2017, 24, 24346–24363. [Google Scholar] [CrossRef]
- Wyszkowska, J.; Kucharski, J.; Kucharski, M.; Borowik, A. Applicability of Biochemical Indices to Quality Assessment of Soil Polluted with Heavy Metals. J. Elem. 2014, 18, 733–756. [Google Scholar] [CrossRef]
- Tibco Software Inc. Data Analysis Software System; Statistica, Version 13; Tibco Software Inc.: Palo Alto, CA, USA, 2021; Available online: http://statistica.io (accessed on 10 July 2023).
Object | 0_BPA | 500_BPA | 1000_BPA | Average |
---|---|---|---|---|
Dehydrogenases, µmol TFF | ||||
Control (Ct) | 10.636 b | 1.955 f–h | 1.167 h | 4.586 C |
Molecular sieve (M) | 13.484 a | 6.509 c | 7.051 c | 9.015 A |
Zeolite (Z) | 10.079 b | 1.038 h | 1.379 gh | 4.165 D |
Sepiolite (Sep) | 10.754 b | 3.366 de | 2.285 e–g | 5.468 B |
Starch (St) | 10.355 b | 2.674 ef | 2.413 e–g | 5.147 B |
Compost (Cp) | 10.754 b | 4.160 d | 1.094 h | 5.336 B |
Bark (Bk) | 10.012 b | 1.863 f–h | 1.358 gh | 4.412 C |
Average | 10.868 I | 3.081 II | 2.392 III | |
Catalase, mol O2 | ||||
Control (Ct) | 0.243 g | 0.238 g | 0.274 f | 0.252 D |
Molecular sieve (M) | 0.305 de | 0.343 c | 0.335 c | 0.328 B |
Zeolite (Z) | 0.313 d | 0.159 i | 0.179 h | 0.217 E |
Sepiolite (Sep) | 0.334 c | 0.180 h | 0.272 f | 0.262 CD |
Starch (St) | 0.340 c | 0.239 g | 0.237 g | 0.272 C |
Compost (Cp) | 0.387 a | 0.287 ef | 0.368 b | 0.347 A |
Bark (Bk) | 0.287 ef | 0.339 c | 0.366 b | 0.331 B |
Average | 0.316 I | 0.255 III | 0.290 II | |
Urease, mmol N-NH4 | ||||
Control (Ct) | 0.345 g | 0.156 i | 0.020 j | 0.174 F |
Molecular sieve (M) | 1.512 b | 0.430 f | 0.252 h | 0.731 B |
Zeolite (Z) | 1.211 d | 0.028 j | 0.026 j | 0.422 E |
Sepiolite (Sep) | 1.329 c | 0.030 j | 0.114 i | 0.491 D |
Starch (St) | 1.685 a | 0.351 g | 0.311 g | 0.783 A |
Compost (Cp) | 1.206 d | 0.225 h | 0.246 h | 0.559 C |
Bark (Bk) | 1.132 e | 0.252 h | 0.132 i | 0.505 D |
Average | 1.203 I | 0.210 II | 0.157 III | |
Acid phosphatase, mmol PN | ||||
Control (Ct) | 4.058 c | 2.456 fg | 2.364 gh | 2.959 C |
Molecular sieve (M) | 2.319 gh | 1.915 i | 1.411 j | 1.882 E |
Zeolite (Z) | 1.499 j | 2.663 ef | 2.321 gh | 2.161 D |
Sepiolite (Sep) | 2.773 e | 2.118 hi | 1.554 j | 2.148 D |
Starch (St) | 5.990a | 2.674 ef | 2.250 gh | 3.638 B |
Compost (Cp) | 5.249 b | 3.494 d | 3.511 d | 4.085 A |
Bark (Bk) | 4.267 c | 1.031 k | 0.943 k | 2.081 D |
Average | 3.737 I | 2.336 II | 2.051 III | |
Alkaline phosphatase, mmol PN | ||||
Control (Ct) | 0.330 m | 0.558 j–l | 0.544 j–l | 0.477 F |
Molecular sieve (M) | 0.525 j–l | 0.605 h–j | 0.487 kl | 0.539 E |
Zeolite (Z) | 0.460 l | 0.518 j–l | 0.579 i–k | 0.519 E |
Sepiolite (Sep) | 0.751 fg | 0.803 ef | 0.877 de | 0.810 C |
Starch (St) | 0.738 fg | 0.556 j–l | 0.686 gh | 0.660 D |
Compost (Cp) | 0.978 cd | 0.667 g–i | 0.984 c | 0.876 B |
Bark (Bk) | 0.719 fg | 1.458 a | 1.229 b | 1.135 A |
Average | 0.643 II | 0.738 I | 0.769 I | |
Arylsulfatase, mmol PN | ||||
Control (Ct) | 0.176 b–d | 0.141 e–g | 0.121 gh | 0.146 C |
Molecular sieve (M) | 0.177 bc | 0.156 c–f | 0.179 bc | 0.171 B |
Zeolite (Z) | 0.197 b | 0.097 h | 0.093 h | 0.129 D |
Sepiolite (Sep) | 0.171 b–d | 0.233 a | 0.169 b–e | 0.185 A |
Starch (St) | 0.228 a | 0.148 d–g | 0.135 f–g | 0.170 B |
Compost (Cp) | 0.192 b | 0.141 e–g | 0.148 d–g | 0.158 C |
Bark (Bk) | 0.163 c–f | 0.162 c–f | 0.156 c–f | 0.160 BC |
Average | 0.186 I | 0.154 II | 0.143 III | |
β-glucosidase, mmol PN | ||||
Control (Ct) | 0.472 de | 0.377 h–k | 0.357 i–k | 0.402 C |
Molecular sieve (M) | 0.435 e–h | 0.345 jk | 0.260 l | 0.346 D |
Zeolite (Z) | 0.417 e–i | 0.467 d–f | 0.331 k | 0.405 C |
Sepiolite (Sep) | 0.425 e–h | 0.381 g–k | 0.350 jk | 0.384 C |
Starch (St) | 0.808 a | 0.344 jk | 0.405 f–j | 0.519 B |
Compost (Cp) | 0.568 c | 0.447 e–g | 0.553 c | 0.522 B |
Bark (Bk) | 0.569 c | 0.732 b | 0.519 cd | 0.606 A |
Average | 0.528 | 0.442 II | 0.396 III | |
BA21 | ||||
Control (Ct) | 16.260 c | 5.880 g–i | 4.848 jk | 8.996 E |
Molecular sieve (M) | 18.757 b | 10.303 e | 9.977 e | 13.012 A |
Zeolite (Z) | 14.175 d | 4.970 jk | 4.909 jk | 8.018 F |
Sepiolite (Sep) | 16.536 c | 7.111 f | 5.620 i–k | 9.756 D |
Starch (St) | 20.145 a | 6.986 fg | 6.437 f–i | 11.189 C |
Compost (Cp) | 19.333 ab | 9.422 e | 6.903 f–h | 11.884 B |
Bark (Bk) | 17.148 c | 5.836 h–j | 4.703 k | 9.229 F |
Average | 17.478 I | 7.216 II | 6.200 III |
Object | 0_BPA | 500_BPA | 1000_BPA | Average |
---|---|---|---|---|
Aerial parts | ||||
Control (Ct) | 46.475 bc | 26.130 g | 13.570 l | 28.725 B |
Molecular sieve (M) | 48.129 bc | 31.109 f | 25.732 g | 34.990 A |
Zeolite (Z) | 45.988 c | 20.702 h | 15.896 jk | 27.529 BC |
Sepiolite (Sep) | 44.333 d | 24.965 g | 15.868 ij | 27.066 B |
Starch (St) | 35.693 d | 23.165 h | 15.246 jk | 24.559 C |
Compost (Cp) | 52.997 a | 32.924 f | 17.999 kl | 34.640 A |
Bark (Bk) | 48.352 b | 20.419 i | 9.400 m | 26.057 BC |
Average | 45.995 I | 25.632 II | 16.244 III | |
Roots | ||||
Control (Ct) | 11.813 a | 4.771 d | 1.937 fg | 6.174 AB |
Molecular sieve (M) | 11.581 a | 3.909 de | 2.757 ef | 6.082 AB |
Zeolite (Z) | 11.795 a | 4.520 d | 2.409 fg | 6.241 A |
Sepiolite (Sep) | 8.700 b | 4.864 d | 2.382 fg | 5.315 B |
Starch (St) | 11.281 a | 5.054 d | 2.950 ef | 6.428 A |
Compost (Cp) | 11.218 a | 6.368 c | 3.171 ef | 6.919 A |
Bark (Bk) | 12.166 a | 5.150 cd | 1.137 g | 6.151 AB |
Average | 11.222 I | 4.984 II | 2.392 III |
Object | 0_BPA | 500_BPA | 1000_BPA | Average |
---|---|---|---|---|
Control (Ct) | 35.835 ij | 37.946 f–i | 41.066 c–e | 39.618 ABC |
Molecular sieve (M) | 36.277 h–j | 39.610 d–g | 38.960 e–h | 38.842 C |
Zeolite (Z) | 34.803 j | 38.952 e–h | 41.351 c–e | 39.957 ABC |
Sepiolite (Sep) | 38.025 f–i | 42.337 cd | 41.600 c–e | 41.407 AB |
Starch (St) | 21.226 l | 35.797 ij | 39.884 d–f | 36.676 BC |
Compost (Cp) | 36.843 g–j | 47.983 a | 43.646 bc | 44.095 A |
Bark (Bk) | 30.439 k | 45.873 ab | 40.655 de | 40.969 BC |
Average | 33.350 II | 41.214 I | 41.023 I |
* Type of Enzyme | Enzymatic Activity per 1 kg d.m. h−1 | Unit | Methodical References |
---|---|---|---|
Deh | 3.716 | µmol TPF | [88] |
Cat | 0.210 | mol O2 | [89] |
Ure | 0.266 | mmol N-NH4 | [90] |
AcP | 3.207 | mmol PN | |
AlP | 0.712 | mmol PN | |
Aryl | 0.132 | mmol PN | |
Glu | 0.381 | mmol PN |
Acronym | Molecular Weight g mol−1 | Total Formula | Structural Formula | BCF | logKOC | SW mg dm−3 | VP (Pa) |
---|---|---|---|---|---|---|---|
BPA | 228.29 | C15H16O2 | 71.85 | 4.88 | 120 | 5.6 × 10−6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaborowska, M.; Wyszkowska, J.; Borowik, A.; Kucharski, J. Evaluation of the Effectiveness of Innovative Sorbents in Restoring Enzymatic Activity of Soil Contaminated with Bisphenol A (BPA). Molecules 2024, 29, 3113. https://doi.org/10.3390/molecules29133113
Zaborowska M, Wyszkowska J, Borowik A, Kucharski J. Evaluation of the Effectiveness of Innovative Sorbents in Restoring Enzymatic Activity of Soil Contaminated with Bisphenol A (BPA). Molecules. 2024; 29(13):3113. https://doi.org/10.3390/molecules29133113
Chicago/Turabian StyleZaborowska, Magdalena, Jadwiga Wyszkowska, Agata Borowik, and Jan Kucharski. 2024. "Evaluation of the Effectiveness of Innovative Sorbents in Restoring Enzymatic Activity of Soil Contaminated with Bisphenol A (BPA)" Molecules 29, no. 13: 3113. https://doi.org/10.3390/molecules29133113
APA StyleZaborowska, M., Wyszkowska, J., Borowik, A., & Kucharski, J. (2024). Evaluation of the Effectiveness of Innovative Sorbents in Restoring Enzymatic Activity of Soil Contaminated with Bisphenol A (BPA). Molecules, 29(13), 3113. https://doi.org/10.3390/molecules29133113