Identification and Removal of Pollen Spectral Interference in the Classification of Hazardous Substances Based on Excitation Emission Matrix Fluorescence Spectroscopy
Abstract
:1. Introduction
2. Results
2.1. Classification and Recognition of the Original Spectrum
2.2. Spectral Transformation and Classification
2.2.1. Spectral Transformation
2.2.2. Transformation Spectra’s Classification Performance
3. Discussion
4. Materials and Methods
4.1. Materials and Biological Samples
4.2. The Excitation Emission Matrix Fluorescence Spectral Measurements
4.3. Data Treatment
4.4. Performance Evaluation Metrics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shailaja, G.S.J.; Meganathan, P.R.; Ramakrishna, T.V.B.P.S. Review of bioaerosols from different sources and their health impacts. Environ. Monit. Assess. 2023, 195, 1321. [Google Scholar] [CrossRef]
- Cheng, Y.Z.; Qin, M.; Li, P.; Yang, L.B. Solvent-driven biotoxin into nano-units as a versatile and sensitive SERS strategy. RSC Adv. 2023, 13, 4584–4589. [Google Scholar] [CrossRef]
- Yan, S.; Wang, K.; Naggar, A.Y.; Heyden, Y.V.; Zhao, L.L.; Wu, L.M.; Xue, X.F. Natural plant toxins in honey: An ignored threat to human health. J. Hazard. Mater. 2022, 424, 127682. [Google Scholar] [CrossRef] [PubMed]
- Abbes, M.; Montana, M.; Curti, C.; Vanelle, P. Ricin poisoning: A review on contamination source, diagnosis, treatment, prevention and reporting of ricin poisoning. Toxicon 2021, 195, 86–92. [Google Scholar] [CrossRef]
- Carrera, M.A.; Miguel, E.; Fernández-Alba, A.R.; Hernando, M.D. First survey on the presence of mycotoxins in commercial bee pollen sourced from 28 countries. Food Control 2023, 152, 109816. [Google Scholar] [CrossRef]
- Suchan, T.; Talavera, G.; Sáez, L.; Ronikier, M.; Vila, R. Pollen metabarcoding as a tool for tracking long-distance insect migrations. Mol. Ecol. Resour. 2019, 19, 149–162. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Tian, Z.Y.; Sun, H.X.; Zhu, Z.Q.; Liang, W.D.; Li, A. Self-cleaning and flexible filters based on aminopyridine conjugated microporous polymers nanotubes for bacteria sterilization and efficient PM(2.5) capture. Sci. Total Environ. 2021, 766, 142594. [Google Scholar] [CrossRef] [PubMed]
- Gopalakrishnan, S.; Arigela, R.; Thyagarajan, S.; Raghunathan, R. Comparison and evaluation of enumeration methods for measurement of fungal spore emission. J. Aerosol Sci. 2022, 165, 106033. [Google Scholar] [CrossRef]
- Głowacz, K.; Drozd, M.; Ciosek-Skibińska, P. Excitation-emission fluorescence matrix acquired from glutathione capped CdSeS/ZnS quantum dots in combination with chemometric tools for pattern-based sensing of neurotransmitters. Microchim. Acta 2021, 188, 343. [Google Scholar] [CrossRef]
- Yue, S.Y.; Ren, H.; Fan, S.Y.; Sun, Y.L.; Wang, Z.F.; Fu, P.P. Springtime precipitation effects on the abundance of fluorescent biological aerosol particles and HULIS in Beijing. Sci. Rep. 2016, 6, 29618. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Zhang, M.; Qin, Y.; Zhang, K.; Li, B.; Zhang, H.; Xiang, C. Analysis and identification of the parent coal sources of fulvic acid according to convention, spectroscopy and chemometrics. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 237, 118379. [Google Scholar] [CrossRef] [PubMed]
- Rutherford, J.W.; Larson, T.V.; Gould, T.; Seto, E.; Novosselov, I.V.; Posner, J.D. Source apportionment of environmental combustion sources using excitation emission matrix fluorescence spectroscopy and machine learning. Atmos. Environ. 2021, 259, 118501. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Mukherjee, A.; Polana, A.J.; Rana, A.; Mao, J.; Jia, S.; Yadav, A.K.; Khillare, P.S.; Sarkar, S. Brown carbon aerosols in the Indo-Gangetic Plain outflow: Insights from excitation emission matrix (EEM) fluorescence spectroscopy. Environ. Sci. Process. Impacts 2021, 23, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Tan, X.; Zhang, L.; Zhu, Q.; Li, H.; Qiu, B. Hybrid N-way Partial Least Squares and Random Forest Model for Brick Tea Identification Based on Excitation–emission Matrix Fluorescence Spectroscopy. Food Bioproc. Technol. 2023, 16, 1335–1342. [Google Scholar] [CrossRef]
- Li, M.X.; Li, Y.Z.; Chen, Y.; Wang, T.; Yang, J.; Fu, H.Y.; Yang, X.L.; Li, X.F.; Zhang, G.; Chen, Z.P.; et al. Excitation-emission matrix fluorescence spectroscopy combined with chemometrics methods for rapid identification and quantification of adulteration in Atractylodes macrocephala Koidz. Microchem. J. 2021, 171, 106884. [Google Scholar] [CrossRef]
- Wang, X.Z.; Wu, H.L.; Wang, T.; Chen, A.Q.; Sun, H.B.; Ding, Z.W.; Chang, H.Y.; Yu, R.Q. Rapid identification and semi-quantification of adulteration in walnut oil by using excitation–emission matrix fluorescence spectroscopy coupled with chemometrics and ensemble learning. J. Food Compos. Anal. 2023, 117, 105094. [Google Scholar] [CrossRef]
- Lin, K.S.; Zhao, Y.C.; Wang, L.; Shi, W.J.; Cui, F.F.; Zhou, T. MSWNet: A visual deep machine learning method adopting transfer learning based upon ResNet 50 for municipal solid waste sorting. Front. Environ. Sci. Eng. 2023, 17, 77. [Google Scholar] [CrossRef] [PubMed]
- Salminen, S.; Saarni, S.; Saarinen, T. Sensitivity of varve biogenic component to climate in eastern and central Finland. J. Paleolimnol. 2023, 70, 113–130. [Google Scholar] [CrossRef]
- Kirsh, V.A.; Kirsh, A.A. Collection of submicron aerosol particles by filters composed of nanofibers. Colloid J. 2023, 85, 35–43. [Google Scholar] [CrossRef]
- Kobylyansky, V.I.; Kudasheva, T.V.; Berezkina, M.G.; Magomedov, T.M.; Belenkii, D.I.; Chechetkina, O.B. Assessment of the Possibility of Using Particles of Aerodisperse System for Dynamic Aerosol Lung Scintigraphy. Meas. Tech. 2023, 66, 359–365. [Google Scholar] [CrossRef]
- Qian, Y.Q.; Brown, J.B.; Huang-Fu, Z.C.; Zhang, T.; Wang, H.; Wang, S.Y.; Dadap, J.I.; Rao, Y. In situ analysis of the bulk and surface chemical compositions of organic aerosol particles. Commun. Chem. 2022, 5, 58. [Google Scholar] [CrossRef]
- Zeider, K.; Manjón, I.; Betterton, E.A.; Sáez, A.E.; Sorooshian, A.; Ramírez-Andreotta, M.D. Backyard aerosol pollution monitors: Foliar surfaces, dust enrichment, and factors influencing foliar retention. Environ. Monit. Assess. 2023, 195, 1200. [Google Scholar] [CrossRef]
- Ahishakiye, E.; Mwangi, W.; Muriithi, P.; Kanobe, F.; Owomugisha, G.; Taremwa, D.; Nkalubo, L. Deep Gaussian convolutional neural network model in classification of cassava diseases using spectral data. J. Supercomput. 2024, 80, 463–485. [Google Scholar] [CrossRef]
- An, S.; Choi, S.; Kim, H.R.; Hwang, J. Rapid monitoring of indoor airborne influenza and coronavirus with high air flowrate electrostatic sampling and PCR analysis. Front. Environ. Sci. Eng. 2024, 18, 85. [Google Scholar] [CrossRef]
- Collings, K.; Boisdon, C.; Sham, T.T.; Skinley, K.; Oh, H.K.; Prince, T.; Ahmed, A.; Pennington, S.H.; Brownridge, P.J.; Edwards, T.; et al. Attaching protein-adsorbing silica particles to the surface of cotton substrates for bioaerosol capture including SARS-CoV-2. Nat. Commun. 2023, 14, 5033. [Google Scholar] [CrossRef]
- Leśkiewicz, M.; Kaliszewski, M.; Włodarski, M.; Młyńczak, J.; Mierczyk, Z.; Kopczyński, K. Improved real-time bio-aerosol classification using artificial neural networks. Atmos. Meas. Tech. 2018, 11, 6259–6270. [Google Scholar] [CrossRef]
- Sobol, M.K.; Finkelstein, S.A. Predictive pollen-based biome modeling using machine learning. PLoS ONE 2018, 13, e0202214. [Google Scholar] [CrossRef]
- Diehn, S.; Zimmermann, B.; Tafintseva, V.; Bağcıoğlu, M.; Kohler, A.; Ohlson, M.; Fjellheim, S.; Kneipp, J. Discrimination of grass pollen of different species by FTIR spectroscopy of individual pollen grains. Anal. Bioanal. Chem. 2020, 412, 6459–6474. [Google Scholar] [CrossRef]
- Xu, R.Z.; Cao, J.S.; Feng, G.; Luo, J.Y.; Feng, Q.; Ni, B.J.; Fang, F. Fast identification of fluorescent components in three-dimensional excitation-emission matrix fluorescence spectra via deep learning. Chem. Eng. J. 2022, 430, 132893. [Google Scholar] [CrossRef]
- Yu, H.R.; Qu, F.S.; Zhang, X.L.; Shao, S.L.; Rong, H.W.; Liang, H.; Bai, L.M.; Ma, J. Development of correlation spectroscopy (COS) method for analyzing fluorescence excitation emission matrix (EEM): A case study of effluent organic matter (EfOM) ozonation. Chemosphere 2019, 228, 35–43. [Google Scholar] [CrossRef]
- Wang, D.D.; Song, C.T.; Zhang, B.L.; Chen, J.W.; Luo, A.L.; Wang, X.S.; Wu, S.D.; Ye, Y.X. Deciphering dissolved organic matter from freshwater aquaculture ponds in Eastern China based on optical and molecular signatures. Process Saf. Environ. Prot. 2021, 155, 122–130. [Google Scholar] [CrossRef]
- Shafi, J.; Sun, Z.H.; Ji, M.S.; Gu, Z.M.; Ahmad, W. ANN and RSM based modelling for optimization of cell dry mass of Bacillus sp. strain B67 and its antifungal activity against Botrytis cinerea. Biotechnol. Biotechnol. Equip. 2018, 32, 58–68. [Google Scholar] [CrossRef]
- Üreten, K.; Maraş, H.H. Automated classification of rheumatoid arthritis, osteoarthritis, and normal hand radiographs with deep learning methods. J. Digit. Imaging 2022, 35, 193–199. [Google Scholar] [CrossRef]
- Encina-Zelada, C.; Cadavez, V.; Pereda, J.; Gómez-Pando, L.; Salvá-Ruíz, B.; Teixeira, J.A.; Ibañez, M.; Liland, K.H.; Gonzales-Barron, U. Estimation of composition of quinoa (Chenopodium quinoa Willd.) grains by Near-Infrared Transmission spectroscopy. LWT Food Sci. Technol. 2017, 79, 126–134. [Google Scholar] [CrossRef]
- Zhang, Z.P.; Ding, J.L.; Zhu, C.M.; Wang, J.Z. Combination of efficient signal preprocessing and optimal band combination algorithm to predict soil organic matter through visible and near-infrared spectra. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 240, 118553. [Google Scholar] [CrossRef]
- Chi, K.P.; Lin, J.R.; Chen, M.; Chen, J.J.; Chen, Y.M.; Pan, T. Changeable moving window-standard normal variable transformation for visible-NIR spectroscopic analyses. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 308, 123726. [Google Scholar] [CrossRef]
- Zheng, W.H.; Xiao, S.P.; Li, K.L.; Li, K.Q.; Jiang, W. A performance-efficient and datapath-regular implementation of modified split-radix fast Fourier transform. J. Intell. Fuzzy Syst. 2016, 31, 957–965. [Google Scholar] [CrossRef]
- Zou, M.X.; Liu, Y.; Fu, M.D.; Li, C.J.; Zhou, Z.X.; Meng, H.R.; Xing, E.G.; Ren, Y.M. Combining spectral and texture feature of UAV image with plant height to improve LAI estimation of winter wheat at jointing stage. Front. Plant Sci. 2024, 14, 1272049. [Google Scholar] [CrossRef]
- Zhang, T.L.; Xia, D.H.; Tang, H.S.; Yang, X.F.; Li, H. Classification of steel samples by laser-induced breakdown spectroscopy and random forest. Chemometr. Intell. Lab. Syst. 2016, 157, 196–201. [Google Scholar] [CrossRef]
- Ma, X.L.; Zeng, H.; Zhang, J.; Chen, L.Y.; Jia, H.Y. New practical methods to obtain crucial data in performing diagnostic meta-analysis of the published literature. J. Evid.-Based Med. 2018, 11, 56–63. [Google Scholar] [CrossRef]
Transform | Accuracy | Precision | Recall | F1-Score | OOB Error |
---|---|---|---|---|---|
N | 0.8172 | 0.7897 | 0.8658 | 0.8016 | 0.6613 |
D1 | 0.8817 | 0.8590 | 0.9006 | 0.8548 | 0.7581 |
SNV | 0.8817 | 0.8909 | 0.9058 | 0.8635 | 0.7903 |
FFT | 0.8924 | 0.8751 | 0.9113 | 0.8732 | 0.7903 |
Evaluation Index | N | D1 | SNV | FFT |
---|---|---|---|---|
R2 | 0.8001 | 0.9348 | 0.9407 | 0.9544 |
RMSE | 4.017 | 2.293 | 2.187 | 1.917 |
Sample | Company | Purity |
---|---|---|
Atrial natriuretic peptide | APExBIO (Houston, TX, USA) | 95% |
Angiotensin I | APExBIO | 96% |
Angiotensin II | APExBIO | 96% |
Bradykinin | APExBIO | 99% |
Substance p | APExBIO | 99% |
Neurotensin | APExBIO | 98% |
Bovine serum albumin | Solarbio (Beijing, China) | 97% |
Ovalbumin | Solarbio | Biotechnology grade |
Nicotinamide adenine dinucleotide | Aladdin (Shanghai, China) | 99% |
Flavone | Aladdin | 98% |
Tryptophan | Aladdin | 99% |
Tyrosine | Aladdin | 99% |
Phenylalanine | Aladdin | 99% |
Vitamin B6 | Aladdin | 98% |
Nicotinamide adenine dinucleotide phosphate | Macklin (Shanghai, China) | 96% |
Riboflavin | Macklin | 98% |
Abrin | Beijing H&P Biomedical Institute (Beijing, China) | High purity |
Ricin | Beijing H&P Biomedical Institute | High purity |
Staphylococcal enterotoxin B | Beijing H&P Biomedical Institute | High purity |
β-bungarotoxin | Beijing H&P Biomedical Institute | High purity |
Pollen | Xinzhou Wutai Mountain Bee Industry Company (Xinzhou, China) | - |
Metrics | Accuracy | Precision | Recall | F1-Score |
---|---|---|---|---|
Equation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, P.; Du, B.; Xu, J.; Wang, J.; Liu, Z.; Liu, B.; Meng, F.; Tong, Z. Identification and Removal of Pollen Spectral Interference in the Classification of Hazardous Substances Based on Excitation Emission Matrix Fluorescence Spectroscopy. Molecules 2024, 29, 3132. https://doi.org/10.3390/molecules29133132
Zhang P, Du B, Xu J, Wang J, Liu Z, Liu B, Meng F, Tong Z. Identification and Removal of Pollen Spectral Interference in the Classification of Hazardous Substances Based on Excitation Emission Matrix Fluorescence Spectroscopy. Molecules. 2024; 29(13):3132. https://doi.org/10.3390/molecules29133132
Chicago/Turabian StyleZhang, Pengjie, Bin Du, Jiwei Xu, Jiang Wang, Zhiwei Liu, Bing Liu, Fanhua Meng, and Zhaoyang Tong. 2024. "Identification and Removal of Pollen Spectral Interference in the Classification of Hazardous Substances Based on Excitation Emission Matrix Fluorescence Spectroscopy" Molecules 29, no. 13: 3132. https://doi.org/10.3390/molecules29133132
APA StyleZhang, P., Du, B., Xu, J., Wang, J., Liu, Z., Liu, B., Meng, F., & Tong, Z. (2024). Identification and Removal of Pollen Spectral Interference in the Classification of Hazardous Substances Based on Excitation Emission Matrix Fluorescence Spectroscopy. Molecules, 29(13), 3132. https://doi.org/10.3390/molecules29133132