Analysis of Antioxidant Compounds in Vitex negundo Leaves Using Offline 2D-LC-ECD and LC-MS/MS
Abstract
:1. Introduction
2. Results and Discussion
2.1. Separation of the Antioxidant Components in Vitex negundo Leaves by Offline 2D-LC-ECD
2.2. Identification of the Major Antioxidant Compounds by LC-MS/MS
2.3. Antioxidant Activity Assays of Different Fractions Collected from 1D-LC
2.4. Quantitative Analysis of Phenolic Compounds by LC-MS/MS
2.4.1. Method Validation
2.4.2. Sample Analysis
2.5. Molecular Docking
3. Materials and Methods
3.1. Reagents and Chemicals
3.2. Plant Materials and Sample Preparation
3.3. Analysis of the Antioxidant Components in Vitex negundo Leaves by 2D-LC-ECD
3.3.1. 1D-LC Conditions
3.3.2. 2D-LC Conditions
3.4. Identification and Quantification of Antioxidant Compounds by LC-MS/MS
3.5. In Vitro Antioxidant Assays of Different Fractions from 1D-LC
3.5.1. DPPH Radical Scavenging Capacity Assay
3.5.2. ABTS Radical Scavenging Capacity Assay
3.5.3. FRAP Assay
3.5.4. ORAC Assay
3.6. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, C.J.; Huang, B.K.; Wang, Y.; Ye, Q.; Han, T.; Zhang, Q.Y.; Zhang, H.; Qin, L.P. Anti-inflammatory diterpenes from the seeds of Vitex negundo. Bioorg. Med. Chem. 2010, 18, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.X.; Wang, D.; Chu, X.Y.; Gao, S.Y.; Yang, D.X.; Chen, L.X.; LI, H. Iridoids from Vitex negundo var. heterophylla and their antioxidant activities. Phytochem. Lett. 2020, 35, 186–190. [Google Scholar]
- Zheng, C.J.; Li, H.Q.; Ren, S.C.; Xu, C.L.; Rahman, K.; Qin, L.P.; Sun, Y.H. Phytochemical and pharmacological profile of Vitex negundo. Phytother. Res. 2015, 29, 633–647. [Google Scholar] [CrossRef] [PubMed]
- Gill, B.S.; Mehra, R.; Navgeet Kumar, S. Vitex negundo and its medicinal value. Mol. Biol. Rep. 2018, 45, 2925–2934. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Zhang, Y.; Xu, S.; Xu, W.; Chu, K.; Xu, W.; Zhao, H.; Lu, J. Identification and quantification of phenolic compounds in Vitex negundo L. var. cannabifolia (Siebold et Zucc.) Hand.-Mazz. using liquid chromatography combined with quadrupole time-of-flight and triple quadrupole mass spectrometers. J. Pharm. Biomed. Anal. 2015, 108, 11–20. [Google Scholar] [PubMed]
- Yao, J.L.; Fang, S.M.; Liu, R.; Oppong, M.B.; Liu, E.W.; Fan, G.W.; Zhang, H. A Review on the terpenes from genus Vitex. Molecules 2016, 21, 1179. [Google Scholar] [CrossRef] [PubMed]
- Hu, P.; Li, D.; Wang, K.; Wang, H.; Wang, Z.; Li, Z.; Hua, H. New phenolic compounds from Vitex negundo var. heterophylla and their antioxidant and NO inhibitory activities. J. Funct. Foods 2015, 19, 174–181. [Google Scholar]
- Hu, P.; Li, D.H.; Hu, X.; Li, S.G.; Sai, C.M.; Sun, X.C.; Su, T.; Bai, J.; Wang, Z.H.; Li, Z.L.; et al. Lignans and triterpenoids from Vitex negundo var. heterophylla and their biological evaluation. Fitoterapia 2016, 111, 147–153. [Google Scholar]
- Hu, P.; Li, D.H.; Jia, C.C.; Liu, Q.; Wang, X.F.; Li, Z.L.; Hua, H.M. Bioactive constituents from Vitex negundo var. heterophylla and their antioxidant and α-glucosidase inhibitory activities. J. Funct. Foods 2017, 35, 236–244. [Google Scholar]
- Ge, X.; Jing, L.; Zhao, K.; Su, C.; Zhang, B.; Zhang, Q.; Han, L.; Yu, X.; Li, W. The phenolic compounds profile, quantitative analysis and antioxidant activity of four naked barley grains with different color. Food Chem. 2021, 335, 127655. [Google Scholar] [CrossRef]
- Xie, W.; Huang, Y.; Xiang, Y.; Xiong, S.; Manyande, A.; Du, H. Insights into the binding mechanism of polyphenols and fish myofibrillar proteins explored using multi-spectroscopic methods. Food Bioprocess Technol. 2020, 13, 797–806. [Google Scholar] [CrossRef]
- Maleš, I.; Dragović-Uzelac, V.; Jerković, I.; Zorić, Z.; Pedisić, S.; Repajić, M.; Garofulić, I.E.; Dobrinčić, A. Non-volatile and volatile bioactives of Salvia officinalis L., Thymus serpyllum L. and Laurus nobilis L. extracts with potential use in the development of functional beverages. Antioxidants 2022, 11, 1140. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, D.A.; Camilo, C.J.; de Fátima Alves Nonato, C.; Rodrigues, F.F.G.; Menezes, I.R.A.; Ribeiro-Filho, J.; Xiao, J.; de Almeida Souza, M.M.; da Costa, J.G.M. Influence of seasonal variation on phenolic content and in vitro antioxidant activity of Secondatia floribunda A. DC. (Apocynaceae). Food Chem. 2020, 15, 126277. [Google Scholar] [CrossRef] [PubMed]
- Gębalski, J.; Małkowska, M.; Gawenda-Kempczyńska, D.; Słomka, A.; Strzemski, M.; Styczyński, J.; Załuski, D. Eleutherococcus divaricatus fruits decrease hyaluronidase activity in blood serum and protect from antioxidative damages in in vitro model. Int. J. Mol. Sci. 2024, 25, 2033. [Google Scholar] [CrossRef] [PubMed]
- Chew, Y.L.; Khor, M.A.; Lim, Y.Y. Choices of chromatographic methods as stability indicating assays for pharmaceutical products: A review. Heliyon 2021, 7, e06553. [Google Scholar] [CrossRef]
- Tan, M.C.S.; Carranza, M.S.S.; Linis, V.C.; Malabed, R.S.; Reyes, Y.I.A.; Franco, F.C.; Oyong, G.G. Antioxidant, cytotoxic, and anti-venom activity of Alstonia parvifolia Merr. Bark. Asian Pac. J. Trop. Biomed. 2021, 11, 460–468. [Google Scholar] [CrossRef]
- Zhang, M.; Cheng, S.; Liang, Y.; Mu, Y.; Yan, H.; Liu, Q.; Geng, Y.; Wang, X.; Zhao, H. Rapid purification of antioxidants from Magnolia officinalis by semi-prep-HPLC with a two-step separation strategy guided by online HPLC-radical scavenging detection. J. Chromatogr. B 2018, 1100–1101, 140–147. [Google Scholar] [CrossRef]
- Ayhan, N.A.; Rosenberg, E. Development of comprehensive liquid chromatography with diode array and mass spectrometric detection for the characterization of (poly-)phenolic and flavonoid compounds and application to asparagus. Food Chem. 2021, 354, 129518. [Google Scholar] [CrossRef]
- Zhu, C.S.; Lin, Z.J.; Xiao, M.L.; Niu, H.J.; Zhang, B. The spectrum-effect relationship-a rational approach to screening effective compounds, reflecting the internal quality of Chinese herbal medicine. Chin. J. Nat. Med. 2016, 14, 177–184. [Google Scholar] [CrossRef]
- Jara-Palacios, M.J.; Hernanz, D.; Escudero-Gilete, M.L.; Heredia, F.J. Antioxidant potential of white grape pomaces: Phenolic composition and antioxidant capacity measured by spectrophotometric and cyclic voltammetry methods. Food Res. Int. 2014, 66, 150–157. [Google Scholar] [CrossRef]
- Barros, L.; Falcão, S.; Baptista, P.; Freire, C.; Vilas-Boas, M.; Ferreira, I.C. Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assays. Food Chem. 2008, 111, 61–66. [Google Scholar] [CrossRef]
- Arbneshi, T.; Frangu, A.; Frühbauerová, M.; Červenka, L.; Berisha, L.; Kalcher, K.; Sýs, M. Flow injection amperometric evaluation of trolox equivalent antioxidant capacity of chocolates with different cocoa content at a boron-doped diamond electrode. Food Technol. Biotechnol. 2021, 59, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Hayes, P.E.; Luong, J.H.T.; Gilchrist, E.S.; Buzid, A.; Glennon, J.D. Profiling of phenolic flavorings using core-shell reversed-phase liquid chromatography with electrochemical detection at a boron-doped diamond electrode. J. Chromatogr. A 2020, 1612, 460649. [Google Scholar] [CrossRef] [PubMed]
- Miličević, A. The relationship between antioxidant activity, first electrochemical oxidation potential, and spin population of flavonoid radicals. Arch. Ind. Hyg. Toxicol. 2019, 70, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Gomes, S.M.C.; Ghica, M.E.; Rodrigues, I.A.; Gil, E.D.S.; Oliveira-Brett, A.M. Flavonoids electrochemical detection in fruit extracts and total antioxidant capacity evaluation. Talanta 2016, 154, 284–291. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, Y.; Wang, J.; Li, X.; Wang, W.; Huang, Z. Sugaring-out assisted liquid-liquid extraction coupled with high performance liquid chromatography-electrochemical detection for the determination of 17 phenolic compounds in honey. J. Chromatogr. A 2019, 1601, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.Y.; Zhang, P.; Zhang, Y.Z.; Yuan, X.Y.; Chen, R.X. Chemical fingerprinting, quantification, and antioxidant activity evaluation of Osmanthus fragrans (Thunb.) Lour. Flowers by UPLC-ECD. Int. J. Food Prop. 2022, 25, 648–660. [Google Scholar] [CrossRef]
- Dang, J.; Zhang, L.; Shao, Y.; Mei, L.; Liu, Z.; Yue, H.; Wang, Q.; Tao, Y. Preparative isolation of antioxidative compounds from Dracocephalum heterophyllum using offline two-dimensional reversed-phase liquid chromatography/hydrophilic interaction chromatography guided by online HPLC-DPPH assay. J. Chromatogr. B 2018, 1095, 267–274. [Google Scholar] [CrossRef] [PubMed]
- Kusznierewicz, B.; Staroszczyk, H.; Malinowska-Pańczyk, E.; Parchem, K.; Bartoszek, A. Novel ABTS-dot-blot method for the assessment of antioxidant properties of food packaging. Food Packaging Shelf Life 2020, 24, 100478. [Google Scholar] [CrossRef]
- Hu, G.; Dou, L.; Zhang, J.; Su, R.; Corazzin, M.; Sun, L.; Zhao, L.; Jin, Y.; Su, L. Exploring the antioxidant stability of sheep bone protein hydrolysate-identification and molecular docking. LWT 2024, 192, 115682. [Google Scholar] [CrossRef]
- De Vita, S.; Masullo, M.; Grambone, S.; Bescós, P.B.; Piacente, S.; Bifulco, G. Demethylcalabaxanthone from Garcinia Mangostana exerts antioxidant effects through the activation of the nrf2 pathway as assessed via molecular docking and biological evaluation. Antioxidants 2023, 12, 1980. [Google Scholar] [CrossRef] [PubMed]
- Afzali, D.; Afzali, M. Highly sensitive and selective response of agnuside using a chemical sensor based on molecularly imprinted polymer/Pd/MWCNT nanocomposite at the surface of glassy carbon electrode. J. Iran. Chem. Soc. 2023, 20, 2727–2737. [Google Scholar] [CrossRef]
- Katare, A.K.; Singh, B.; Kumar, S.; Roy, S.; Gupta, A.P.; Kumar, A.; Singh, B.; Tabassum, A.; Sharma, A.K. Optimisation of extraction process for negundoside and agnuside from Vitex negundo L. leaves using soxhlet extraction, HPLC–MS/MS, and CCD-RSM methods. Chem. Afr. 2022, 5, 907–915. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Z.; Song, J.; Tian, M.; Li, R.; Cui, X. Phenolic compound identification in tomato fruit by UPLC-QTOF-MS. LWT 2023, 182, 114791. [Google Scholar] [CrossRef]
- Nadeem, M.; Mumtaz, M.W.; Danish, M.; Rashid, U.; Mukhtar, H.; Irfan, A. Antidiabetic functionality of Vitex negundo L. leaves based on UHPLC-QTOF-MS/MS based bioactives profiling and molecular docking insights. Ind. Crops Prod. 2020, 152, 112445. [Google Scholar] [CrossRef]
- Lai, G.; Cui, Y.; Granato, D.; Wen, M.; Han, Z.; Zhang, L. Free, soluble conjugated and insoluble bonded phenolic acids in Keemun black tea: From UPLC-QQQ-MS/MS method development to chemical shifts monitoring during processing. Food Res. Int. 2022, 155, 111041. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Cao, Y.; Li, J.; Agar, O.T.; Barrow, C.; Dunshea, F.; Suleria, H.A.R. Screening and characterization of phenolic compounds by LC-ESI-QTOF-MS/MS and their antioxidant potentials in papaya fruit and their by-products activities. Food Biosci. 2023, 52, 102480. [Google Scholar] [CrossRef]
- Vigbedor, B.Y.; Akoto, C.O.; Neglo, D. Isolation and identification of flavanone derivative eriodictyol from the methanol extract of Afzelia africana bark and its antimicrobial and antioxidant activities. Evid. Based Compl. Alt. 2023, 2023, 9345047. [Google Scholar] [CrossRef]
- Xiang, R.; Shu, B.; Gao, Y.; Li, Y.; Wei, G.; Tang, X.; Guo, W.; Luo, S. Chemical constituents and free radical scavenging ability of Vitex etract. Chin. J. Vet. Sci. 2021, 41, 1146–1153. (In Chinese) [Google Scholar]
- Jaiswal, R.; Kiprotich, J.; Kuhnert, N. Determination of the hydroxycinnamate profile of 12 members of the Asteraceae family. Phytochemistry 2011, 72, 781–790. [Google Scholar] [CrossRef]
- Hoff, R.; Daguer, H.; Deolindo, C.T.P.; Melo, A.P.Z.d.; Durigon, J. Phenolic compounds profile and main nutrients parameters of two underestimated non-conventional edible plants: Pereskia aculeata Mill. (ora-pro-nóbis) and Vitex megapotamica (Spreng.) Moldenke (tarumã) fruits. Food Res. Int. 2022, 162, 112042. [Google Scholar] [CrossRef]
- Banerjee, S.; Tiwari, A.; Kar, A.; Chanda, J.; Biswas, S.; Ulrich-Merzenich, G.; Mukherjee, P.K. Combining LC-MS/MS profiles with network pharmacology to predict molecular mechanisms of the hyperlipidemic activity of Lagenaria siceraria stand. J. Ethnopharmacol. 2023, 300, 115633. [Google Scholar] [CrossRef]
- Wang, L.; Pan, X.; Jiang, L.; Chu, Y.; Gao, S.; Jiang, X.; Zhang, Y.; Chen, Y.; Luo, S.; Peng, C. The biological activity mechanism of chlorogenic acid and its applications in food industry: A review. Front. Nutr. 2022, 9, 943911. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, N.; Zhu, C.; Ma, L.; Yang, J.; Du, J.; Zhang, W.; Sun, T.; Niu, J.; Yu, J. Antinociceptive effect of isoorientin against neuropathic pain induced by the chronic constriction injury of the sciatic nerve in mice. Int. Immunopharmacol. 2019, 75, 105753. [Google Scholar] [CrossRef] [PubMed]
- Deepha, V.; Praveena, R.; Sadasivam, K. DFT studies on antioxidant mechanisms, electronic properties, spectroscopic (FT-IR and UV) and NBO analysis of C-glycosyl flavone, an isoorientin. J. Mol. Struct. 2015, 1082, 131–142. [Google Scholar] [CrossRef]
- Zhang, L.; Tu, Z.C.; Wang, H.; Fu, Z.F.; Wen, Q.H.; Fan, D. Metabolic profiling of antioxidants constituents in Artemisia selengensis leaves. Food Chem. 2015, 186, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Al-Jaber, H.I.; Shakya, A.K.; Elagbar, Z.A. HPLC profiling of selected phenolic acids and flavonoids in Salvia eigii, Salvia hierosolymitana and Salvia viridis growing wild in Jordan and their in vitro antioxidant activity. Peer J. 2020, 8, e9769. [Google Scholar] [CrossRef]
- Drakula, S.; Novotni, D.; MustaČ, N.C.; Voučko, B.; Krpan, M.; Hruškar, M.; Ćurić, D. Alteration of phenolics and antioxidant capacity of gluten-free bread by yellow pea flour addition and sourdough fermentation. Food Biosci. 2021, 44, 101424. [Google Scholar] [CrossRef]
- Tristán, A.I.; Abreu, A.C.; Aguilera-Sáez, L.M.; Peña, A.; Conesa-Bueno, A.; Fernández, I. Evaluation of ORAC, IR and NMR metabolomics for predicting ripening stage and variety in melon (Cucumis melo L.). Food Chem. 2022, 372, 131263. [Google Scholar] [CrossRef]
- Serdaroğlu, G.; Uludag, N.; Sugumar, P.; Rajkumar, P. (-)-Tubifolidine as strychnos indole alkaloid: Spectroscopic charactarization (FT-IR, NMR, UV-Vis), antioxidant activity, molecular docking, and DFT studies. J. Mol. Struct. 2021, 1244, 130978. [Google Scholar] [CrossRef]
- Vijeesh, V.; Vysakh, A.; Jisha, N.; Latha, M.S. Multispectroscopic binding studies and in silico docking analysis of interactions of malic acid with xanthine oxidase. J. Mol. Struct. 2022, 1268, 133621. [Google Scholar] [CrossRef]
- Minchán-Herrera, P.; Ybañez-Julca, R.O.; Quispe-Díaz, I.M.; Venegas-Casanova, E.A.; Jara-Aguilar, R.; Salas, F.; Zevallos-Escobar, L.; Yáñez, O.; Pino-Rios, R.; Calderon, P.B.; et al. Valeriana pilosa roots essential oil: Chemical composition, antioxidant activities, and molecular docking studies on enzymes involved in redox biological processes. Antioxidants 2022, 11, 1337. [Google Scholar] [CrossRef] [PubMed]
Peak | 1D and 2D RT (min) | Precursor Ion (m/z) | Fragment Ion (m/z) | Identification | Standard Substances | Ref. |
---|---|---|---|---|---|---|
1 | 7.98, 3.20 | 299 | 137, 93, 101, 89 | p-Hydroxybenzoyl-hexoside | - | |
2 | 10.15, 4.73 | 299 | 137, 89, 93, 101, 119 | p-Hydroxybenzoyl-hexoside | - | |
3 | 10.26, 5.26 | 153 | 109, 91 | Protocatechuic acid | Y | [5] |
4 | 10.65, 4.14 | 311 | 191, 137, 93, 173 | p-Hydroxybenzoylquinic acid | [5] | |
5 | 12.28, 5.15 | 137 | 109, 93 | 3,4-Dihydroxybenzaldehyde | Y | [5] |
6 | 12.73, 5.05 | 353 | 191, 179, 161, 173, 135 | Neochlorogenic acid | Y | [5] |
7 | 14.53, 5.06 | 341 | 179, 161, 135, 177, 221, 149 | Caffeoyl hexoside | [34] | |
8 | 14.07, 5.67 | 341 | 179, 135, 165, 177, 221, 149 | Caffeoyl hexoside | [34] | |
9 | 15.24, 5.44 | 353 | 191, 179, 161, 173, 135 | Cryptochlorogenic acid | Y | [5] |
10 | 15.30, 5.66 | 179 | 135 | Caffeic acid | Y | [5] |
11 | 15.95, 5.97 | 353 | 191, 179, 161, 173, 135 | Chlorogenic acid | Y | [5] |
12 | 17.55, 4.71 | 467 | 167, 197, 235, 125, 287 | Agnuside isomer | Y | [5,35] |
13 | 19.41, 5.03 | 337 | 191, 163, 119, 173 | p-Coumaroylquinic acid | [36] | |
14 | 21.10, 5,65 | 537 | 161, 423, 493, 323, 179, 151 | Lithospermic acid isomer | [37] | |
15 | 22.54, 4.67 | 449 | 287, 151, 135 | Tetrahydroxydihydroflavone-hexoside | [38] | |
16 | 22.37, 5.44 | 495 | 137, 151, 169, 125, 357, 213, 179, 281 | Negundoside isomer | [35] | |
17 | 23.64, 6.05 | 537 | 161, 281, 519, 179 | Lithospermic acid isomer | [37] | |
18 | 25.21, 4.14 | 447 | 327, 357, 297, 285, 339, 369 | Orientin | Y | [39] |
19 | 26.31, 4.95 | 447 | 327, 357, 297, 285, 339, 369, 429 | Isoorientin | Y | [39] |
20 | 27.55, 5.44 | 677 | 515, 353, 179, 335 | Tricaffeoylquinic acid | [40] | |
21 | 29.38, 5.53 | 465 | 285, 137, 165, 303 | Agnuside | Y | [5,35] |
22 | 29.76, 5.33 | 431 | 311, 341, 283, 269, 353 | Vitexin | Y | [5] |
23 | 31.32, 3.60 | 495 | 281, 165, 137 | Negundoside | [35] | |
24 | 32.56, 3.64 | 431 | 311, 341, 283, 269, 353 | Isovitexin | Y | [5] |
25 | 34.71, 3.92 | 461 | 285 | Scutellarin | Y | [39] |
26 | 35.88, 5.55 | 537 | 161, 493, 323, 151, 179 | Lithospermic acid isomer | [37] | |
27 | 37.77, 4.76 | 515 | 191, 179, 353, 135, 161, 173 | Dicaffeoylquinic acid | [37] | |
28 | 37.87, 4.28 | 449 | 287, 151, 135, 175 | Tetrahydroxydihydroflavone-hexoside | [38] | |
29 | 39.54, 4.51 | 537 | 161, 439, 179, 123, 151 | Lithospermic acid isomer | [37] | |
30 | 40.80, 4.37 | 447 | 285, 284 | Cynaroside | Y | [5] |
31 | 42.45, 3.24 | 463 | 301, 300 | Isoquercitrin | Y | [41] |
32 | 44.38, 3.96 | 473 | 173, 311, 137, 155 | p-Hydroxybenzoyl-caffeoyl-quinic acid | - | |
33 | 45.41, 3.53 | 515 | 173, 179, 353, 191, 135 | Ioschlorogenic acid B | Y | [5] |
34 | 46.56, 3.84 | 515 | 179, 191, 353, 173, 135 | Ioschlorogenic acid A | Y | [5] |
35 | 48.09, 3.57 | 609 | 447, 429, 309, 327, 179 | (Iso)orientin-hexoside | - | |
36 | 49.45, 3.33 | 431 | 268, 269, 311 | Apigenin-7-glucoside | Y | [42] |
37 | 50.56, 4.58 | 461 | 281, 179, 137 | p-Hydroxybenzoyl-caffeoyl-hexoside | - | |
38 | 53.27, 4.03 | 515 | 179, 191, 353 | Ioschlorogenic acid C | Y | [5] |
39 | 55.19, 4.20 | 373 | 358, 343 | Casticin | Y | [5] |
Peak | Compound | Linear Range | Calibration Equation | R2 a | LOD (ng/mL) b | LOQ (ng/mL) b | RSD (%) of Recovery c | Recovery (%) | RSD (%) of Intra-Day (n = 6) c | RSD (%) of Inter-Day (n = 6) c |
---|---|---|---|---|---|---|---|---|---|---|
(μg/mL) | ||||||||||
3 | Protocatechuic acid | 0.1~20 | y = 8930.7x + 214.13 | 0.9990 | 1.75 | 5.80 | 6.84 | 90.04 | 4.44 | 5.13 |
5 | 3,4-Dihydroxybenzaldehyde | 0.0015~0.3 | y = 8283.9x − 225.96 | 0.9976 | 0.53 | 1.77 | 7.18 | 98.37 | 3.62 | 4.34 |
6 | Neochlorogenic acid | 0.025~5 | y = 6842x − 40.4 | 0.9973 | 2.32 | 7.74 | 7.60 | 93.28 | 2.37 | 4.08 |
9 | Cryptochlorogenic acid | 0.005~1 | y = 6882.7x + 30.76 | 0.9964 | 1.01 | 3.36 | 8.24 | 98.72 | 3.98 | 3.51 |
10 | Caffeic acid | 0.015~3 | y = 20,659x + 779.8 | 0.9996 | 1.34 | 4.42 | 6.27 | 99.40 | 2.05 | 2.24 |
11 | Chlorogenic acid | 1.5~300 | y = 9354.5x − 5320.1 | 0.9953 | 1.23 | 4.11 | 5.14 | 100.81 | 3.15 | 2.69 |
18 | Orientin | 0.05~10 | y = 9393.7x − 933.43 | 0.9994 | 1.33 | 4.43 | 3.67 | 90.34 | 5.31 | 3.56 |
19 | Isoorientin | 1~200 | y = 14,515x + 7915.9 | 0.9990 | 0.34 | 1.13 | 2.87 | 95.48 | 2.96 | 4.65 |
21 | Agnuside | 2~400 | y = 10,103x + 4100.4 | 0.9999 | 0.59 | 1.96 | 1.29 | 99.15 | 2.56 | 4.17 |
22 | Vitexin | 0.005~1 | y = 24,929x − 100.18 | 0.9992 | 0.44 | 1.40 | 6.08 | 90.01 | 4.34 | 3.05 |
24 | Isovitexin | 0.25~50 | y = 22,757x + 853.01 | 0.9993 | 0.16 | 0.54 | 4.63 | 91.26 | 3.72 | 4.46 |
25 | Scutellarin | 0.5~100 | y = 3957.7x − 72.5 | 0.9998 | 2.77 | 9.22 | 5.92 | 98.26 | 2.72 | 2.89 |
30 | Cynaroside | 0.25~50 | y = 150,831x + 120.09 | 0.9933 | 0.44 | 1.45 | 3.15 | 102.31 | 5.82 | 3.26 |
31 | Isoquercitrin | 0.005~1 | y = 2753.2x + 55.404 | 0.9968 | 0.07 | 0.24 | 6.45 | 98.01 | 7.87 | 3.50 |
33 | Ioschlorogenic acid B | 1~200 | y = 5170.6x − 24.7 | 0.9983 | 1.41 | 4.70 | 7.71 | 96.72 | 4.70 | 5.03 |
34 | Ioschlorogenic acid A | 0.5~100 | y = 762.71x − 30.502 | 0.9996 | 1.43 | 4.77 | 4.63 | 102.26 | 5.66 | 4.35 |
36 | Apigenin-7-glucoside | 0.025~5 | y = 170,829x + 157.09 | 0.9944 | 0.68 | 2.28 | 3.48 | 99.46 | 6.69 | 2.09 |
38 | Ioschlorogenic acid C | 0.1~20 | y = 4577.3x + 15.756 | 0.9994 | 0.54 | 1.80 | 6.05 | 99.35 | 4.23 | 4.48 |
39 | Casticin | 0.025~5 | y = 449.64x − 89.347 | 0.9982 | 5.23 | 17.44 | 3.25 | 97.19 | 2.68 | 5.76 |
Sample | Protocatechuic Acid | 3,4-dihydroxybenzaldehyde | Neochlorogenic Acid | Cryptochlorogenic Acid | Caffeic Acid | Chlorogenic Acid | Orientin | Isoorientin | Agnuside | Vitexin | Isovitexin | Scutellarin | Cynaroside | Isoquercitrin | Ioschlorogenic Acid B | Ioschlorogenic Acid A | Apigenin-7-glucoside | Ioschlorogenic Acid C | Casticin |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S1 | 133.82 | 1.58 | 14.13 | 25.85 | 48.74 | 4396.83 | 88.53 | 3450.61 | 31,196.04 | 15.29 | 1351.69 | 2966.35 | 571.18 | 2.01 | 1950.03 | 622.95 | 26.41 | 99.27 | 15.60 |
S2 | 280.23 | 0.83 | 20.35 | 44.06 | 52.53 | 13,565.91 | 116.93 | 4809.79 | 10,895.67 | 36.87 | 1758.09 | 4388.99 | 2199.23 | 27.64 | 8712.50 | 1500.21 | 133.00 | 575.01 | 33.74 |
S3 | 190.84 | 0.15 | 27.13 | 52.12 | 71.26 | 13,555.60 | 91.73 | 4799.64 | 7846.95 | 12.92 | 1788.45 | 5203.26 | 1727.71 | 59.42 | 12,588.38 | 1097.71 | 163.36 | 452.44 | 22.95 |
S4 | 165.97 | 1.14 | 44.91 | 38.26 | 27.87 | 12,383.11 | 27.96 | 3362.73 | 20,544.14 | 5.76 | 1028.52 | 2747.92 | 517.88 | 9.12 | 4461.85 | 3572.95 | 67.72 | 210.12 | 25.13 |
S5 | 160.44 | 0.35 | 10.37 | 42.64 | 33.74 | 5088.58 | 144.78 | 5749.69 | 15,453.19 | 32.04 | 1337.46 | 1264.42 | 723.87 | 3.69 | 1166.08 | 1236.44 | 17.35 | 250.19 | 19.02 |
S6 | 751.07 | 0.24 | 22.68 | 23.94 | 53.45 | 4855.33 | 17.15 | 4702.36 | 33,025.99 | 1.89 | 552.39 | 1165.94 | 355.27 | 8.20 | 367.41 | 1427.26 | 5.89 | 127.25 | 27.71 |
S7 | 177.55 | 2.48 | 30.82 | 53.01 | 28.69 | 5317.41 | 157.66 | 3299.59 | 14,968.56 | 17.74 | 675.36 | 1223.03 | 326.73 | 7.05 | 1060.54 | 1285.02 | 15.16 | 788.70 | 25.01 |
S8 | 196.21 | 2.10 | 6.56 | 19.81 | 50.18 | 3903.66 | 128.31 | 4070.43 | 8480.03 | 11.30 | 907.39 | 1802.83 | 203.00 | 4.91 | 503.96 | 937.73 | 7.07 | 122.21 | 8.31 |
S9 | 63.76 | 0.37 | 10.89 | 21.58 | 6.15 | 2770.59 | 13.22 | 651.32 | 21,366.24 | 2.62 | 379.93 | 667.47 | 101.74 | 1.67 | 414.89 | 258.95 | 6.41 | 50.50 | 9.35 |
S10 | 115.00 | 1.14 | 17.97 | 33.25 | 29.49 | 7864.67 | 168.04 | 4568.32 | 18,922.75 | 11.24 | 1006.33 | 1095.74 | 515.49 | 3.14 | 1591.28 | 1151.95 | 20.84 | 307.70 | 8.44 |
S11 | 27.58 | 0.81 | 12.94 | 1.54 | 8.11 | 4104.27 | 65.01 | 2706.27 | 4029.91 | 5.94 | 749.06 | 4125.97 | 778.72 | 6.96 | 3455.97 | 253.72 | 48.88 | 51.85 | 8.91 |
S12 | 25.12 | 0.71 | 15.02 | 7.83 | 30.31 | 8925.44 | 71.05 | 3333.65 | 28,064.92 | 6.13 | 648.31 | 2979.22 | 384.77 | 14.15 | 1008.46 | 428.02 | 15.36 | 51.24 | 6.95 |
S13 | 238.38 | 0.79 | 9.41 | 10.05 | 15.20 | 2677.15 | 13.38 | 2433.81 | 27,242.53 | 1.62 | 282.54 | 558.11 | 177.21 | 1.85 | 369.86 | 734.37 | 5.76 | 78.78 | 11.42 |
S14 | 46.74 | 0.20 | 13.10 | 32.40 | 39.11 | 12,020.38 | 36.42 | 3400.79 | 28,315.08 | 1.62 | 458.16 | 1365.22 | 323.89 | 10.67 | 685.49 | 1919.32 | 9.61 | 226.92 | 21.90 |
S15 | 260.24 | 2.07 | 7.35 | 40.84 | 11.21 | 1899.54 | 38.71 | 2607.33 | 11,343.23 | 3.25 | 466.33 | 1522.25 | 215.16 | 5.89 | 781.07 | 194.29 | 10.17 | 35.93 | 55.32 |
S16 | 209.41 | 1.36 | 5.12 | 19.02 | 5.39 | 1146.67 | 39.12 | 2793.99 | 9651.99 | 2.70 | 490.95 | 1032.92 | 256.58 | 5.40 | 912.03 | 198.98 | 14.84 | 33.15 | 58.53 |
S17 | 79.72 | 1.57 | 8.40 | 6.40 | 7.34 | 3407.66 | 21.12 | 2666.58 | 8132.60 | 2.11 | 572.99 | 2058.77 | 112.77 | 1.88 | 2049.63 | 1583.38 | 31.37 | 92.21 | 11.38 |
Average Value | 183.65 | 1.05 | 16.30 | 27.80 | 30.52 | 6346.05 | 72.89 | 3494.52 | 17,616.46 | 10.06 | 850.23 | 2127.55 | 558.31 | 10.21 | 2475.26 | 1082.54 | 35.25 | 209.03 | 21.75 |
Compound | Superoxide Dismutase | Blood Oxygenase | Cytochrome P4502c9 | Catalase | Xanthine Oxidase | Glutathione Peroxidase | Topoisomerase |
---|---|---|---|---|---|---|---|
Isoorientin | 116.57 | 93.75 | 120.25 | 116.43 | 109.37 | 86.48 | 116.41 |
Chlorogenic Acid | 108.77 | 76.33 | 97.15 | 104.21 | 108.43 | 97.39 | 110.94 |
Cynaroside | - | 97.90 | 160.22 | 187.57 | 135.80 | - | 76.65 |
Scutellarin | - | 105.32 | 166.50 | 194.48 | 133.32 | - | 73.20 |
Agnuside | 132.84 | 139.53 | 117.71 | 133.60 | 152.93 | 104.65 | 173.18 |
Casticin | 46.26 | 74.79 | 44.62 | 65.64 | 70.34 | 71.06 | 105.06 |
1D-LC Fractions | 0 min | 8 min | 11 min | 11.5 min |
---|---|---|---|---|
7–17 min | 8% A | 20% A | 80% A | 80% A |
17.5–22 min | 10% A | 30% A | 80% A | 80% A |
22.5–30 min | 12% A | 35% A | 80% A | 80% A |
30.5–41.5 min | 20% A | 40% A | 80% A | 80% A |
42–57 min | 25% A | 50% A | 80% A | 80% A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Zheng, J.; Yu, Y.; Li, Z.; Li, Y.; Hu, C.; Zhou, Y.; Chen, R. Analysis of Antioxidant Compounds in Vitex negundo Leaves Using Offline 2D-LC-ECD and LC-MS/MS. Molecules 2024, 29, 3133. https://doi.org/10.3390/molecules29133133
Wu Q, Zheng J, Yu Y, Li Z, Li Y, Hu C, Zhou Y, Chen R. Analysis of Antioxidant Compounds in Vitex negundo Leaves Using Offline 2D-LC-ECD and LC-MS/MS. Molecules. 2024; 29(13):3133. https://doi.org/10.3390/molecules29133133
Chicago/Turabian StyleWu, Qimei, Jinfen Zheng, Yan Yu, Zhirong Li, Ying Li, Chengfeng Hu, Yaping Zhou, and Rongxiang Chen. 2024. "Analysis of Antioxidant Compounds in Vitex negundo Leaves Using Offline 2D-LC-ECD and LC-MS/MS" Molecules 29, no. 13: 3133. https://doi.org/10.3390/molecules29133133
APA StyleWu, Q., Zheng, J., Yu, Y., Li, Z., Li, Y., Hu, C., Zhou, Y., & Chen, R. (2024). Analysis of Antioxidant Compounds in Vitex negundo Leaves Using Offline 2D-LC-ECD and LC-MS/MS. Molecules, 29(13), 3133. https://doi.org/10.3390/molecules29133133