Zinc Toxicity: Understanding the Limits
Abstract
:1. Introduction
2. Recommendation for Zinc Intake
Food | Amount of Zinc (mg/100 g) | Phytate Level (mg/100 g) | Phytate-to-Zinc Ratio |
---|---|---|---|
Seafood and meat | |||
Oyster (cooked) | 16–91; dependent on species and preparation method | 0 | 0 |
Beef (cooked, lean) | 4.6 | 0 | 0 |
Chicken (cooked, breast) | 1.5 | 0 | 0 |
Legumes | |||
Lentils (raw) | 3.3 | 588.7 | 17.8 |
Chickpeas (raw) | 2.8 | 458.2 | 16.1 |
Red kidney beans (raw) | 2.8 | 888 | 31.3 |
Soybeans | 4.89 | 222 | 4.5 |
Nuts and Seeds | |||
Peanuts (raw) | 3.27 | 771.5 | 23.2 |
Hemp seeds | 9.9 | 280 | 2.8 |
Cashew nuts | 5.6 | 498 | 8.76 |
Whole grains | |||
Wheat germ | 3.2 | 391 | 12.0 |
Oats | 0.8 | 116 | 14.6 |
Quinoa | 1.1 | 118 | 10.6 |
Dairy products | |||
Cheese, Cheddar | 3.1 | 0 | 0 |
Milk, whole | 0.4 | 0 | 0 |
Country | RDA/PRI/RNI (mg/Day) | |
---|---|---|
Men | Women | |
China | 12.5 | 7.5 |
India | 17 | 13.2 |
Europe | 9.4 to 16.3 | 7.5 to 12.7 |
United States | 11 | 8 |
Japan | 10 | 8 |
Germany | 11 to 16 | 7 to 10 |
France | 9.4 to 14 | 7.5 to 11 |
United Kingdom | 9.5 | 7 |
Group | Low Bioavailability * (15%) | Moderate Bioavailability * (30%) | High Bioavailability * (50%) |
---|---|---|---|
0–6 months | 6.6 b | 2.8 b | 1.1 a |
7–12 months | 8.4 | 4.1 | 0.8 a/2.5 |
1–3 years | 8.3 | 4.1 | 2.4 |
4–6 years | 9.6 | 4.8 | 2.9 |
7–9 years | 11.2 | 5.6 | 3.3 |
10–18 years, male | 17.1 | 8.6 | 5.1 |
10–18 years, female | 14.4 | 7.2 | 4.3 |
Men, 19+ | 14.0 | 7.0 | 4.2 |
Women, 19+ | 9.8 | 4.9 | 3.0 |
Group | PRI (mg/Day) |
---|---|
7–11 months | 2.9 |
1–3 years | 4.3 |
4–6 years | 5.5 |
7–10 years | 7.4 |
11–14 years | 10.7 |
15–17 years, male | 14.2 |
15–17 years, female | 11.9 |
Group | Level of Phytate Intake (mg/Day) | PRI for Zinc (mg/Day) |
---|---|---|
18 years+, male | 300 | 9.4 |
600 | 11.7 | |
900 | 14.0 | |
1200 | 16.3 | |
18 years+, female a | 300 | 7.5 |
600 | 9.3 | |
900 | 11.0 | |
1200 | 12.7 |
3. Groups at Risk for Zinc Inadequacy
3.1. Groups at Risk for Zinc Intoxication
3.2. Groups at Risk for Zinc Deficiency
4. Routes of Zinc
4.1. Dermal
4.2. Oral Intake
4.3. Inhalation
5. Types of Zinc Toxicity: Acute vs. Chronic
6. Adverse Symptoms and Side Effects
Zinc Compound | Elemental Zinc | Experimental Setup | Adverse Symptoms | Organism | Reference |
---|---|---|---|---|---|
Zinc sulfate ZnSO4 × 7 H2O | 22.7% | 220 mg zinc sulfate as 50 mg elemental for 6 weeks thrice a day | Nausea, loss of appetite and abdominal cramps | Human | [90] |
0.5 g elemental Zn/L | Serum amylase and lipase levels ↑, 1.5–2 times higher plasma zinc levels, hypertrophied pancreatic islet cells containing more secretory granules | Mice | [91] | ||
Zinc phosphide Zn2P3 | 76% | Ingestion of 25 g zinc phosphide (=19 g elemental zinc) | Acute liver failure, acute pancreatitis and death | Human | [92] |
Zinc chloride ZnCl2 | 47.97% | >300 µM elemental zinc | Damage to neuronal/cortical structures | In vitro | [93] |
Zinc succinate C4H4O4Zn | 36.1% | 100 mg/kg (=36.1 mg/kg elemental zinc) | Toxic and dystrophic changes in the heart | Mice | [94] |
Zinc gluconate C12H22O14Zn | 14.3% | 65 mg elemental zinc | Undetectable copper levels, neutropenia | Human | [95] |
Zinc oxide ZnO | 80.3% | Inhalation of 2 mg/m3 (=1.606 mg/m3 elemental zinc) | Increase of IL-17f, IFN-γ, IL-4 and IL-13 | Mice | [82] |
6.1. Gastrointestinal Effects
6.2. Neurological Effects
6.3. Cardio–Renal Effects
6.4. Immunological Effects
7. Diseases Related to Zinc Toxicity
7.1. Zinc-Induced Copper Deficiency
7.2. Neurological Diseases
7.2.1. Zinc in Neuronal Death and Neuronal Diseases
7.2.2. Alzheimer Disease
7.2.3. Global Ischemia
7.2.4. Parkinson Disease
7.2.5. Multiple Sclerosis
7.3. Cancer
8. Prevention and Determination of Zinc Toxicity
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Maret, W. Zinc biochemistry: From a single zinc enzyme to a key element of life. Adv. Nutr. 2013, 4, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.I.; Sarmento-Ribeiro, A.B.; Goncalves, A.C. Zinc: From Biological Functions to Therapeutic Potential. Int. J. Mol. Sci. 2023, 24, 4822. [Google Scholar] [CrossRef] [PubMed]
- Wessels, I.; Fischer, H.J.; Rink, L. Dietary and Physiological Effects of Zinc on the Immune System. Annu. Rev. Nutr. 2021, 41, 133–175. [Google Scholar] [CrossRef]
- Kambe, T.; Yamaguchi-Iwai, Y.; Sasaki, R.; Nagao, M. Overview of mammalian zinc transporters. Cell Mol. Life Sci. 2004, 61, 49–68. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Tepaamorndech, S. The SLC30 family of zinc transporters—A review of current understanding of their biological and pathophysiological roles. Mol. Aspects Med. 2013, 34, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Bin, B.H.; Seo, J.; Kim, S.T. Function, Structure, and Transport Aspects of ZIP and ZnT Zinc Transporters in Immune Cells. J. Immunol. Res. 2018, 2018, 9365747. [Google Scholar] [CrossRef] [PubMed]
- Kambe, T.; Hashimoto, A.; Fujimoto, S. Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell Mol. Life Sci. 2014, 71, 3281–3295. [Google Scholar] [CrossRef] [PubMed]
- Rink, L.; Gabriel, P. Zinc and the immune system. Proc. Nutr. Soc. 2000, 59, 541–552. [Google Scholar] [CrossRef] [PubMed]
- Maares, M.; Haase, H. A Guide to Human Zinc Absorption: General Overview and Recent Advances of In Vitro Intestinal Models. Nutrients 2020, 12, 762. [Google Scholar] [CrossRef]
- Djoko, K.Y.; Ong, C.L.; Walker, M.J.; McEwan, A.G. The Role of Copper and Zinc Toxicity in Innate Immune Defense against Bacterial Pathogens. J. Biol. Chem. 2015, 290, 18954–18961. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture (USDA). Zinc. Available online: https://fdc.nal.usda.gov/fdc-app.html#/?component=1095 (accessed on 17 April 2024).
- Lonnerdal, B. Dietary factors influencing zinc absorption. J. Nutr. 2000, 130 (Suppl. 55), 1378S–1383S. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US) Panel on Micronutrients. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press: Washington, DC, USA, 2001. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on Dietary Reference Values for zinc. EFSA J. 2014, 12. [Google Scholar] [CrossRef]
- Deutsche Gesellschaft für Ernährung e., V. Deutsche Gesellschaft für Ernährung e. V. Zink. Available online: https://www.dge.de/wissenschaft/referenzwerte/zink/ (accessed on 21 May 2024).
- ANSES. Dietary Reference Values for Vitamins and Minerals. Available online: https://www.anses.fr/en/content/dietary-reference-values-vitamins-and-minerals (accessed on 21 May 2024).
- British Nutrition Foundation. Nutrition Requirements; British Nutrition Foundation: London, UK, 2021. [Google Scholar]
- Ministry of Health, Labour and Welfare. Dietary Reference Intakes for Japanese; Ministry of Health, Labour and Welfare: Tokyo, Japan, 2015; p. 269. [Google Scholar]
- Indian Council of Medical Research (ICMR). Nutrient Requirements for Indians; Indian Council of Medical Research (ICMR): New Delhi, India, 2020. [Google Scholar]
- Chinese Nutrition Society. Chinese Dietary Reference Intakes; Chinese Nutrition Society: Beijing, China, 2013. [Google Scholar]
- World Health Organization. Vitamin and Mineral Requirements in Human Nutrition; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- Maldonado-Alvarado, P.; Pavon-Vargas, D.J.; Abarca-Robles, J.; Valencia-Chamorro, S.; Haros, C.M. Effect of Germination on the Nutritional Properties, Phytic Acid Content, and Phytase Activity of Quinoa (Chenopodium quinoa Willd). Foods 2023, 12, 389. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Esteban, J.I.; Torija-Isasa, M.E.; Sánchez-Mata, M.d.C. Mineral elements and related antinutrients, in whole and hulled hemp (Cannabis sativa L.) seeds. J. Food Compos. Anal. 2022, 109, 104516. [Google Scholar] [CrossRef]
- Gupta, R.K.; Gangoliya, S.S.; Singh, N.K. Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J. Food Sci. Technol. 2015, 52, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Foster, M.; Samman, S. Implications of a Plant-Based Diet on Zinc Requirements and Nutritional Status. In Vegetarian and Plant-Based Diets in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2017; pp. 683–713. [Google Scholar] [CrossRef]
- Maret, W.; Sandstead, H.H. Zinc requirements and the risks and benefits of zinc supplementation. J. Trace Elem. Med. Biol. 2006, 20, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Avan, A.; Czlonkowska, A.; Gaskin, S.; Granzotto, A.; Sensi, S.L.; Hoogenraad, T.U. The Role of Zinc in the Treatment of Wilson’s Disease. Int. J. Mol. Sci. 2022, 23, 9316. [Google Scholar] [CrossRef]
- Brenner, B.E.; Keyes, D. Metal Fume Fever. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Vogelmeier, C.; Konig, G.; Bencze, K.; Fruhmann, G. Pulmonary involvement in zinc fume fever. Chest 1987, 92, 946–948. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Zinc Supplementation during Pregnancy. 2023. Available online: https://www.who.int/tools/elena/interventions/zinc-pregnancy (accessed on 18 April 2024).
- Ota, E.; Mori, R.; Middleton, P.; Tobe-Gai, R.; Mahomed, K.; Miyazaki, C.; Bhutta, Z.A. Zinc supplementation for improving pregnancy and infant outcome. Cochrane Database Syst. Rev. 2015, 2015, CD000230. [Google Scholar] [CrossRef]
- Foster, M.; Samman, S. Vegetarian diets across the lifecycle: Impact on zinc intake and status. Adv. Food Nutr. Res. 2015, 74, 93–131. [Google Scholar] [CrossRef]
- Miyata, S. Zinc deficiency in the elderly. Nihon Ronen Igakkai Zasshi 2007, 44, 677–689. [Google Scholar] [PubMed]
- Yasuda, H.; Tsutsui, T. Infants and elderlies are susceptible to zinc deficiency. Sci. Rep. 2016, 6, 21850. [Google Scholar] [CrossRef] [PubMed]
- Trame, S.; Bruggemann, A.; Rink, L. Calculating zinc uptake by Zinc-APP. J. Trace Elem. Med. Biol. 2023, 77, 127132. [Google Scholar] [CrossRef] [PubMed]
- Köhler Pharma GmbH. Zink-App. Available online: https://www.zink-app.de/ (accessed on 21 May 2024).
- Agren, M.S. Percutaneous absorption of zinc from zinc oxide applied topically to intact skin in man. Dermatologica 1990, 180, 36–39. [Google Scholar] [CrossRef] [PubMed]
- Agren, M.S.; Krusell, M.; Franzen, L. Release and absorption of zinc from zinc oxide and zinc sulfate in open wounds. Acta Derm. Venereol. 1991, 71, 330–333. [Google Scholar] [CrossRef]
- Organization, I.L. International Chemical Safety Cards (ICSCs) ICSC: 0208 Zinc Oxide. Available online: https://www.ilo.org/dyn/icsc/showcard.display?p_version=2&p_card_id=0208&p_lang=en (accessed on 23 April 2024).
- Lansdown, A.B. Interspecies variations in response to topical application of selected zinc compounds. Food Chem. Toxicol. 1991, 29, 57–64. [Google Scholar] [CrossRef]
- International Labour Organization. International Chemical Safety Cards (ICSCs) Zinc Chloride; International Labour Organization: Geneva, Switzerland, 2017. [Google Scholar]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 11192, Zinc Acetate. 2024. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Zinc-Acetate (accessed on 18 June 2024).
- Jin, L.; Murakami, T.H.; Janjua, N.A.; Hori, Y. The effects of zinc oxide and diethyldithiocarbamate on the mitotic index of epidermal basal cells of mouse skin. Acta Med. Okayama 1994, 48, 231–236. [Google Scholar] [CrossRef]
- Ryu, H.J.; Seo, M.Y.; Jung, S.K.; Maeng, E.H.; Lee, S.Y.; Jang, D.H.; Lee, T.J.; Jo, K.Y.; Kim, Y.R.; Cho, K.B.; et al. Zinc oxide nanoparticles: A 90-day repeated-dose dermal toxicity study in rats. Int. J. Nanomedicine 2014, 9 (Suppl. 2), 137–144. [Google Scholar] [CrossRef] [PubMed]
- Gulson, B.; Wong, H.; Korsch, M.; Gomez, L.; Casey, P.; McCall, M.; McCulloch, M.; Trotter, J.; Stauber, J.; Greenoak, G. Comparison of dermal absorption of zinc from different sunscreen formulations and differing UV exposure based on stable isotope tracing. Sci. Total Environ. 2012, 420, 313–318. [Google Scholar] [CrossRef]
- Agren, M.S.; Phothong, N.; Burian, E.A.; Mogensen, M.; Haedersdal, M.; Jorgensen, L.N. Topical Zinc Oxide Assessed in Two Human Wound-healing Models. Acta Derm. Venereol. 2021, 101, adv00465. [Google Scholar] [CrossRef]
- Stromberg, H.E.; Agren, M.S. Topical zinc oxide treatment improves arterial and venous leg ulcers. Br. J. Dermatol. 1984, 111, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Sharquie, K.E.; Noaimi, A.A.; Al-Salih, M.M. Topical therapy of acne vulgaris using 2% tea lotion in comparison with 5% zinc sulphate solution. Saudi Med. J. 2008, 29, 1757–1761. [Google Scholar] [PubMed]
- Sehgal, V.N.; Prasad, P.V.; Kaviarasan, P.K.; Rajan, D. Trophic skin ulceration in leprosy: Evaluation of the efficacy of topical phenytoin sodium zinc oxide paste. Int. J. Dermatol. 2014, 53, 873–878. [Google Scholar] [CrossRef] [PubMed]
- Sharquie, K.E.; Khorsheed, A.A.; Al-Nuaimy, A.A. Topical zinc sulphate solution for treatment of viral warts. Saudi Med. J. 2007, 28, 1418–1421. [Google Scholar] [PubMed]
- Kiouri, D.P.; Tsoupra, E.; Peana, M.; Perlepes, S.P.; Stefanidou, M.E.; Chasapis, C.T. Multifunctional role of zinc in human health: An update. EXCLI J. 2023, 22, 809–827. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. Overview on Tolerable upper Intake Levels as Derived by the Scientific Committee on Food (SCF) and the EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); European Food Safety Authority: Parma, Italy, 2024. [Google Scholar]
- Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins and Choline. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; National Academies Press (US): Washington, DC, USA, 1998. [Google Scholar]
- Plum, L.M.; Rink, L.; Haase, H. The essential toxin: Impact of zinc on human health. Int. J. Environ. Res. Public. Health 2010, 7, 1342–1365. [Google Scholar] [CrossRef] [PubMed]
- Igic, P.G.; Lee, E.; Harper, W.; Roach, K.W. Toxic effects associated with consumption of zinc. Mayo Clin. Proc. 2002, 77, 713–716. [Google Scholar] [CrossRef] [PubMed]
- Wahab, A.; Mushtaq, K.; Borak, S.G.; Bellam, N. Zinc-induced copper deficiency, sideroblastic anemia, and neutropenia: A perplexing facet of zinc excess. Clin. Case Rep. 2020, 8, 1666–1671. [Google Scholar] [CrossRef] [PubMed]
- Foster, M.; Chu, A.; Petocz, P.; Samman, S. Effect of vegetarian diets on zinc status: A systematic review and meta-analysis of studies in humans. J. Sci. Food Agric. 2013, 93, 2362–2371. [Google Scholar] [CrossRef]
- Neufingerl, N.; Eilander, A. Nutrient Intake and Status in Adults Consuming Plant-Based Diets Compared to Meat-Eaters: A Systematic Review. Nutrients 2021, 14, 29. [Google Scholar] [CrossRef]
- Hambidge, K.M.; Miller, L.V.; Westcott, J.E.; Sheng, X.; Krebs, N.F. Zinc bioavailability and homeostasis. Am. J. Clin. Nutr. 2010, 91, 1478S–1483S. [Google Scholar] [CrossRef]
- Nations, S.P.; Boyer, P.J.; Love, L.A.; Burritt, M.F.; Butz, J.A.; Wolfe, G.I.; Hynan, L.S.; Reisch, J.; Trivedi, J.R. Denture cream: An unusual source of excess zinc, leading to hypocupremia and neurologic disease. Neurology 2008, 71, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Doherty, K.; Connor, M.; Cruickshank, R. Zinc-containing denture adhesive: A potential source of excess zinc resulting in copper deficiency myelopathy. Br. Dent. J. 2011, 210, 523–525. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food & Drug Administration (FDA). Denture Adhesives. 2018. Available online: https://www.fda.gov/medical-devices/dental-devices/denture-adhesives (accessed on 7 May 2024).
- Donaldson, M.; Touger-Decker, R. Vitamin and mineral supplements: Friend or foe when combined with medications? J. Am. Dent. Assoc. 2014, 145, 1153–1158. [Google Scholar] [CrossRef] [PubMed]
- Lomaestro, B.M.; Bailie, G.R. Absorption interactions with fluoroquinolones. 1995 update. Drug Saf. 1995, 12, 314–333. [Google Scholar] [CrossRef] [PubMed]
- Rink, L.; Haase, H. Zinc homeostasis and immunity. Trends Immunol. 2007, 28, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Bodar, C.W.; Pronk, M.E.; Sijm, D.T. The European Union risk assessment on zinc and zinc compounds: The process and the facts. Integr. Environ. Assess. Manag. 2005, 1, 301–319. [Google Scholar] [CrossRef]
- El Idrissi, A.; van Berkel, L.; Bonekamp, N.E.; Dalemans, D.J.; van der Heyden, M.A. The toxicology of zinc chloride smoke producing bombs and screens. Clin. Toxicol. 2017, 55, 167–174. [Google Scholar] [CrossRef]
- Yilmaz, B.; Yesiloglu, N.; Firinciogullari, R.; Gokkaya, A.; Ozbey, R.; Ozgur, M. Awful face of the war-impacted smoke bomb capsule in the face and systemic toxicity: Reports from the conflict in Syria. J. Craniofac. Surg. 2015, 26, 167–169. [Google Scholar] [CrossRef]
- Huang, K.L.; Chen, C.W.; Chu, S.J.; Perng, W.C.; Wu, C.P. Systemic inflammation caused by white smoke inhalation in a combat exercise. Chest 2008, 133, 722–728. [Google Scholar] [CrossRef]
- Pettila, V.; Takkunen, O.; Tukiainen, P. Zinc chloride smoke inhalation: A rare cause of severe acute respiratory distress syndrome. Intensive Care Med. 2000, 26, 215–217. [Google Scholar] [CrossRef] [PubMed]
- Hjortso, E.; Qvist, J.; Bud, M.I.; Thomsen, J.L.; Andersen, J.B.; Wiberg-Jorgensen, F.; Jensen, N.K.; Jones, R.; Reid, L.M.; Zapol, W.M. ARDS after accidental inhalation of zinc chloride smoke. Intensive Care Med. 1988, 14, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Ruddy, R.M. Smoke inhalation injury. Pediatr. Clin. N. Am. 1994, 41, 317–336. [Google Scholar] [CrossRef] [PubMed]
- Zerahn, B.; Kofoed-Enevoldsen, A.; Jensen, B.V.; Molvig, J.; Ebbehoj, N.; Johansen, J.S.; Kanstrup, I.L. Pulmonary damage after modest exposure to zinc chloride smoke. Respir. Med. 1999, 93, 885–890. [Google Scholar] [CrossRef]
- Homma, S.; Jones, R.; Qvist, J.; Zapol, W.M.; Reid, L. Pulmonary vascular lesions in the adult respiratory distress syndrome caused by inhalation of zinc chloride smoke: A morphometric study. Hum. Pathol. 1992, 23, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.G. Zinc toxicology following particulate inhalation. Indian. J. Occup. Environ. Med. 2008, 12, 10–13. [Google Scholar] [CrossRef] [PubMed]
- Rohrs, L.C. Metal-fume fever from inhaling zinc oxide. AMA Arch. Ind. Health 1957, 16, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.J. Zinc fume fever. Br. J. Radiol. 1988, 61, 327–329. [Google Scholar] [CrossRef] [PubMed]
- Cho, W.S.; Duffin, R.; Howie, S.E.; Scotton, C.J.; Wallace, W.A.; Macnee, W.; Bradley, M.; Megson, I.L.; Donaldson, K. Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part. Fibre Toxicol. 2011, 8, 27. [Google Scholar] [CrossRef]
- Beckett, W.S.; Chalupa, D.F.; Pauly-Brown, A.; Speers, D.M.; Stewart, J.C.; Frampton, M.W.; Utell, M.J.; Huang, L.S.; Cox, C.; Zareba, W.; et al. Comparing inhaled ultrafine versus fine zinc oxide particles in healthy adults: A human inhalation study. Am. J. Respir. Crit. Care Med. 2005, 171, 1129–1135. [Google Scholar] [CrossRef]
- Szucs-Somlyo, E.; Lehel, J.; Majlinger, K.; Lorincz, M.; Kovago, C. Metal-oxide inhalation induced fever—Immuntoxicological aspects of welding fumes. Food Chem. Toxicol. 2023, 175, 113722. [Google Scholar] [CrossRef] [PubMed]
- Monse, C.; Hagemeyer, O.; Raulf, M.; Jettkant, B.; van Kampen, V.; Kendzia, B.; Gering, V.; Kappert, G.; Weiss, T.; Ulrich, N.; et al. Concentration-dependent systemic response after inhalation of nano-sized zinc oxide particles in human volunteers. Part. Fibre Toxicol. 2018, 15, 8. [Google Scholar] [CrossRef] [PubMed]
- Szucs-Somlyo, E.; Lehel, J.; Majlinger, K.; Toth, F.; Jerzsele, A.; Kovago, C. Immune response to zinc oxide inhalation in metal fume fever, and the possible role of IL-17f. Sci. Rep. 2023, 13, 22239. [Google Scholar] [CrossRef] [PubMed]
- Occupational Safety and Health Administration (OSHA). Zinc Oxide, Dust & Fume. 2013. Available online: https://www.osha.gov/chemicaldata/215 (accessed on 18 April 2024).
- The National Institute for Occupational Safety and Health (NIOSH). Zinc Oxide. 2019. Available online: https://www.cdc.gov/niosh/npg/npgd0675.html (accessed on 24 April 2024).
- American Conference of Governmental Industrial Hygienists (ACGIH). Zinc Oxide. 2024. Available online: https://www.acgih.org/zinc-oxide/ (accessed on 18 April 2024).
- Deutsche Forschungsgemeinschaft. MAK- und BAT-Werte-Liste 2023; Deutsche Forschungsgemeinschaft: Bonn, Germany, 2023. [Google Scholar]
- Barceloux, D.G. Zinc. J. Toxicol. Clin. Toxicol. 1999, 37, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Fazlollahi, F.; Kennedy, I.M.; Yacobi, N.R.; Hamm-Alvarez, S.F.; Borok, Z.; Kim, K.J.; Crandall, E.D. Alveolar epithelial cell injury due to zinc oxide nanoparticle exposure. Am. J. Respir. Crit. Care Med. 2010, 182, 1398–1409. [Google Scholar] [CrossRef]
- Fosmire, G.J. Zinc toxicity. Am. J. Clin. Nutr. 1990, 51, 225–227. [Google Scholar] [CrossRef] [PubMed]
- Samman, S.; Roberts, D.C. The effect of zinc supplements on plasma zinc and copper levels and the reported symptoms in healthy volunteers. Med. J. Aust. 1987, 146, 246–249. [Google Scholar] [CrossRef]
- Walsh, C.T.; Sandstead, H.H.; Prasad, A.S.; Newberne, P.M.; Fraker, P.J. Zinc: Health effects and research priorities for the 1990s. Environ. Health Perspect. 1994, 102 (Suppl. 2), 5–46. [Google Scholar] [CrossRef] [PubMed]
- Bhandari, R.; Basnet, K. A case report on zinc phosphide ingestion resulting to acute pancreatitis. Ann. Med. Surg. 2022, 78, 103859. [Google Scholar] [CrossRef]
- Frederickson, C.J.; Koh, J.Y.; Bush, A.I. The neurobiology of zinc in health and disease. Nat. Rev. Neurosci. 2005, 6, 449–462. [Google Scholar] [CrossRef]
- Piavchenko, G.; Alekseev, A.; Stelmashchuk, O.; Seryogina, E.; Zherebtsov, E.; Kuznetsova, E.; Dunaev, A.; Volkov, Y.; Kuznetsov, S. A complex morphofunctional approach for zinc toxicity evaluation in rats. Heliyon 2020, 6, e03768. [Google Scholar] [CrossRef] [PubMed]
- Francis, Z.; Book, G.; Litvin, C.; Kalivas, B. The COVID-19 Pandemic and Zinc-Induced Copper Deficiency: An Important Link. Am. J. Med. 2022, 135, e290–e291. [Google Scholar] [CrossRef] [PubMed]
- Porea, T.J.; Belmont, J.W.; Mahoney, D.H., Jr. Zinc-induced anemia and neutropenia in an adolescent. J. Pediatr. 2000, 136, 688–690. [Google Scholar] [CrossRef]
- Wiernicka, A.; Janczyk, W.; Dadalski, M.; Avsar, Y.; Schmidt, H.; Socha, P. Gastrointestinal side effects in children with Wilson's disease treated with zinc sulphate. World J. Gastroenterol. 2013, 19, 4356–4362. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.A.; Thom, J.V.; Orth, G.L.; Cova, P.; Juarez, J. Food Poisoning Involving Zinc Contamination. Arch. Environ. Health 1964, 8, 657–660. [Google Scholar] [CrossRef]
- Skalny, A.V.; Aschner, M.; Lei, X.G.; Gritsenko, V.A.; Santamaria, A.; Alekseenko, S.I.; Prakash, N.T.; Chang, J.S.; Sizova, E.A.; Chao, J.C.J.; et al. Gut Microbiota as a Mediator of Essential and Toxic Effects of Zinc in the Intestines and Other Tissues. Int. J. Mol. Sci. 2021, 22, 13074. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Z.; Wang, P.; Yu, X.; Ding, H.; Wang, Z.; Feng, J. Effect of Long-Term and Short-Term Imbalanced Zn Manipulation on Gut Microbiota and Screening for Microbial Markers Sensitive to Zinc Status. Microbiol. Spectr. 2021, 9, e0048321. [Google Scholar] [CrossRef]
- Bartzatt, R. Neurological Impact of Zinc Excess and Deficiency In Vivo. Eur. J. Nutr. Food Saf. 2017, 7, 155–160. [Google Scholar] [CrossRef]
- Chen, C.J.; Liao, S.L. Neurotrophic and neurotoxic effects of zinc on neonatal cortical neurons. Neurochem. Int. 2003, 42, 471–479. [Google Scholar] [CrossRef]
- Yanagisawa, H.; Miyazaki, T.; Nodera, M.; Miyajima, Y.; Suzuki, T.; Kido, T.; Suka, M. Zinc-Excess Intake Causes the Deterioration of Renal Function Accompanied by an Elevation in Systemic Blood Pressure Primarily Through Superoxide Radical-Induced Oxidative Stress. Int. J. Toxicol. 2014, 33, 288–296. [Google Scholar] [CrossRef]
- Tuncay, E.; Turan, B. Intracellular Zn(2+) Increase in Cardiomyocytes Induces both Electrical and Mechanical Dysfunction in Heart via Endogenous Generation of Reactive Nitrogen Species. Biol. Trace Elem. Res. 2016, 169, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Wessels, I.; Maywald, M.; Rink, L. Zinc as a Gatekeeper of Immune Function. Nutrients 2017, 9, 1286. [Google Scholar] [CrossRef] [PubMed]
- Fang, J.; Ciu, H.; Peng, X. Effects of zinc toxicity on the structure and function of immune system in ducklings. Acta Nutr. Sin. 2003, 25, 79–84. [Google Scholar]
- Ibs, K.H.; Rink, L. Zinc-altered immune function. J. Nutr. 2003, 133 (Suppl. 1), 1452S–1456S. [Google Scholar] [CrossRef] [PubMed]
- Daaboul, D.; Rosenkranz, E.; Uciechowski, P.; Rink, L. Repletion of zinc in zinc-deficient cells strongly up-regulates IL-1beta-induced IL-2 production in T-cells. Metallomics 2012, 4, 1088–1097. [Google Scholar] [CrossRef] [PubMed]
- Campo, C.A.; Wellinghausen, N.; Faber, C.; Fischer, A.; Rink, L. Zinc inhibits the mixed lymphocyte culture. Biol. Trace Elem. Res. 2001, 79, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, H.N., 2nd; Phyliky, R.L.; Fleming, C.R. Zinc-induced copper deficiency. Gastroenterology 1988, 94, 508–512. [Google Scholar] [CrossRef]
- Duncan, A.; Yacoubian, C.; Watson, N.; Morrison, I. The risk of copper deficiency in patients prescribed zinc supplements. J. Clin. Pathol. 2015, 68, 723–725. [Google Scholar] [CrossRef]
- Ruiz, L.M.; Libedinsky, A.; Elorza, A.A. Role of Copper on Mitochondrial Function and Metabolism. Front. Mol. Biosci. 2021, 8, 711227. [Google Scholar] [CrossRef]
- Wazir, S.M.; Ghobrial, I. Copper deficiency, a new triad: Anemia, leucopenia, and myeloneuropathy. J. Community Hosp. Intern. Med. Perspect. 2017, 7, 265–268. [Google Scholar] [CrossRef]
- Willis, M.S.; Monaghan, S.A.; Miller, M.L.; McKenna, R.W.; Perkins, W.D.; Levinson, B.S.; Bhushan, V.; Kroft, S.H. Zinc-induced copper deficiency: A report of three cases initially recognized on bone marrow examination. Am. J. Clin. Pathol. 2005, 123, 125–131. [Google Scholar] [CrossRef]
- Simon, S.R.; Branda, R.F.; Tindle, B.F.; Burns, S.L. Copper deficiency and sideroblastic anemia associated with zinc ingestion. Am. J. Hematol. 1988, 28, 181–183. [Google Scholar] [CrossRef]
- Gibson, R.S.; Hess, S.Y.; Hotz, C.; Brown, K.H. Indicators of zinc status at the population level: A review of the evidence. Br. J. Nutr. 2008, 99 (Suppl. 3), S14–S23. [Google Scholar] [CrossRef] [PubMed]
- ational Institutes of Health (NIH) Office of Dietary Supplements (ODS). Copper. 2022. Available online: https://ods.od.nih.gov/factsheets/Copper-HealthProfessional/#en2 (accessed on 8 May 2024).
- Ruttkay-Nedecky, B.; Nejdl, L.; Gumulec, J.; Zitka, O.; Masarik, M.; Eckschlager, T.; Stiborova, M.; Adam, V.; Kizek, R. The role of metallothionein in oxidative stress. Int. J. Mol. Sci. 2013, 14, 6044–6066. [Google Scholar] [CrossRef] [PubMed]
- Baltaci, A.K.; Yuce, K.; Mogulkoc, R. Zinc Metabolism and Metallothioneins. Biol. Trace Elem. Res. 2018, 183, 22–31. [Google Scholar] [CrossRef]
- Fischer, P.W.; Giroux, A.; L’Abbe, M.R. Effects of zinc on mucosal copper binding and on the kinetics of copper absorption. J. Nutr. 1983, 113, 462–469. [Google Scholar] [CrossRef]
- Wessels, I.; Rolles, B.; Rink, L. The Potential Impact of Zinc Supplementation on COVID-19 Pathogenesis. Front. Immunol. 2020, 11, 1712. [Google Scholar] [CrossRef]
- Kondaiah, P.; Yaduvanshi, P.S.; Sharp, P.A.; Pullakhandam, R. Iron and Zinc Homeostasis and Interactions: Does Enteric Zinc Excretion Cross-Talk with Intestinal Iron Absorption? Nutrients 2019, 11, 1885. [Google Scholar] [CrossRef] [PubMed]
- Park, J.A.; Lee, J.Y.; Sato, T.A.; Koh, J.Y. Co-induction of p75NTR and p75NTR-associated death executor in neurons after zinc exposure in cortical culture or transient ischemia in the rat. J. Neurosci. 2000, 20, 9096–9103. [Google Scholar] [CrossRef]
- Kim, Y.H.; Kim, E.Y.; Gwag, B.J.; Sohn, S.; Koh, J.Y. Zinc-induced cortical neuronal death with features of apoptosis and necrosis: Mediation by free radicals. Neuroscience 1999, 89, 175–182. [Google Scholar] [CrossRef]
- DeTure, M.A.; Dickson, D.W. The neuropathological diagnosis of Alzheimer’s disease. Mol. Neurodegener. 2019, 14, 32. [Google Scholar] [CrossRef] [PubMed]
- Kretsinger, R.H.; Uversky, V.N.; Permyakov, E.A. Encyclopedia of Metalloproteins; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Hu, J.Y.; Zhang, D.L.; Liu, X.L.; Li, X.S.; Cheng, X.Q.; Chen, J.; Du, H.N.; Liang, Y. Pathological concentration of zinc dramatically accelerates abnormal aggregation of full-length human Tau and thereby significantly increases Tau toxicity in neuronal cells. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 414–427. [Google Scholar] [CrossRef] [PubMed]
- Nuttall, J.R.; Oteiza, P.I. Zinc and the aging brain. Genes Nutr. 2014, 9, 379. [Google Scholar] [CrossRef] [PubMed]
- Hane, F.; Leonenko, Z. Effect of metals on kinetic pathways of amyloid-beta aggregation. Biomolecules 2014, 4, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Tonder, N.; Johansen, F.F.; Frederickson, C.J.; Zimmer, J.; Diemer, N.H. Possible role of zinc in the selective degeneration of dentate hilar neurons after cerebral ischemia in the adult rat. Neurosci. Lett. 1990, 109, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Medvedeva, Y.V.; Yin, H.Z.; Bazrafkan, A.; Yeromin, A.; Ji, S.G.; Weiss-Hung, E.J.; Sharman, E.; Avilez, A.P.; Maki, N.; Rafi, M.A.; et al. Blocking Mitochondrial Zn(2+) Accumulation after Ischemia Reduces Mitochondrial Dysfunction and Neuronal Injury. J. Neurosci. 2022, 42, 5281–5292. [Google Scholar] [CrossRef]
- Li, W.; Yang, X.; Ding, M.; Shi, W.; Huang, Y.; An, Q.; Qi, Z.; Zhao, Y. Zinc accumulation aggravates cerebral ischemia/reperfusion injury by promoting inflammation. Front. Cell Neurosci. 2023, 17, 1065873. [Google Scholar] [CrossRef]
- Qi, Z.; Liang, J.; Pan, R.; Dong, W.; Shen, J.; Yang, Y.; Zhao, Y.; Shi, W.; Luo, Y.; Ji, X.; et al. Zinc contributes to acute cerebral ischemia-induced blood-brain barrier disruption. Neurobiol. Dis. 2016, 95, 12–21. [Google Scholar] [CrossRef]
- Bloem, B.R.; Okun, M.S.; Klein, C. Parkinson’s disease. Lancet 2021, 397, 2284–2303. [Google Scholar] [CrossRef]
- Sikora, J.; Ouagazzal, A.M. Synaptic Zinc: An Emerging Player in Parkinson’s Disease. Int. J. Mol. Sci. 2021, 22, 4724. [Google Scholar] [CrossRef]
- Pradhan, S.H.; Liu, J.Y.; Sayes, C.M. Evaluating Manganese, Zinc, and Copper Metal Toxicity on SH-SY5Y Cells in Establishing an Idiopathic Parkinson’s Disease Model. Int. J. Mol. Sci. 2023, 24, 16129. [Google Scholar] [CrossRef] [PubMed]
- Bar-Or, A.; Oliveira, E.M.L.; Anderson, D.E.; Hafler, D.A. Molecular pathogenesis of multiple sclerosis. J. Neuroimmunol. 1999, 100, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Dobson, R.; Giovannoni, G. Multiple sclerosis—A review. Eur. J. Neurol. 2019, 26, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Castro, A.D.S.; Albuquerque, L.D.S.; Melo, M.L.P.; D’Almeida, J.A.C.; Braga, R.A.M.; Assis, R.C.; Marreiro, D.D.N.; Matos, W.O.; Maia, C.S.C. Relationship between zinc-related nutritional status and the progression of multiple sclerosis. Mult. Scler. Relat. Disord. 2022, 66, 104063. [Google Scholar] [CrossRef] [PubMed]
- McAllister, B.B.; Dyck, R.H. Zinc transporter 3 (ZnT3) and vesicular zinc in central nervous system function. Neurosci. Biobehav. Rev. 2017, 80, 329–350. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.Y.; Jung, J.W.; Suh, S.W. The Emerging Role of Zinc in the Pathogenesis of Multiple Sclerosis. Int. J. Mol. Sci. 2017, 18, 2070. [Google Scholar] [CrossRef] [PubMed]
- Pawlitzki, M.; Uebelhor, J.; Sweeney-Reed, C.M.; Stephanik, H.; Hoffmann, J.; Lux, A.; Reinhold, D. Lower Serum Zinc Levels in Patients with Multiple Sclerosis Compared to Healthy Controls. Nutrients 2018, 10, 967. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Song, M.; Mucci, L.A.; Giovannucci, E.L. Zinc supplement use and risk of aggressive prostate cancer: A 30-year follow-up study. Eur. J. Epidemiol. 2022, 37, 1251–1260. [Google Scholar] [CrossRef] [PubMed]
- Vladimir, Z.; Sofia, Z.; Sinclair, W. Intracellular Zinc Excess as One of the Main Factors in the Etiology of Prostate Cancer. J. Anal. Oncol. 2016, 5, 124–131. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, H.; Xu, Z.; Cheng, X. Zinc dysregulation in cancers and its potential as a therapeutic target. Cancer Biol. Med. 2020, 17, 612–625. [Google Scholar] [CrossRef]
- Ros-Bullon, M.R.; Sanchez-Pedreno, P.; Martinez-Liarte, J.H. Serum zinc levels are increased in melanoma patients. Melanoma Res. 1998, 8, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Namikawa, T.; Utsunomiya, M.; Yokota, K.; Munekage, M.; Uemura, S.; Maeda, H.; Kitagawa, H.; Kobayashi, M.; Hanazaki, K. Association between Serum Zinc Levels and Clinicopathological Characteristics in Patients with Gastric Cancer. Gastrointest. Tumors 2023, 10, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Sun, Z.; Li, A.; Zhang, Y. Association between serum zinc levels and lung cancer: A meta-analysis of observational studies. World J. Surg. Oncol. 2019, 17, 78. [Google Scholar] [CrossRef] [PubMed]
- Nriagu, J. Zinc Toxicity in Humans; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Bennett, D.R.; Baird, C.J.; Chan, K.M.; Crookes, P.F.; Bremner, C.G.; Gottlieb, M.M.; Naritoku, W.Y. Zinc toxicity following massive coin ingestion. Am. J. Forensic Med. Pathol. 1997, 18, 148–153. [Google Scholar] [CrossRef]
- Selimoglu, M.A.; Ertekin, V.; Yildirim, Z.K.; Altinkaynak, S. Familial hyperzincaemia: A rare entity. Int. J. Clin. Pract. 2006, 60, 108–109. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schoofs, H.; Schmit, J.; Rink, L. Zinc Toxicity: Understanding the Limits. Molecules 2024, 29, 3130. https://doi.org/10.3390/molecules29133130
Schoofs H, Schmit J, Rink L. Zinc Toxicity: Understanding the Limits. Molecules. 2024; 29(13):3130. https://doi.org/10.3390/molecules29133130
Chicago/Turabian StyleSchoofs, Hannah, Joyce Schmit, and Lothar Rink. 2024. "Zinc Toxicity: Understanding the Limits" Molecules 29, no. 13: 3130. https://doi.org/10.3390/molecules29133130
APA StyleSchoofs, H., Schmit, J., & Rink, L. (2024). Zinc Toxicity: Understanding the Limits. Molecules, 29(13), 3130. https://doi.org/10.3390/molecules29133130