Liquid–Liquid and Liquid–Solid Interfacial Nanoarchitectonics
Abstract
:1. Introduction
2. Molecular Assembly
3. MOF and COF
4. Living Cell
5. Frontier Research, Organic Semiconductor
6. Summary and Perspectives
Funding
Acknowledgments
Conflicts of Interest
References
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Lang, X.; Hirata, A.; Fujita, T.; Chen, M. Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 2011, 6, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Zhu, Q.; Huang, J.; Liu, J.; Tan, G.; Sun, C.; Li, T.; Liu, S.; Li, Y.; Wang, H.; et al. Visually resolving the direct Z-scheme heterojunction in CdS@ZnIn2S4 hollow cubes for photocatalytic evolution of H2 and H2O2 from pure water. Appl. Catal. B Environ. 2021, 293, 120213. [Google Scholar] [CrossRef]
- Saidul Islam, M.S.; Shudo, Y.; Hayami, S. Energy conversion and storage in fuel cells and super-capacitors from chemical modifications of carbon allotropes: State-of-art and prospect. Bull. Chem. Soc. Jpn. 2022, 95, 1–25. [Google Scholar] [CrossRef]
- Yoshino, A. The lithium-ion battery: Two breakthroughs in development and two reasons for the Nobel prize. Bull. Chem. Soc. Jpn. 2022, 95, 195–197. [Google Scholar] [CrossRef]
- Hosaka, T.; Komaba, S. Development of nonaqueous electrolytes for high-voltage K-ion batteries. Bull. Chem. Soc. Jpn. 2022, 95, 569–581. [Google Scholar] [CrossRef]
- Xiao, J.; Hisatomi, T.; Kazunari Domen, K. Narrow-band-gap particulate photocatalysts for one-step-excitation overall water splitting. Acc. Chem. Res. 2023, 56, 878–888. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, Y.; Matsuzawa, K.; Nagai, T.; Ikegami, K.; Kuroda, Y.; Monden, R.; Ishihara, A. Fe, N-Doped SrTiO3 synthesized using pyrazine carboxylic acid-metal complexes: Application as an oxygen reduction catalyst for polymer electrolyte fuel cell cathodes in acidic media. Bull. Chem. Soc. Jpn. 2023, 96, 175–177. [Google Scholar] [CrossRef]
- Fu, M.; Chen, W.; Lei, Y.; Yu, H.; Lin, Y.; Terrones, M. Biomimetic construction of ferrite quantum dot/graphene heterostructure for enhancing ion/charge transfer in supercapacitors. Adv. Mater. 2023, 35, 2300940. [Google Scholar] [CrossRef]
- Ishihara, S.; Labuta, J.; Nakanishi, T.; Tanaka, T.; Kataura, H. Amperometric detection of sub-ppm formaldehyde using single-walled carbon nanotubes and hydroxylamines: A referenced chemiresistive system. ACS Sens. 2017, 2, 1405–1409. [Google Scholar] [CrossRef] [PubMed]
- Zhuge, Z.; Liu, X.; Chen, T.; Gong, Y.; Li, C.; Niu, L.; Xu, S.; Xu, X.; Alothman, Z.A.; Sun, C.Q.; et al. Highly efficient photocatalytic degradation of different hazardous contaminants by CaIn2S4-Ti3C2Tx Schottky heterojunction: An experimental and mechanism study. Chem. Eng. J. 2021, 421, 127838. [Google Scholar] [CrossRef]
- Chapman, A.; Ertekin, E.; Kubota, M.; Nagao, A.; Bertsch, K.; Macadre, A.; Tsuchiyama, T.; Masamura, T.; Takaki, S.; Komoda, R.; et al. Achieving a carbon neutral future through advanced functional materials and technologies. Bull. Chem. Soc. Jpn. 2022, 95, 73–103. [Google Scholar] [CrossRef]
- Shenashen, M.A.; Emran, M.Y.; Sabagh, A.E.; Selim, M.M.; Elmarakbi, A.; El-Safty, S.A. Progressin sensory devices of pesticides, pathogens, coronavirus, and chemical additives and hazards in food assessment: Food safety concerns. Prog. Mater. Sci. 2022, 124, 100866. [Google Scholar] [CrossRef]
- Sasai, R.; Fujimura, T.; Sato, H.; Nii, E.; Sugata, M.; Nakayashiki, Y.; Hoashi, H.; Moriyosh, C.; Oishi, E.; Fujii, Y.; et al. Origin of selective nitrate removal by Ni2+–Al3+ layered double hydroxides in aqueous media and its application potential in seawater purification. Bull. Chem. Soc. Jpn. 2022, 95, 802–812. [Google Scholar] [CrossRef]
- Zhu, S.; Khan, M.A.; Kameda, T.; Xu, H.; Wang, F.; Xia, M.; Yoshioka, T. New insights into the capture performance and mechanism of hazardous metals Cr3+ and Cd2+ onto an effective layered double hydroxide based material. J. Hazard. Mater. 2022, 426, 128062. [Google Scholar] [CrossRef] [PubMed]
- Ren, F.; He, R.; Ren, J.; Tao, F.; Yang, H.; Lv, H.; Ju, X. A friendly UV-responsive fluorine-free superhydrophobic coating for oil-water separation and dye degradation. Bull. Chem. Soc. Jpn. 2022, 95, 1091–1099. [Google Scholar] [CrossRef]
- Mamun, M.R.A.; Yusuf, M.A.; Bhuyan, M.M.; Bhuiyan, M.S.H.; Arafath, M.A.; Uddin, M.N.; Soeb, M.J.A.; Almahri, A.; Rahman, M.M.; Karim, M.R. Acidity controlled desulfurization of biogas by using iron (III) and ferrosoferric (II, III) oxide. Bull. Chem. Soc. Jpn. 2022, 95, 1234–1241. [Google Scholar] [CrossRef]
- Suzuki, H.; Takahashi, K. Water purification by 2-dimensional dodecagonal nitride and graphenylene via first principles calculations. ChemPhysChem 2023, 24, e202300115. [Google Scholar] [CrossRef]
- Zhang, l.; Chong, H.L.H.; Moh, P.Y.; Albaqami, M.D.; Tighezza, A.M.; Qin, C.; Ni, X.; Cao, J.; Xu, X.; Yamauchi, Y. β-FeOOH nanospindles as chloride-capturing electrodes for electrochemical faradic deionization of saline water. Bull. Chem. Soc. Jpn. 2023, 96, 306–309. [Google Scholar] [CrossRef]
- Tiburcius, S.; Krishnan, K.; Patel, V.; Netherton, J.; Sathish, C.I.; Weidenhofer, J.; Yang, J.-H.; Verrills, N.M.; Karakoti, A.; Vinu, A. Triple surfactant assisted synthesis of novel core-shell mesoporous silica nanoparticles with high surface area for drug delivery for prostate cancer. Bull. Chem. Soc. Jpn. 2022, 95, 331–340. [Google Scholar] [CrossRef]
- Maeki, M.; Uno, S.; Niwa, A.; Okada, Y.; Tokeshi, M. Microfluidic technologies and devices for lipid nanoparticle-based RNA delivery. J. Control. Release 2022, 344, 80–96. [Google Scholar] [CrossRef] [PubMed]
- Pradipta, A.R.; Michiba, H.; Kubo, A.; Fujii, M.; Tanei, T.; Morimoto, K.; Shimazu, K.; Tanaka, K. The second-generation click-to-sense probe for intraoperative diagnosis of breast cancer tissues based on acrolein targeting. Bull. Chem. Soc. Jpn. 2022, 95, 421–426. [Google Scholar] [CrossRef]
- Su, C.-H.; Soendoro, A.; Okayama, S.; Rahmania, F.J.; Nagai, T.; Imae, T.; Tsutsumiuchi, K.; Kawai, N. Drug release stimulated by magnetic field and light on magnetite- and carbon dot-loaded carbon nanohorn. Bull. Chem. Soc. Jpn. 2022, 95, 582–594. [Google Scholar] [CrossRef]
- Canh, V.D.; Liu, M.; Sangsanont, J.; Katayama, H. Capsid integrity detection of pathogenic viruses in waters: Recent progress and potential future applications. Sci. Total Environ. 2022, 827, 154258. [Google Scholar] [CrossRef] [PubMed]
- Komiyama, M. Molecular mechanisms of the medicines for COVID-19. Bull. Chem. Soc. Jpn. 2022, 95, 1308–1317. [Google Scholar] [CrossRef]
- Hata, M.; Kadoya, Y.; Hitomi, Y.; Kodera, M. Burst of DNA double-strand breaks by dicopper(II) complex with a p-cresol-2,6-bis(amide-tether-dpa) ligand via reductive O2-activation. Bull. Chem. Soc. Jpn. 2022, 95, 1546–1552. [Google Scholar] [CrossRef]
- Yang, W.; Mixich, L.; Boonstra, E.; Cabral, H. Polymer-based mRNA delivery strategies for advanced therapies. Adv. Healthc. Mater. 2023, 12, 2202688. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Imajo, Y.; Funaba, M.; Ikeda, H.; Nishida, N.; Sakai, T. Current concepts of biomaterial scaffolds and regenerative therapy for spinal cord injury. Int. J. Mol. Sci. 2023, 24, 2528. [Google Scholar] [CrossRef]
- Niwa, T.; Tahara, T.; Chase, C.E.; Fang, F.G.; Nakaoka, T.; Irie, S.; Hayashinaka, E.; Wada, Y.; Mukai, H.; Masutomi, K.; et al. Synthesis of 11C-radiolabeled eribulin as a companion diagnostics PET tracer for brain glioblastoma. Bull. Chem. Soc. Jpn. 2023, 96, 283–290. [Google Scholar] [CrossRef]
- Kumagai, S.; Koguma, T.; Annaka, T.; Sawabe, C.; Tani, Y.; Sugiura, H.; Watanabe, T.; Hashizume, D.; Takeya, J.; Okamoto, T. Regioselective functionalization of nitrogen-embedded perylene diimides for high-performance organic Electron-transporting materials. Bull. Chem. Soc. Jpn. 2022, 95, 953–960. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, J.; Wang, L.; Xiao, L.; Jia, S. All-optical information conversion in Rb vapor based on the spatial cross-phase modulation. Opt. Express 2022, 30, 45517–45524. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Sasabe, H.; Tsuneyama, H.; Abe, S.; Matsuya, M.; Kawano, T.; Kori, Y.; Hanayama, T.; Kido, J. Quinoline-modified phenanthroline electron-transporters as n-type exciplex partners for highly efficient and stable deep-red OLEDs. Bull. Chem. Soc. Jpn. 2023, 96, 24–28. [Google Scholar] [CrossRef]
- Liang, F.-C.; Jhuang, F.-C.; Fang, Y.-H.; Benas, J.-S.; Chen, W.-C.; Yan, Z.-L.; Lin, W.-C.; Su, C.-J.; Sato, Y.; Chiba, T.; et al. Synergistic effect of cation composition engineering of hybrid Cs1−xFAxPbBr3 nanocrystals for self-healing electronics application. Adv. Mater. 2023, 35, 2207617. [Google Scholar] [CrossRef] [PubMed]
- Matsuya, M.; Sasabe, H.; Sumikoshi, S.; Hoshi, K.; Nakao, K.; Kumada, K.; Sugiyama, R.; Sato, R.; Kido, J. Highly Luminescent aluminum complex with β-diketone ligands exhibiting near-unity photoluminescence quantum yield, thermally activated delayed fluorescence, and rapid radiative decay rate properties in solution-processed organic light-emitting devices. Bull. Chem. Soc. Jpn. 2023, 96, 183–189. [Google Scholar] [CrossRef]
- Yu, C.P.; Kumagai, S.; Tsutsumi, M.; Kurosawa, T.; Ishii, H.; Watanabe, G.; Hashizume, D.; Sugiura, H.; Tani, Y.; Ise, T.; et al. Asymmetrically functionalized electron-deficient π-conjugated system for printed single-crystalline organic electronics. Adv. Sci. 2023, 10, 2207440. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Ju, D.; Kim, S. Implementation of artificial synapse using IGZO-based resistive switching device. Materials 2024, 17, 481. [Google Scholar] [CrossRef]
- Kwon, C.; Kang, D. Overlay-ML: Unioning memory and storage space for on-device AI on mobile devices. Appl. Sci. 2024, 14, 3022. [Google Scholar] [CrossRef]
- D’Avenio, G.; Daniele, C.; Grigioni, M. Nanostructured medical devices: Regulatory perspective and current applications. Materials 2024, 17, 1787. [Google Scholar] [CrossRef]
- Park, J.; Shin, J.; Yoo, H. Heterostructure-based optoelectronic neuromorphic devices. Electronics 2024, 13, 1076. [Google Scholar] [CrossRef]
- Simons, K.; Toomre, D. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 2000, 1, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Vetter, I.R.; Wittinghofer, A. Signal transduction-The guanine nucleotide-binding switch in three dimensions. Science 2001, 294, 1299–1304. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, K.N.; Iverson, T.M.; Maghlaoui, K.; Barber, J.; Iwata, S. Architecture of the photosynthetic oxygen-evolving center. Science 2004, 303, 1831–1838. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.-R. The structure of photosystem II and the mechanism of water oxidation in photosynthesis. Ann. Rev. Plant Biol. 2015, 66, 23–48. [Google Scholar] [CrossRef] [PubMed]
- Povie, G.; Segawa, Y.; Nishihara, T.; Miyauchi, Y.; Itami, K. Synthesis of a carbon nanobelt. Science 2017, 356, 172–175. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Ikemoto, K.; Fukunaga, T.M.; Koretsune, T.; Arita, R.; Sato, S.; Isobe, H. Finite phenine nanotubes with periodic vacancy defects. Science 2019, 363, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, M.; Akiyama, M.; Yonezawa, Y.; Komaguchi, K.; Higashi, M.; Nozaki, K.; Okazoe, T. Electron in a cube: Synthesis and characterization of perfluorocubane as an electron acceptor. Science 2022, 377, 756–759. [Google Scholar] [CrossRef] [PubMed]
- Hirano, K. Copper-catalyzed electrophilic amination: An umpolung strategy for new C–N bond formations. Bull. Chem. Soc. Jpn. 2023, 96, 198–207. [Google Scholar] [CrossRef]
- Tsubaki, N.; Wang, Y.; Yang, G.; He, Y. Rational design of novel reaction pathways and tailor-made catalysts for value-added chemicals synthesis from CO2 hydrogenation. Bull. Chem. Soc. Jpn. 2023, 96, 291–302. [Google Scholar] [CrossRef]
- Kobayashi, T.; Sakurai, T.; Kumagai, N. Peripheral modification of tripodal aza-oxa-crown oxa-triquinoline. Bull. Chem. Soc. Jpn. 2023, 96, 1139–1143. [Google Scholar] [CrossRef]
- Wang, W.; Yu, L. Synthesis of indenones via persulfate promoted radical alkylation/cyclization of biaryl ynones with 1,4-dihydropyridines. Molecules 2024, 29, 458. [Google Scholar] [CrossRef] [PubMed]
- Scarpelli, R.; Bence, R.; Cano, N.C.H.; Procopio, A.; Wunderlin, D.; Nardi, M. A Review on the use of deep eutectic solvents in protection reactions. Molecules 2024, 29, 818. [Google Scholar] [CrossRef] [PubMed]
- Xu, J. Recent advances in π-stacking interaction-controlled asymmetric synthesis. Molecules 2024, 29, 1454. [Google Scholar] [CrossRef] [PubMed]
- Yamaoka, Y.; Miyabe, H. NHC-catalyzed reaction of aldehydes for C(sp2)–O bond formation. Catalysts 2024, 14, 219. [Google Scholar] [CrossRef]
- Tanaka, T. Synthesis of novel heteronanographenes via fold-in approach. Bull. Chem. Soc. Jpn. 2022, 95, 602–610. [Google Scholar] [CrossRef]
- Yoshino, S.; Iwase, A.; Yamaguchi, Y.; Suzuki, T.M.; Morikawa, T.; Kudo, A. Photocatalytic CO2 reduction using water as an electron donor under visible light irradiation by Z-scheme and photoelectrochemical systems over (CuGa)0.5ZnS2 in the presence of basic additives. J. Am. Chem. Soc. 2022, 144, 2323–2332. [Google Scholar] [CrossRef] [PubMed]
- Negishi, Y. Metal-nanocluster science and technology: My personal history and outlook. Phys. Chem. Chem. Phys. 2022, 24, 7569–7594. [Google Scholar] [CrossRef] [PubMed]
- Tanks, J.; Hiroi, T.; Tamura, K.; Naito, K. Tethering organic disulfides to layered silicates: A versatile strategy for photo-controllable dynamic chemistry and functionalization. Bull. Chem. Soc. Jpn. 2023, 96, 65–71. [Google Scholar] [CrossRef]
- Okamoto, K.; Imoto, H.; Naka, K. Silsesquioxane cage-fused siloxane rings as a novel class of inorganic-based host molecules. Bull. Chem. Soc. Jpn. 2023, 96, 84–89. [Google Scholar] [CrossRef]
- Takeuchi, Y.; Ohkura, K.; Nishina, Y. Self-assembly strategies for graphene oxide/silica nanostructures: Synthesis and structural analysis. Bull. Chem. Soc. Jpn. 2023, 96, 113–119. [Google Scholar] [CrossRef]
- Minamihara, H.; Kusada, K.; Yamamoto, T.; Toriyama, T.; Murakami, Y.; Matsumura, S.; Kumara, L.S.R.; Sakata, O.; Kawaguchi, S.; Kubota, Y.; et al. Continuous-flow chemical synthesis for sub-2 nm ultra-multielement alloy nanoparticles consisting of group IV to XV elements. J. Am. Chem. Soc. 2023, 145, 17136–17142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Bai, Q.; Wang, X.; Li, C.; Uyama, H.; Shen, Y. Preparation and mechanism investigation of walnut shell-based hierarchical porous carbon for supercapacitors. Bull. Chem. Soc. Jpn. 2023, 96, 190–197. [Google Scholar] [CrossRef]
- Teplonogova, M.A.; Kozlova, A.A.; Yapryntsev, A.D.; Baranchikov, A.E.; Ivanov, V.K. Synthesis and thermal decomposition of high-entropy layered rare earth hydroxychlorides. Molecules 2024, 29, 1634. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Li, Y.; Yu, J.; Deng, Z.; Liu, S.; Shi, X.; Tang, D.; Chen, X.; Zhang, L. Dragon’s blood-loaded mesoporous silica nanoparticles for rapid hemostasis and antibacterial activity. Molecules 2024, 29, 1888. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Morimoto, N.; Jiang, L.; Kawahara, S.; Noritomi, T.; Yokoyama, H.; Mayumi, K.; Ito, K. Tough hydrogels with rapid self-reinforcement. Science 2021, 372, 1078–1081. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Liu, D.; Ubukata, T.; Seki, T. Unconventional approaches to light-promoted dynamic surface morphing on polymer films. Bull. Chem. Soc. Jpn. 2022, 95, 138–162. [Google Scholar] [CrossRef]
- Nishijima, A.; Kametani, Y.; Uemura, T. Reciprocal regulation between MOFs and polymers. Coord. Chem. Rev. 2022, 466, 214601. [Google Scholar] [CrossRef]
- Mori, H.; Yamada, Y.; Minagawa, Y.; Hasegawa, N.; Nishihara, Y. Effects of acyloxy groups in anthrabisthiadiazole-based semiconducting polymers on electronic properties, thin-film structure, and solar cell performance. Bull. Chem. Soc. Jpn. 2022, 95, 942–952. [Google Scholar] [CrossRef]
- Kato, K.; Seto, N.; Chida, K.; Yoshii, T.; Mizuno, M.; Nishihara, H.; Ohtani, S.; Ogoshi, T. Synthesis of hexa-aminated trinaphtho[3.3.3]propellane and its porous polymer solids with alkane adsorption properties. Bull. Chem. Soc. Jpn. 2022, 95, 1296–1302. [Google Scholar] [CrossRef]
- Watanabe, H.; Kamigaito, M. Direct radical copolymerizations of thioamides to generate vinyl polymers with degradable thioether bonds in the backbones. J. Am. Chem. Soc. 2023, 145, 10948–10953. [Google Scholar] [CrossRef]
- Hosokawa, S.; Nagao, A.; Hashimoto, Y.; Matsune, A.; Okazoe, T.; Suzuki, C.; Wada, H.; Kakiuchi, T.; Tsuda, A. Non-Isocyanate polyurethane synthesis by polycondensation of alkylene and arylene bis(fluoroalkyl) bis(carbonate)s with diamines. Bull. Chem. Soc. Jpn. 2023, 96, 663–670. [Google Scholar] [CrossRef]
- Bouzayani, B.; Sanromán, M.Á. Polymer-supported heterogeneous Fenton catalysts for the environmental remediation of wastewater. Molecules 2024, 29, 2188. [Google Scholar] [CrossRef] [PubMed]
- Abdelmoteleb, K.M.A.; Wasfy, A.A.F.; El-Apasery, M.A. Novel disperse dyes based on enaminones: Synthesis, dyeing performance on polyester fabrics, and potential biological activities. Molecules 2024, 29, 2227. [Google Scholar] [CrossRef]
- Aldosari, S.M.; AlOtaibi, B.M.; Alblalaihid, K.S.; Aldoihi, S.A.; AlOgab, K.A.; Alsaleh, S.S.; Alshamary, D.O.; Alanazi, T.H.; Aldrees, S.D.; Alshammari, B.A. Mechanical recycling of carbon fiber-reinforced polymer in a circular economy. Polymers 2024, 16, 1363. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.; Kato, Y.; Higashiharaguchi, S.; Aratsu, K.; Isobe, A.; Saito, T.; Prabhu, D.D.; Kitamoto, Y.; Hollamby, M.J.; Smith, A.J.; et al. Self-assembled poly-catenanes from supramolecular toroidal building blocks. Nature 2020, 583, 400–405. [Google Scholar] [CrossRef]
- Baba, K.; Nagata, K.; Yajima, T.; Yoshimura, T. Synthesis, structures, and equilibrium reactions of La(III) and Ba(II) complexes with pyridine phosphonate pendant arms on a diaza-18-crown-6 ether. Bull. Chem. Soc. Jpn. 2022, 95, 466–475. [Google Scholar] [CrossRef]
- Oki, O.; Yamagishi, H.; Morisaki, Y.; Inoue, R.; Ogawa, K.; Miki, N.; Norikane, Y.; Sato, H.; Yamamoto, Y. Synchronous assembly of chiral skeletal single-crystalline microvessels. Science 2022, 377, 673–677. [Google Scholar] [CrossRef]
- Han, X.; Wang, S.; Liu, M.; Liu, L. A cucurbit[6]uril-based supramolecular assembly as a multifunctional material for the detection and removal of organic explosives and antibiotics. Bull. Chem. Soc. Jpn. 2022, 95, 1445–1452. [Google Scholar] [CrossRef]
- Mukhopadhyay, R.D.; Ajayaghosh, A. Metallosupramolecular polymers: Current status and future prospects. Chem. Soc. Rev. 2023, 52, 8635–8650. [Google Scholar] [CrossRef]
- Kubota, R. Supramolecular–polymer composite hydrogels: From In Situ network observation to functional properties. Bull. Chem. Soc. Jpn. 2023, 96, 802–812. [Google Scholar] [CrossRef]
- Jansen, S.A.H.; Weyandt, E.; Aoki, T.; Akiyama, T.; Itoh, Y.; Vantomme, G.; Aida, T.; Meijer, E.W. Simulating assembly landscapes for comprehensive understanding of supramolecular polymer–solvent systems. J. Am. Chem. Soc. 2023, 145, 4231–4237. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Wei, L.; He, C.; Yang, C.; Wu, W. Supramolecular annihilator with DPA parallelly arranged by multiple hydrogen-bonding interactions for enhanced triplet–triplet annihilation upconversion. Molecules 2024, 29, 2203. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Bao, J.; Zhang, Y.; Wang, L.; Zhang, Y.; Zhang, J.; Tang, J.; Zou, Q. Supramolecular nanoparticles of histone and hyaluronic acid for co-delivery of siRNA and photosensitizer in vitro. Int. J. Mol. Sci. 2024, 25, 5424. [Google Scholar] [CrossRef] [PubMed]
- Kuppadakkath, G.; Jayabhavan, S.S.; Damodaran, K.K. Supramolecular Gels Based on C3-symmetric amides: Application in anion-sensing and removal of dyes from water. Molecules 2024, 29, 2149. [Google Scholar] [CrossRef] [PubMed]
- Bennett, T.D.; Horike, S. Liquid, glass and amorphous solid states of coordination polymers and metal–organic frameworks. Nat. Rev. Mater. 2018, 3, 431–440. [Google Scholar] [CrossRef]
- Gu, Y.; Zheng, J.-J.; Otake, K.; Shivanna, M.; Sakaki, S.; Yoshino, H.; Ohba, M.; Kawaguchi, S.; Wang, Y.; Li, F.; et al. Host–guest interaction modulation in porous coordination polymers for inverse selective CO2/C2H2 separation. Angew. Chem. Int. Ed. 2021, 60, 11688. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Zhang, G.; Yin, W.; Pang, H.; Xu, Q. Recent progress in Prussian blue/Prussian blue analogue-derived metallic compounds. Bull. Chem. Soc. Jpn. 2022, 95, 230–260. [Google Scholar] [CrossRef]
- Domoto, Y.; Fujita, M. Self-assembly of nanostructures with high complexity based on metal⋯unsaturated-bond coordination, Coordination. Chem. Rev. 2022, 466, 214605. [Google Scholar] [CrossRef]
- Yam, V.W.-W.; Cheng, Y.-H. Stimuli-responsive and switchable platinum(II) complexes and their applications in memory storage. Bull. Chem. Soc. Jpn. 2022, 95, 846–854. [Google Scholar] [CrossRef]
- Shivanna, M.; Otake, K.; Hiraide, S.; Fujikawa, T.; Wang, P.; Gu, Y.; Ashitani, H.; Kawaguchi, S.; Kubota, Y.; Miyahara, M.T.; et al. Crossover sorption of C2H2/CO2 and C2H6/C2H4 in soft porous coordination networks. Angew. Chem. Int. Ed. 2023, 62, e202308438. [Google Scholar] [CrossRef]
- Miles-Hobbs, A.M.; Pringle, P.G.; Woollins, J.D.; Good, D. Monofluorophos–metal gomplexes: Ripe for future discoveries in homogeneous catalysis. Molecules 2024, 29, 2368. [Google Scholar] [CrossRef] [PubMed]
- Plasseraud, L. Glycerol as ligand in metal complexes—A structural review. Crystals 2024, 14, 217. [Google Scholar] [CrossRef]
- Chiacchio, M.A.; Campisi, A.; Iannazzo, D.; Giofrè, S.V.; Legnani, L. Design of new Schiff bases and their heavy metal ion complexes for environmental applications: A molecular dynamics and density function theory study. Int. J. Mol. Sci. 2024, 25, 4159. [Google Scholar] [CrossRef] [PubMed]
- Aitken, R.A.; Dawson, G.; Keddie, N.S.; Kraus, H.; Milton, H.L.; Slawin, A.M.Z.; Wheatley, J.; Woollins, J.D. Thermal rearrangement of thiocarbonyl-stabilised triphenylphosphonium ylides leading to (Z)-1-diphenylphosphino-2-(phenylsulfenyl)alkenes and their coordination chemistry. Molecules 2024, 29, 221. [Google Scholar] [CrossRef] [PubMed]
- Hanamura, M.; Sawada, T.; Serizawa, T. In-paper self-assembly of cellulose oligomers for the preparation of all-cellulose functional paper. ACS Sustain. Chem. Eng. 2021, 9, 5684–5692. [Google Scholar] [CrossRef]
- Tamura, T.; Inoue, M.; Yoshimitsu, Y.; Hashimoto, I.; Ohashi, N.; Tsumura, K.; Suzuki, K.; Watanabe, T.; Hohsaka, T. Chemical synthesis and cell-free expression of thiazoline ring-bridged cyclic Peptides and their properties on biomembrane permeability. Bull. Chem. Soc. Jpn. 2022, 95, 359–366. [Google Scholar] [CrossRef]
- Sato, R.; Amao, Y. Curious effect of isotope-labelled substrate/Co-enzyme on catalytic Activity of CO2 reduction by formate dehydrogenase from Candida boidinii. Bull. Chem. Soc. Jpn. 2022, 95, 556–558. [Google Scholar] [CrossRef]
- Inaba, H.; Sueki, Y.; Ichikawa, M.; Kabir, A.M.R.; Iwasaki, T.; Shigematsu, H.; Kakugo, A.; Sada, K.; Tsukazaki, T.; Matsuura, K. Generation of stable microtubule superstructures by binding of peptide-fused tetrameric proteins to inside and outside. Sci. Adv. 2022, 8, eabq3817. [Google Scholar] [CrossRef]
- Sahayasheela, V.J.; Yu, Z.; Hirose, Y.; Pandian, G.N.; Bando, T.; Sugiyama, H. Inhibition of GLI-mediated transcription by cyclic pyrrole-imidazole polyamide in cancer stem cells. Bull. Chem. Soc. Jpn. 2022, 95, 693–699. [Google Scholar] [CrossRef]
- Negi, S.; Hamori, M.; Sato, A.; Shimizu, K.; Kawahara-Nakagawa, Y.; Manabe, T.; Shibata, N.; Kitagishi, H.; Mashimo, M.; Sugiura, Y. Transpeptidation reaction mediated by ligand- and metal cofactor-substituted sortase A from Staphylococcus aureus. Bull. Chem. Soc. Jpn. 2022, 95, 1025–1031. [Google Scholar] [CrossRef]
- Inaba, H.; Hori, Y.; Kabir, A.M.R.; Kakugo, A.; Sada, K.; Matsuura, K. Construction of silver nanoparticles inside microtubules using Tau-derived peptide ligated with silver-binding peptide. Bull. Chem. Soc. Jpn. 2023, 96, 1082–1087. [Google Scholar] [CrossRef]
- Rossi-Gendron, C.; Fakih, F.E.; Bourdon, L.; Nakazawa, K.; Finkel, J.; Triomphe, N.; Chocron, L.; Endo, M.; Sugiyama, H.; Bellot, C.; et al. Isothermal self-assembly of multicomponent and evolutive DNA nanostructures. Nat. Nanotechnol. 2023, 18, 1311–1318. [Google Scholar] [CrossRef] [PubMed]
- Mohanan, S.; Sathish, C.I.; Adams, T.J.; Kan, S.; Liang, M.; Vinu, A. A dual protective drug delivery system based on lipid coated core-shell mesoporous silica for efficient delivery of cabazitaxel to prostate cancer cells. Bull. Chem. Soc. Jpn. 2023, 96, 1188–1195. [Google Scholar] [CrossRef]
- Scheim, D.E.; Parry, P.I.; Rabbolini, D.J.; Aldous, C.; Yagisawa, M.; Clancy, R.; Borody, T.J.; Hoy, W.E. Back to the basics of SARS-CoV-2 biochemistry: Microvascular occlusive glycan bindings govern its morbidities and inform therapeutic responses. Viruses 2024, 16, 647. [Google Scholar] [CrossRef]
- Maeda, K.; Takeiri, F.; Kobayashi, G.; Matsuishi, S.; Ogino, H.; Ida, S.; Mori, T.; Uchimoto, Y.; Tanabe, S.; Hasegawa, T.; et al. Recent progress on mixed-anion materials for energy applications. Bull. Chem. Soc. Jpn. 2022, 95, 26–37. [Google Scholar] [CrossRef]
- Gilbert, P.U.P.A.; Bergmann, K.D.; Boekelheide, N.; Tambutté, S.; Mass, T.; Marin, F.; Adkins, J.F.; Erez, J.; Gilbert, B.; Knutson, V.; et al. Biomineralization: Integrating mechanism and evolutionary history. Sci. Adv. 2022, 8, eabl9653. [Google Scholar] [CrossRef] [PubMed]
- Kurniawan, E.; Hara, T.; Permana, Y.; Kojima, T.; Ichikuni, N.; Shimazu, S. Creation of highly reducible CuO species by high-temperature calcination of a Cu-Al layered double hydroxide: Selective hydrogenation of furfural into furfuryl alcohol with formic acid. Bull. Chem. Soc. Jpn. 2022, 95, 121–128. [Google Scholar] [CrossRef]
- Antonova, I.V.; Seleznev, V.A.; Nebogatikova, N.A.; Ivanov, A.I.; Voloshin, B.V.; Volodin, V.A.; Kurkina, I.I. Thin V2O5 films synthesized by plasma-enhanced atomic layer deposition for memristive applications. Phys. Chem. Chem. Phys. 2023, 25, 32132–32141. [Google Scholar] [CrossRef]
- Adschiri, T.; Takami, S.; Umetsu, M.; Ohara, S.; Naka, T.; Minami, K.; Hojo, D.; Togashi, T.; Arita, T.; Taguchi, M.; et al. Supercritical hydrothermal reactions for material synthesis. Bull. Chem. Soc. Jpn. 2023, 96, 133–147. [Google Scholar] [CrossRef]
- Wang, D.; Jiang, W.; Li, S.; Yan, X.; Wu, S.; Qiu, H.; Guo, S.; Zhu, B. A comprehensive review on combinatorial film via high-throughput techniques. Materials 2023, 16, 6696. [Google Scholar] [CrossRef] [PubMed]
- Saito, K.; Yamamura, Y. Reticular-chemical approach to soft-matter self-assembly: Why are srs and noh nets realized in thermotropics? Bull. Chem. Soc. Jpn. 2023, 96, 607–613. [Google Scholar] [CrossRef]
- Murayama, K.; Okita, H.; Asanuma, H. Highly functional acyclic xeno nucleic acids. Bull. Chem. Soc. Jpn. 2023, 96, 1179–1187. [Google Scholar] [CrossRef]
- Ariga, K.; Akakabe, S.; Sekiguchi, R.; Thomas, M.I.; Takeoka, Y.; Rikukawa, M.; Yoshizawa-Fujita, M. Boosting the ionic conductivity of pyrrolidinium-based ionic plastic crystals by LLZO fillers. ACS Omega 2024, 9, 22203–22212. [Google Scholar] [CrossRef] [PubMed]
- Shpotyuk, O.; Lukáčová Bujňáková, Z.; Baláž, P.; Kovalskiy, A.; Sznajder, M.; Cebulski, J.; Shpotyuk, Y.; Demchenko, P.; Syvorotka, I. Equimolar As4S4/Fe3O4 nanocomposites fabricated by dry and wet mechanochemistry: Some insights on the magnetic–fluorescent functionalization of an old drug. Materials 2024, 17, 1726. [Google Scholar] [CrossRef] [PubMed]
- Imai, Y.; Mimura, Y.; Motomura, Y.; Ikemura, R.; Shizuma, M.; Kitamatsu, M. Controlling excimer-origin circularly polarized luminescence of bipyrenyl-arginine peptides by cyclodextrin in water. Bull. Chem. Soc. Jpn. 2023, 96, 268–273. [Google Scholar] [CrossRef]
- Mieda, E.; Morishima, Y.; Watanabe, T.; Miyake, H.; Shinoda, S. Synthesis and luminescence properties of self-assembled lanthanide complexes with an EDTA-type chelating ligand in aqueous ethanol solution. Bull. Chem. Soc. Jpn. 2023, 96, 538–544. [Google Scholar] [CrossRef]
- Nguyen, L.T.B.; Abe, M. Development of photoremovable protecting groups responsive to near-infrared two-photon excitation and their application to drug delivery research. Bull. Chem. Soc. Jpn. 2023, 96, 899–906. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, C.; Wang, Z.; Zeng, Y. Halogen bond catalysis: A physical chemistry perspective. J. Phys. Chem. A 2024, 128, 507–527. [Google Scholar] [CrossRef]
- Salahuddin, B.; Masud, M.K.; Aziz, S.; Liu, C.-H.; Amiralian, N.; Ashok, A.; Hossain, S.M.A.; Park, H.; Wahab, M.A.; Amin, M.A.; et al. κ-Carrageenan gel modified mesoporous gold chronocoulometric sensor for ultrasensitive detection of microRNA. Bull. Chem. Soc. Jpn. 2022, 95, 198–207. [Google Scholar] [CrossRef]
- Murata, T.; Minami, K.; Yamazaki, T.; Sato, T.; Koinuma, H.; Ariga, K.; Matsuki, N. Nanometer-flat DNA-featured thin films prepared via laser molecular beam deposition under high-vacuum for selective methanol sensing. Bull. Chem. Soc. Jpn. 2023, 96, 29–34. [Google Scholar] [CrossRef]
- Kalyana Sundaram, S.d.; Hossain, M.M.; Rezki, M.; Ariga, K.; Tsujimura, S. Enzyme cascade electrode reactions with nanomaterials and their applicability towards biosensor and biofuel cells. Biosensors 2023, 13, 1018. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Hu, K.; Song, Z.; An, R.; Liang, X. Nanopore sequencing of short dsDNA after elongation by combination of ligation and PEAR. Bull. Chem. Soc. Jpn. 2023, 96, 785–792. [Google Scholar] [CrossRef]
- Yao, D.; Xia, L.; Li, G. Research progress on the application of covalent organic framework nanozymes in analytical chemistry. Biosensors 2024, 14, 163. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Yu, J.; Chen, F.; Li, R.; Xia, B.Y.; Xu, Z.-L. Visualizing the interfacial chemistry in multivalent metal anodes by transmission electron microscopy. Small Methods 2023, 7, 2300561. [Google Scholar] [CrossRef] [PubMed]
- Miadonye, A.; Amadu, M. Theoretical interpretation of pH and salinity effect on oil-in-water emulsion stability based on interfacial chemistry and implications for produced water demulsification. Processes 2023, 11, 2470. [Google Scholar] [CrossRef]
- Kong, Y.; Ma, S.; Zhou, F. Bioinspired interfacial friction control: From chemistry to structures to mechanics. Biomimetics 2024, 9, 200. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Geng, J.; Zhang, T.; Jiang, Z.; Fang, H.; Hua, W.; Li, F. Interfacial chemistry regulation using functional frameworks for stable metal batteries. J. Mater. Chem. A 2024, 12, 5080–5099. [Google Scholar] [CrossRef]
- Lu, Y.; Ni, Y.; Chen, J. Reliable organic carbonyl electrode materials enabled by electrolyte and interfacial chemistry regulation. Acc. Chem. Res. 2024, 57, 375–385. [Google Scholar] [CrossRef] [PubMed]
- Tokoro, H.; Nakabayashi, K.; Nagashima, S.; Song, Q.; Yoshikiyo, M.; Ohkoshi, S. Optical properties of epsilon iron oxide nanoparticles in the millimeter- and terahertz-wave regions. Bull. Chem. Soc. Jpn. 2022, 95, 538–552. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Nakano, S.; Shigeta, Y. Dynamical interaction analysis of proteins by a random forest-fragment molecular orbital (RF-FMO) method and application to Src tyrosine kinase. Bull. Chem. Soc. Jpn. 2023, 96, 42–47. [Google Scholar] [CrossRef]
- Yasui, K.; Hamamoto, K. Possibility of high ionic conductivity and high fracture toughness in all-dislocation-ceramics. Materials 2024, 17, 428. [Google Scholar] [CrossRef] [PubMed]
- Ii, S. Quantitative characterization by transmission electron microscopy and its application to interfacial phenomena in crystalline materials. Materials 2024, 17, 578. [Google Scholar] [CrossRef] [PubMed]
- Hieda, M.; Tsujimura, K.; Kinoshita, M.; Matsumori, N. Formation of a tight complex between amphidinol and sterols in lipid bilayers revealed by short-range energy transfer. Bull. Chem. Soc. Jpn. 2022, 95, 1753–1759. [Google Scholar] [CrossRef]
- Imahori, H. Molecular photoinduced charge separation: Fundamentals and application. Bull. Chem. Soc. Jpn. 2023, 96, 339–352. [Google Scholar] [CrossRef]
- Kuzume, A.; Yamamoto, K. Dendrimer-induced synthesis of subnano materials and their characterization: Establishing atom hybrid science. Bull. Chem. Soc. Jpn. 2024, 97, uoae022. [Google Scholar] [CrossRef]
- Sugimoto, Y.; Pou, P.; Abe, M.; Jelinek, P.; Pérez, R.; Morita, S.; Custance, Ó. Chemical identification of individual surface atoms by atomic force microscopy. Nature 2007, 446, 64–67. [Google Scholar] [CrossRef]
- Kawai, S.; Krejcí, O.; Nishiuchi, T.; Sahara, K.; Kodama, T.; Pawlak, R.; Meyer, E.; Kubo, T.; Foster, A.S. Three-dimensional graphene nanoribbons as a framework for molecular assembly and local probe chemistry. Sci. Adv. 2020, 6, eaay8913. [Google Scholar] [CrossRef]
- Seo, D.; Seong, S.; Kim, H.; Oh, H.S.; Lee, J.H.; Kim, H.; Kim, Y.O.; Maeda, S.; Chikami, S.; Hayashi, T.; et al. Molecular self-assembly and adsorption structure of 2,2′-dipyrimidyl dDisulfides on Au(111) surfaces. Molecules 2024, 29, 846. [Google Scholar] [CrossRef]
- Fedorov, A.Y.; Bukhtiyarov, A.V.; Panafidin, M.A.; Prosvirin, I.P.; Zubavichus, Y.V.; Bukhtiyarov, V.I. Thermally Induced surface structure and morphology evolution in bimetallic Pt-Au/HOPG nanoparticles as probed using XPS and STM. Nanomaterials 2024, 14, 57. [Google Scholar] [CrossRef]
- Terabe, K.; Hasegawa, T.; Nakayama, T.; Aono, M. Quantized conductance atomic switch. Nature 2005, 433, 47–50. [Google Scholar] [CrossRef]
- Kimura, K.; Miwa, K.; Imada, H.; Imai-Imada, M.; Kawahara, S.; Takeya, J.; Kawai, M.; Galperin, M.; Kim, Y. Selective triplet exciton formation in a single molecule. Nature 2019, 570, 210–213. [Google Scholar] [CrossRef]
- Hashikawa, Y.; Murata, Y. Water in fullerenes. Bull. Chem. Soc. Jpn. 2023, 96, 943–967. [Google Scholar] [CrossRef]
- Matsuno, T.; Isobe, H. Trapped yet Free inside the Tube: Supramolecular Chemistry of Molecular Peapods. Bull. Chem. Soc. Jpn. 2023, 96, 406–419. [Google Scholar] [CrossRef]
- Ariga, K. Nanoarchitectonics: What’s coming next after nanotechnology? Nanoscale Horiz. 2021, 6, 364–378. [Google Scholar] [CrossRef]
- Feynman, R.P. There’s plenty of room at the bottom. Calif. Inst. Technol. J. Eng. Sci. 1960, 4, 23–36. [Google Scholar]
- Roukes, M. Plenty of room, indeed. Sci. Am. 2001, 285, 48–57. [Google Scholar] [CrossRef]
- Ariga, K.; Minami, K.; Ebara, M.; Nakanishi, J. What are the emerging concepts and challenges in NANO? Nanoarchitectonics, hand-operating nanotechnology and mechanobiology. Polym. J. 2016, 48, 371–389. [Google Scholar] [CrossRef]
- Ariga, K.; Aono, M. Nanoarchitectonics. Jpn. J. Appl. Phys. 2016, 55, 1102A6. [Google Scholar] [CrossRef]
- Ariga, K.; Ji, Q.; Nakanishi, W.; Hill, J.P.; Aono, M. Nanoarchitectonics: A new materials horizon for nanotechnology. Mater. Horiz. 2015, 2, 406–413. [Google Scholar] [CrossRef]
- Eftekhari, K.; Parakhonskiy, B.V.; Grigoriev, D.; Skirtach, A.G. Advances in nanoarchitectonics: A review of “static” and “dynamic” particle assembly methods. Materials 2024, 17, 1051. [Google Scholar] [CrossRef]
- Shimada, S.; Miyagishi, H.V.; Masai, H.; Masui, Y.; Terao, J. Solvatofluorochromic contrast with supramolecular stereoisomers using linked rotaxane structures to investigate local solvation in excited donor-bridge-acceptor systems. Bull. Chem. Soc. Jpn. 2022, 95, 163–168. [Google Scholar] [CrossRef]
- Hamada, K.; Shimoyama, D.; Hirao, T.; Haino, T. Chiral supramolecular polymer formed via host-guest complexation of an octaphosphonate biscavitand and a chiral diammonium guest. Bull. Chem. Soc. Jpn. 2022, 95, 621–627. [Google Scholar] [CrossRef]
- Miyamoto, R.; Kitagawa, D.; Kobatake, S. Fatigue resistance of photochromic Diarylethene in the presence of cyclodextrins with different pore sizes. Bull. Chem. Soc. Jpn. 2022, 95, 639–645. [Google Scholar] [CrossRef]
- Masai, H. Controlling excited-state dynamics and chemical reactivities of platinum acetylide complexes via self-threading ligands with permethylated α-cyclodextrin. Bull. Chem. Soc. Jpn. 2023, 96, 1196–1205. [Google Scholar] [CrossRef]
- Kadokawa, J. A mini-review: Fabrication of polysaccharide composite materials based on self-assembled chitin nanofibers. Materials 2024, 17, 1898. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Iqbal, M.; Lin, J.; Luo, X.; Jiang, B.; Malgras, V.; Wu, K.C.-W.; Kim, K.; Yamauchi, Y. Electrochemical deposition: An advanced approach for templated synthesis of nanoporous metal architectures. Acc. Chem. Res. 2018, 51, 1764–1773. [Google Scholar] [CrossRef] [PubMed]
- Kamiyama, A.; Kubota, K.; Igarashi, D.; Youn, Y.; Tateyama, Y.; Ando, H.; Gotoh, K.; Komaba, S. MgO-template synthesis of extremely high capacity hard carbon for Na-ion battery. Angew. Chem. Int. Ed. 2021, 60, 5114–5120. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.-Z.; Lv, W.; Yang, Q.-H.; Nishihara, H. Aligned macroporous monoliths by ice-templating. Bull. Chem. Soc. Jpn. 2022, 95, 611–620. [Google Scholar] [CrossRef]
- Song, Y.; Song, X.; Wang, X.; Bai, J.; Cheng, F.; Lin, C.; Wang, X.; Zhang, H.; Sun, J.; Zhao, T.; et al. Two-dimensional metal–organic framework superstructures from ice-templated self-assembly. J. Am. Chem. Soc. 2022, 144, 17457–17467. [Google Scholar] [CrossRef]
- Matsune, H.; Ikemizu, R.; Shiomori, K.; Muraoka, E.; Yamamoto, T.; Kishida, M. Colloidal trehalose nanoparticles: Sacrifice templates for hollow silica nanospheres. Bull. Chem. Soc. Jpn. 2023, 96, 813–815. [Google Scholar] [CrossRef]
- Larasati, L.; Lestari, W.W.; Firdaus, M. Dual-action Pt(IV) prodrugs and targeted delivery in metal-organic frameworks: Overcoming cisplatin resistance and improving anticancer activity. Bull. Chem. Soc. Jpn. 2022, 95, 1561–1577. [Google Scholar] [CrossRef]
- Dai, S.; Kajiwara, T.; Ikeda, M.; Romero-Muñiz, I.; Patriarche, G.; Platero-Prats, A.E.; Vimont, A.; Daturi, M.; Tissot, A.; Xu, Q.; et al. Ultrasmall copper nanoclusters in zirconium metal-organic frameworks for the photoreduction of CO2. Angew. Chem. Int. Ed. 2022, 61, e202211848. [Google Scholar] [CrossRef]
- Horike, S. Glass and liquid chemistry of coordination polymers and MOFs. Bull. Chem. Soc. Jpn. 2023, 96, 887–898. [Google Scholar] [CrossRef]
- Mori, K.; Fujita, T.; Hata, H.; Kim, H.-J.; Nakano, T.; Yamashita, H. Surface chemical engineering of a metal 3D-printed flow reactor using a metal–organic framework for liquid-phase catalytic H2 production from hydrogen storage materials. ACS Appl. Mater. Interfaces 2023, 15, 51079–51088. [Google Scholar] [CrossRef]
- Li, J.; Yu, Z.; Zhang, J.; Liu, C.; Zhang, Q.; Shi, H.; Wu, D. Rapid, massive, and green synthesis of polyoxometalate-based metal–organic frameworks to fabricate POMOF/PAN nanofiber membranes for selective filtration of cationic dyes. Molecules 2024, 29, 1493. [Google Scholar] [CrossRef]
- EL-Mahdy, A.F.M.; Omr, H.A.E.; ALOthman, Z.A.; Lee, H. Design and synthesis of metal-free ethene-based covalent organic framework photocatalysts for efficient, selective, and long-term stable CO2 conversion into methane. J. Colloid Interface Sci. 2023, 633, 775–785. [Google Scholar] [CrossRef]
- Sun, K.; Silveira, O.J.; Ma, Y.; Hasegawa, Y.; Matsumoto, M.; Kera, S.; Krejčí, O.; Foster, A.S.; Kawai, S. On-surface synthesis of disilabenzene-bridged covalent organic frameworks. Nat. Chem. 2023, 15, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Chen, J.; Liu, J.; Ihara, H.; Qiu, H. Synthesis strategies of covalent organic frameworks: An overview from nonconventional heating methods and reaction media. Green Energy Environ. 2023, 8, 1596–1618. [Google Scholar] [CrossRef]
- Ma, B.; Zhong, L.; Huang, S.; Xiao, M.; Wang, S.; Han, D.; Meng, Y. Covalent organic framework enhanced solid polymer electrolyte for lithium metal batteries. Molecules 2024, 29, 1759. [Google Scholar] [CrossRef]
- Hamieh, T. London dispersive and Lewis acid-base surface energy of 2D single-crystalline and polycrystalline covalent organic frameworks. Crystals 2024, 14, 148. [Google Scholar] [CrossRef]
- Crudden, C.; Horton, J.; Ebralidze, I.; Zenkina, O.V.; McLean, A.B.; Drevniok, B.; She, Z.; Kraatz, H.-B.; Mosey, N.J.; Seki, T.; et al. Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold. Nat. Chem. 2014, 6, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, Y.; Nakagawa, M.; Ito, T.; Imura, Y.; Wang, K.-H.; Kawai, T. Chiral transcription from chiral Au nanowires to self-assembled monolayers of achiral azobenzene derivatives. Bull. Chem. Soc. Jpn. 2022, 95, 1006–1010. [Google Scholar] [CrossRef]
- Das, S.; Ishiwari, F.; Shoji, Y.; Fukushima, T.; Zharnikov, M. Triptycene-based self-assembled monolayer as a template for successive click reactions. J. Phys. Chem. C 2023, 127, 5178–5185. [Google Scholar] [CrossRef]
- Nakano, M.; Matsui, H.; Nakagawa, S.; You, J.; Shahiduzzaman, M.; Karakawa, M.; Taima, T. Control of the resistive switching voltage and reduction of the high-resistive-state current of zinc oxide by self-assembled monolayers. Chem. Commun. 2023, 59, 5761–5764. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gadenne, V.; Patrone, L.; Raimundo, J.-M. Self-assembled monolayers of push–pull chromophores as active layers and their applications. Molecules 2024, 29, 559. [Google Scholar] [CrossRef]
- Ariga, K.; Yamauchi, Y.; Mori, T.; Hill, J.P. 25th Anniversary article: What can be done with the Langmuir-Blodgett method? Recent developments and its critical role in materials science. Adv. Mater. 2013, 25, 6477–6512. [Google Scholar] [CrossRef] [PubMed]
- Adachi, J.; Naito, M.; Sugiura, S.; Le, N.H.-T.; Nishimura, S.; Huang, S.; Suzuki, S.; Kawamorita, S.; Komiya, N.; Hill, J.P.; et al. Coordination amphiphile: Design of planar-coordinated platinum complexes for monolayer formation at an air-water interface based on ligand characteristics and molecular topology. Bull. Chem. Soc. Jpn. 2022, 95, 889–897. [Google Scholar] [CrossRef]
- Negi, S.; Hamori, M.; Kitagishi, H.; Kano, K. Highly ordered monolayers of an optically active amphiphilic Pyrene derivative at the air–water interface. Bull. Chem. Soc. Jpn. 2022, 95, 1537–1545. [Google Scholar] [CrossRef]
- Oliveira, O.N., Jr.; Caseli, L.; Ariga, K. The past and the future of Langmuir and Langmuir–Blodgett films. Chem. Rev. 2022, 122, 6459–6513. [Google Scholar] [CrossRef]
- Negi, S.; Hamori, M.; Kubo, Y.; Kitagishi, H.; Kano, K. Monolayer formation and chiral recognition of binaphthyl amphiphiles at the air–water interface. Bull. Chem. Soc. Jpn. 2023, 96, 48–56. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, Y.; Podsiadlo, P.; Kotov, N. Biomedical applications of layer-by-layer assembly: From biomimetics to tissue engineering. Adv. Mater. 2006, 18, 3203–3224. [Google Scholar] [CrossRef]
- Qiu, X.; Li, Z.; Li, X.; Zhang, Z. Flame retardant coatings prepared using layer by layer assembly: A review. Chem. Eng. J. 2018, 334, 108–122. [Google Scholar] [CrossRef]
- Guzmán, E.; Ortega, F.; Rubio, R.G. Layer-by-layer nanoassemblies for vaccination purposes. Pharmaceutics 2023, 15, 1449. [Google Scholar] [CrossRef]
- Jin, Y.; Zhang, S. Adenosine encapsulation and characterization through layer-by-layer assembly of hydroxypropyl-β-cyclodextrin and whey protein isolate as wall materials. Molecules 2024, 29, 2046. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.M.; Mendes, J.P.; Dias, B.; Almeida, J.M.M.M.d.; Coelho, L.C.C. Optical pH sensor based on a long-period fiber grating coated with a polymeric Layer-by-layer electrostatic self-assembled nanofilm. Sensors 2024, 24, 1662. [Google Scholar] [CrossRef]
- Ariga, K.; Li, J.; Fei, J.; Ji, Q.; Hill, J.P. Nanoarchitectonics for dynamic functional materials from atomic-/molecular-level manipulation to macroscopic action. Adv. Mater. 2016, 28, 1251–1286. [Google Scholar] [CrossRef]
- Ariga, K.; Jia, X.; Song, J.; Hill, J.P.; Leong, D.T.; Jia, Y.; Li, J. Nanoarchitectonics beyond Self-Assembly: Challenges to Create Bio-Like Hierarchic Organization. Angew. Chem. Int. Ed. 2020, 59, 15424–15446. [Google Scholar] [CrossRef]
- Ariga, K.; Nishikawa, M.; Mori, T.; Takeya, J.; Shrestha, L.K.; Hill, J.P. Self-assembly as a key player for materials nanoarchitectonics. Sci. Technol. Adv. Mater. 2019, 20, 51–95. [Google Scholar] [CrossRef]
- Aono, M.; Ariga, K. The way to nanoarchitectonics and the way of nanoarchitectonics. Adv. Mater. 2016, 28, 989–992. [Google Scholar] [CrossRef]
- Ariga, K. Nanoarchitectonics: A navigator from materials to life. Mater. Chem. Front. 2017, 1, 208–211. [Google Scholar] [CrossRef]
- Ariga, K.; Yamauchi, Y. Nanoarchitectonics from atom to life. Chem. Asian J. 2020, 15, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Nakanishi, W.; Minami, K.; Shrestha, L.K.; Ji, Q.; Hill, J.P.; Ariga, K. Bioactive nanocarbon assemblies: Nanoarchitectonics and applications. Nano Today 2014, 9, 378–394. [Google Scholar] [CrossRef]
- Nguyen, N.T.K.; Lebastard, C.; Wilmet, M.; Dumait, N.; Renaud, A.; Cordier, S.; Ohashi, N.; Uchikoshi, T.; Fabien Grasset, F. A review on functional nanoarchitectonics nanocomposites based on octahedral metal atom clusters (Nb6, Mo6, Ta6, W6, Re6): Inorganic 0D and 2D powders and films. Sci. Technol. Adv. Mater. 2022, 23, 547–578. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Yang, J.; Asakura, Y.; Shuai, Q.; Yamauchi, Y. Nanoarchitectonics of hollow covalent organic frameworks: Synthesis and applications. ACS Nano 2023, 17, 8918–8934. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Li, Z.; Geng, X.; Lei, Z.; Karakoti, A.; Wu, T.; Kumar, P.; Yi, J.; Vinu, A. Emerging trends of carbon-based quantum dots: Nanoarchitectonics and applications. Small 2023, 19, 2207181. [Google Scholar] [CrossRef]
- Han, M.; Kani, K.; Na, J.; Kim, J.; Bando, Y.; Ahamad, T.; Alshehri, S.M.; Yamauchi, Y. Retrospect and prospect: Nanoarchitectonics of platinum-group-metal-based materials. Adv. Funct. Mater. 2023, 33, 2301831. [Google Scholar] [CrossRef]
- Ruiz-Hitzky, E.; Ruiz-Garci, C. MXenes vs. clays: Emerging and traditional 2D layered nanoarchitectonics. Nanoscale 2023, 15, 18959–18979. [Google Scholar] [CrossRef] [PubMed]
- Kao, Y.-C.; Lin, J.-Y.; Chen, W.-C.; Gamal Mohamed, M.; Huang, C.-F.; Chen, J.-H.; Kuo, S.-W. High-thermal stable epoxy resin through blending nanoarchitectonics with double-decker-shaped polyhedral silsesquioxane-functionalized benzoxazine derivatives. Polymers 2024, 16, 112. [Google Scholar] [CrossRef] [PubMed]
- Ramanathan, M.; Shrestha, L.K.; Mori, T.; Ji, Q.; Hill, J.P.; Ariga, K. Amphiphile nanoarchitectonics: From basic physical chemistry to advanced applications. Phys. Chem. Chem. Phys. 2013, 15, 10580–10611. [Google Scholar] [CrossRef]
- Ariga, K.; Shionoya, M. Nanoarchitectonics for coordination asymmetry and related chemistry. Bull. Chem. Soc. Jpn. 2021, 94, 839–859. [Google Scholar] [CrossRef]
- Gupta, D.; Varghese, B.S.; Suresh, M.; Panwar, C.; Gupta, T.K. Nanoarchitectonics: Functional nanomaterials and nanostructures—A review. J. Nanopart. Res. 2022, 24, 196. [Google Scholar] [CrossRef]
- Cao, L.; Huang, Y.; Parakhonskiy, B.; Skirtach, A.G. Nanoarchitectonics beyond perfect order—Not quite perfect but quite useful. Nanoscale 2022, 14, 15964–16002. [Google Scholar] [CrossRef]
- Pahal, S.; Boranna, R.; Tripathy, A.; Goudar, V.S.; Veetil, V.T.; Kurapati, R.; Prashanth, G.R.; Vemula, P.K. Nanoarchitectonics for free-standing polyelectrolyte multilayers films: Exploring the flipped surfaces. ChemNanoMat 2023, 9, e202200462. [Google Scholar] [CrossRef]
- Datta, K.K.R. Exploringthe self-cleaning facets of fluorinated graphene nanoarchitectonics: Progress and perspectives. ChemNanoMat 2023, 9, e202300135. [Google Scholar] [CrossRef]
- Jadhav, R.W.; Nadimetla, D.N.; Gawade, V.K.; Jones, L.A.; Bhosale, S.V. Mimicking the natural world with nanoarchitectonics for self-assembled superstructures. Chem. Rec. 2023, 23, e202200180. [Google Scholar] [CrossRef]
- Nayak, A.; Unayama, S.; Tai, S.; Tsuruoka, T.; Waser, R.; Aono, M.; Valov, I.; Hasegawa, T. Nanoarchitectonics for controlling the number of dopant atoms in solid electrolyte nanodots. Adv. Mater. 2018, 30, 1703261. [Google Scholar] [CrossRef]
- Eguchi, M.; Nugraha, A.S.; Rowan, A.E.; Shapter, J.; Yamauchi, Y. Adsorchromism: Molecular nanoarchitectonics at 2D nanosheets—Old chemistry for advanced chromism. Adv. Sci. 2021, 8, 2100539. [Google Scholar] [CrossRef]
- Yao, B.; Sun, H.; He, Y.; Wang, S.; Liu, X. Recent advances in the photoreactions triggered by porphyrin-based triplet–triplet annihilation upconversion systems: Molecular innovations and nanoarchitectonics. Int. J. Mol. Sci. 2022, 23, 8041. [Google Scholar] [CrossRef]
- Hikichi, R.; Tokura, Y.; Igarashi, Y.; Imai, H.; Oaki, Y. Fluorine-free substrate-independent superhydrophobic Coatings by nanoarchitectonics of polydispersed 2D materials. Bull. Chem. Soc. Jpn. 2023, 96, 766–774. [Google Scholar] [CrossRef]
- Parbat, D.; Jana, N.; Dhar, M.; Manna, U. Reactive multilayer coating as versatile nanoarchitectonics for customizing various bioinspired liquid wettabilities. ACS Appl. Mater. Interfaces 2023, 15, 25232–25247. [Google Scholar] [CrossRef]
- Li, M.; Wu, Z.; Tian, Y.; Pan, F.; Gould, T.; Zhang, S. Nanoarchitectonics of two-dimensional electrochromic Materials: Achievements and future challenges. Adv. Mater. Technol. 2023, 8, 2200917. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, P. CsPbX3 (X = Cl, Br, and I) Nanocrystals in substrates toward stable photoluminescence: Nanoarchitectonics, properties, and applications. Langmuir 2023, 39, 11188–11212. [Google Scholar] [CrossRef]
- Komiyama, M.; Yoshimoto, K.; Sisido, M.; Ariga, K. Chemistry can make strict and fuzzy controls for bio-systems: DNA nanoarchitectonics and cell-macromolecular nanoarchitectonics. Bull. Chem. Soc. Jpn. 2017, 90, 967–1004. [Google Scholar] [CrossRef]
- Jia, Y.; Yan, X.; Li, J. Schiff base mediated dipeptide assembly toward nanoarchitectonics. Angew. Chem. Int. Ed. 2022, 61, e202207752. [Google Scholar] [CrossRef]
- Shen, X.; Song, J.; Sevencan, C.; Leong, D.T.; Ariga, K. Bio-interactive nanoarchitectonics with two-dimensional materials and environments. Sci. Technol. Adv. Mater. 2022, 23, 199–224. [Google Scholar] [CrossRef]
- Chang, R.; Zhao, L.; Xing, R.; Li, J.; Yan, X. Functional chromopeptide nanoarchitectonics: Molecular design, self-assembly and biological applications. Chem. Soc. Rev. 2023, 52, 2688–2712. [Google Scholar] [CrossRef]
- Wu, M.; Liu, J.; Wang, X.; Zeng, H. Recent advances in antimicrobial surfaces via tunable molecular interactions: Nanoarchitectonics and bioengineering applications. Curr. Opin. Colloid Interface Sci. 2023, 66, 101707. [Google Scholar] [CrossRef]
- Agamendran, N.; Uddin, M.; Yesupatham, M.S.; Shanmugam, M.; Augustin, A.; Kundu, T.; Kandasamy, R.; Sasaki, K.; Sekar, K. Nanoarchitectonics design strategy of metal–organic framework and bio-metal–organic framework composites for advanced wastewater treatment through adsorption. Langmuir 2024, 40, 3320–3334. [Google Scholar] [CrossRef]
- Javed, A.; Kong, N.; Mathesh, M.; Duan, W.; Yang, W. Nanoarchitectonics-based electrochemical aptasensors for highly efficient exosome detection. Sci. Technol. Adv. Mater. 2024, 25, 2345041. [Google Scholar] [CrossRef]
- Zhang, X.; Matras-Postolek, K.; Yang, P.; Jiang, S.P. Z-scheme WOx/Cu-g-C3N4 heterojunction nanoarchitectonics with promoted charge separation and transfer towards efficient full solar-spectrum photocatalysis. J. Colloid Interface Sci. 2023, 636, 646–656. [Google Scholar] [CrossRef]
- Sadanandan, A.M.; Yang, J.-H.; Devtade, V.; Singh, G.; Dharmarajan, N.P.; Fawaz, M.; Lee, J.M.; Tavakkoli, E.; Jeon, C.-H.; Kumar, P.; et al. Carbon nitride based nanoarchitectonics for nature-inspired photocatalytic CO2 reduction. Prog. Mater. Sci. 2024, 142, 101242. [Google Scholar] [CrossRef]
- Ma, Y.; Xu, J.; Li, Z.; Shang, Y.; Li, Q. Nanoarchitectonics of CoMoO4/NiS catalyst with starry flower morphology for carrier transport path investigation with advanced and photocatalytic hydrogen evolution performance. Int. J. Hydrogen Energy 2024, 59, 937–946. [Google Scholar] [CrossRef]
- Thangamani, K.S.; Suba, V.; Radha, V.P.; Pradheesh, G.; Prabakaran, M. Investigation on nanoarchitectonics of PJBAC/TiO2 for photocatalytic and antimicrobial performance. J. Water Chem. Technol. 2024, 46, 132–148. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, G.; Wang, Q.; Meng, F.; Jia, H.; Jiang, W.; Ji, Q. Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chin. Chem. Lett. 2024, 35, 109193. [Google Scholar] [CrossRef]
- Yuan, Y.; He, J.; Dong, W.; Xie, X.; Liu, Y.; Wang, Z. Nanoarchitectonics of CuO/α-Fe2O3/BiVO4 photocatalysts with double heterojunctions on PVDF membranes: Investigating sulfadiazine removal and antifouling properties. Chem. Eng. J. 2024, 487, 150445. [Google Scholar] [CrossRef]
- Guan, X.; Zhang, X.; Li, Z.; Deshpande, S.; Fawaz, M.; Dharmarajan, N.P.; Lin, C.-H.; Lei, Z.; Hu, L.; Huang, J.-K.; et al. Sulfoxide-functional nanoarchitectonics of mesoporous sulfur-doped C3N5 for photocatalytic hydrogen evolution. Chem. Mater. 2024, 36, 4511–4520. [Google Scholar] [CrossRef]
- Chen, G.; Sciortino, F.; Ariga, K. Atomic Nanoarchitectonics for catalysis. Adv. Mater. Interfaces 2021, 8, 2001395. [Google Scholar] [CrossRef]
- Chen, G.; Singh, S.K.; Takeyasu, K.; Hill, J.P.; Nakamura, J.; Ariga, K. Versatile nanoarchitectonics of Pt with morphology control of oxygen reduction reaction catalysts. Sci. Technol. Adv. Mater. 2022, 23, 413–423. [Google Scholar] [CrossRef]
- Huang, C.; Qin, P.; Luo, Y.; Ruan, Q.; Liu, L.; Wu, Y.; Li, Q.; Xu, Y.; Liu, R.; Chu, P.K. Recent progress and perspective of cobalt-based catalysts for water splitting: Design and nanoarchitectonics. Mater. Today Energy 2022, 23, 100911. [Google Scholar] [CrossRef]
- Sharma, D.; Choudhary, P.; Kumar, S.; Krishnan, V. Transition metal phosphide nanoarchitectonics for versatile organic catalysis. Small 2023, 19, 2207053. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, P.; Chauhan, S.S.; Sharma, D.; Kumar, S.; Krishnan, V. Nanoarchitectonics of sulfonated boron nitride for catalytic synthesis of aromatic nitriles under mild conditions. Chem. Eng. J. 2023, 475, 146055. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, P. g-C3N4 Nanosheet nanoarchitectonics: H2 Generation and CO2 reduction. ChemNanoMat 2023, 9, e202300041. [Google Scholar] [CrossRef]
- Jiang, B.; Guo, Y.; Sun, F.; Wang, S.; Kang, Y.; Xu, X.; Zhao, J.; You, J.; Eguchi, M.; Yamauchi, Y.; et al. Nanoarchitectonics of metallene materials for electrocatalysis. ACS Nano 2023, 17, 13017–13043. [Google Scholar] [CrossRef]
- Ishihara, S.; Labuta, J.; Rossom, W.V.; Ishikawa, D.; Minami, K.; Hill, J.P.; Ariga, K. Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes. Phys. Chem. Chem. Phys. 2014, 16, 9713–9746. [Google Scholar] [CrossRef]
- Komiyama, M.; Mori, T.; Ariga, K. Molecular Imprinting: Materials nanoarchitectonics with molecular information. Bull. Chem. Soc. Jpn. 2018, 91, 1075–1111. [Google Scholar] [CrossRef]
- Yang, Y.; Du, X.; Jiang, D.; Shan, X.; Wang, W.; Shiigi, H.; Chen, Z. Photo-assisted Zn-air battery promoted self-powered sensor for selective and sensitive detection of antioxidant gallic acid based on Z-scheme nanoarchitectonics with heterojunction AgBr/CuBi2O4. Sens. Actuat. B Chem. 2023, 393, 134302. [Google Scholar] [CrossRef]
- Xu, Y.; Yan, B.; Lai, C.; Wang, M.; Cao, Y.; Tu, J.; Chen, D.; Liu, Y.; Wu, Q. High-performance Vo-ZnO/ZnS benefiting nanoarchitectonics from the synergism between defect engineering and surface engineering for photoelectrochemical glucose sensors. RSC Adv. 2023, 13, 19782–19788. [Google Scholar] [CrossRef]
- Vaghasiya, J.V.; Mayorga-Martinez, C.C.; Pumera, M. Wearable sensors for telehealth based on emerging materials and nanoarchitectonics. npj Flex. Electron. 2023, 7, 26. [Google Scholar] [CrossRef]
- Wang, C.; Cui, Z.; Zhu, Y.; Liu, X.; Wang, L.; Wang, L.J. Nanoarchitectonics of high-sensitivity humidity sensors based on graphene oxide films for respiratory monitoring. Diam. Relat. Mater. 2024, 144, 110970. [Google Scholar] [CrossRef]
- Sasaki, Y.; Lyu, X.; Kawashima, T.; Zhang, Y.; Ohshiro, K.; Okabe, K.; Tsuchiya, K.; Minami, T. Nanoarchitectonics of highly dispersed polythiophene on paper for accurate quantitative detection of metal ions. RSC Adv. 2024, 14, 5159–5166. [Google Scholar] [CrossRef]
- Liu, J.; Wang, R.; Zhou, H.; Mathesh, M.; Dubey, M.; Zhang, W.; Wang, B.; Yang, W. Nucleic acid isothermal amplification-based soft nanoarchitectonics as an emerging electrochemical biosensing platform. Nanoscale 2022, 14, 10286–10298. [Google Scholar] [CrossRef]
- Kim, S.K.; Lee, J.U.; Jeon, M.J.; Kim, S.K.; Hwang, S.-H.; Honge, M.E.; Sim, S.J. Bio-conjugated nanoarchitectonics with dual-labeled nanoparticles for a colorimetric and fluorescent dual-mode serological lateral flow immunoassay sensor in detection of SARS-CoV-2 in clinical samples. RSC Adv. 2023, 13, 27225–27232. [Google Scholar] [CrossRef] [PubMed]
- Geetha, B.; Deepa, P.N. Nanoarchitectonics of a new rGO/poly(p-aminobenzoic acid) (pPABA)-based molecularly imprinted polymer electrode for detecting ascorbic acid, uric acid and glucose. J. Solid State Electrochem. 2024, 28, 357–375. [Google Scholar]
- Huanga, P.; Wu, W.; Li, M.; Li, Z.; Pan, L.; Ahamad, T.; Alshehri, S.M.; Bando, Y.; Yamauchi, Y.; Xu, X. Metal-organic framework-based nanoarchitectonics: A promising material platform for electrochemical detection of organophosphorus pesticides. Coord. Chem. Rev. 2024, 501, 215534. [Google Scholar] [CrossRef]
- Kathiravan, A.; Premkumar, S.; Jhons, M.A. Nanoarchitectonics of Melia dubia flowers to fluorescent carbon dots and its Ferritin sensing. Colloid Surf. A Physicochem. Eng. Asp. 2024, 681, 132824. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mukherjee, A.; Bytesnikova, Z.; Ashrafi, A.M.; Richtera, L.; Adam, V. 2D graphene-based advanced nanoarchitectonics for electrochemical biosensors: Applications in cancer biomarker detection. Biosens. Bioelectron. 2024, 250, 116050. [Google Scholar] [CrossRef]
- Geravand, M.; Erfani, Y.; Nematpour, N.; Khosravani, M.; Rahimnia, R.; Adabi, M. Nanoarchitectonics of aptamer-based electrochemical biosensor utilizing electerospun carbon nanofibers and gold nanoparticles for Acinetobacter baumannii detection. Microchem. J. 2024, 200, 110437. [Google Scholar] [CrossRef]
- Giussi, J.M.; Cortez, M.L.; Marmisollé, W.A.; Azzaroni, O. Practical use of polymer brushes in sustainable energy applications: Interfacial nanoarchitectonics for high-efficiency devices. Chem. Soc. Rev. 2019, 48, 814–849. [Google Scholar] [CrossRef]
- Tsuchiya, T.; Nakayama, T.; Ariga, K. Nanoarchitectonics Intelligence with atomic switch and neuromorphic network system. Appl. Phys. Express 2022, 15, 100101. [Google Scholar] [CrossRef]
- Azzaroni, O.; Piccinini, E.; Fenoy, G.; Marmisollé, W.; Ariga, K. Field-effect transistors engineered via solution-based layer-by-layer nanoarchitectonics. Nanotechnology 2023, 34, 472001. [Google Scholar] [CrossRef]
- Zhou, F.; Zhao, Y.; Fu, F.; Liu, L.; Luo, Z. Thickness nanoarchitectonics with edge-enhanced raman, polarization Raman, optoelectronic properties of GaS nanosheets devices. Crystals 2023, 13, 1506. [Google Scholar] [CrossRef]
- Baek, S.; Kim, S.; Han, S.A.; Kim, Y.H.; Kim, S.; Kim, J.H. Synthesis strategies and nanoarchitectonics for high-performance transition metal qichalcogenide thin film field-effect transistors. ChemNanoMat 2023, 9, e202300104. [Google Scholar] [CrossRef]
- Xie, C.; Zhang, X.; Shi, W.; Yang, P. Highly luminescent CsPbX3@MIL-53(Al) nanoarchitectonics with anomalous stability towards flexible emitting films. J. Alloys Compd. 2024, 986, 174132. [Google Scholar] [CrossRef]
- Zhao, H.; Li, J.; Sun, W.; He, L.; Li, X.; Jia, X.; Qin, D. Dye-based nanoarchitectonics for the effective bandgap and stability of blue phosphorescent organic light-emitting diodes. Appl. Phys. A 2024, 130, 53. [Google Scholar] [CrossRef]
- Kim, M.; Firestein, K.L.; Fernando, J.F.S.; Xu, X.; Lim, H.; Golberg, D.V.; Na, J.; Kim, J.; Nara, H.; Tang, J.; et al. Strategic design of Fe and N co-doped hierarchically porous carbon as superior ORR catalyst: From the perspective of nanoarchitectonics. Chem. Sci. 2022, 13, 10836–10845. [Google Scholar] [CrossRef] [PubMed]
- Thmaini, N.; Charradi, K.; Ahmed, Z.; Chtourou, R.; Aranda, P. Nanoarchitectonics of fibrous clays as fillers of improved proton-conducting membranes for fuel-cell applications. Appl. Clay Sci. 2023, 242, 107019. [Google Scholar] [CrossRef]
- Ju, L.; Hao, G.; Meng, F.; Jiang, W.; Ji, Q. Nanoarchitectonics tuning for Fe/N-doped C60-derived carbon electrocatalysts with enhanced ORR activity by oxygen plasma treatment on C60. J. Mater. Chem. A 2023, 11, 25534–25544. [Google Scholar] [CrossRef]
- Ravipati, M.; Badhulika, S. Solvothermal synthesis of hybrid nanoarchitectonics nickel-metal organic framework modified nickel foam as a bifunctional electrocatalyst for direct urea and nitrate fuel cell. Adv. Powder Technol. 2023, 34, 104087. [Google Scholar] [CrossRef]
- Liang, H.; Zhu, X.; Chen, Y.; Cheng, J. Nanoarchitectonics of yttrium-doped barium cerate-based proton conductor electrolyte for solid oxide fuel cells. Appl. Phys. A 2024, 130, 168. [Google Scholar] [CrossRef]
- Allwyn, N.; Gokulnath, S.; Sathish, M. In-situ nanoarchitectonics of Fe/Co LDH over cobalt-enriched N-doped carbon cookies as facile oxygen redox electrocatalysts for high-rate rechargeable zinc–air batteries. ACS Appl. Mater. Interfaces 2024, 16, 20360–20374. [Google Scholar] [CrossRef]
- Su, Y.; Ding, X.; Yuan, J. Trimetallicnanoarchitectonics of FeCoNi catalyst with modulated spin polarization for enhanced oxygen reduction performance. Int. J. Hydrogen Energy 2024, 55, 893–903. [Google Scholar] [CrossRef]
- Vuk, D.; Radovanović-Perić, F.; Mandić, V.; Lovrinčević, V.; Rath, T.; Panžić, I.; Le-Cunff, J. Synthesis and nanoarchitectonics of novel squaraine derivatives for organic photovoltaic devices. Nanomaterials 2022, 12, 1206. [Google Scholar] [CrossRef] [PubMed]
- Marineau-Plante, G.; Qassab, M.; Schlachter, A.; Nos, M.; Durandetti, M.; Hardouin, J.; Lemouchi, C.; Loïc Le Pluart, L.L.; Harvey, P.D. Photoreductive electron transfers in nanoarchitectonics organization between a diketopyrrolopyroleplatinum(II)-containing organometallic polymer and various electron acceptors. J. Inorg. Organomet. Polym. 2022, 32, 1266–1276. [Google Scholar] [CrossRef]
- Bogachuk, D.; Girard, J.; Tilala, S.; Martineau, D.; Narbey, S.; Verma, A.; Hinsch, A.; Kohlstädt, M.; Wagner, L. Nanoarchitectonics in fully printed perovskite solar cells with carbon-based electrodes. Nanoscale 2023, 15, 3130–3134. [Google Scholar] [CrossRef] [PubMed]
- Lappi, T.; Cordier, S.; Gayfulin, Y.; Ababou-Girard, S.; Grasset, F.; Uchikoshi, T.; Naumov, N.G.; Renaud, A. Nanoarchitectonics of metal atom cluster-based building blocks applied to the engineering of photoelectrodes for solar cells. Sol. RRL 2023, 7, 2201037. [Google Scholar] [CrossRef]
- Qiu, D.; Hou, P. Ferroelectricity-driven self-powered weak temperature and broadband light detection in MoS2/CuInP2S6/WSe2 van der Waals heterojunction nanoarchitectonics. ACS Appl. Mater. Interfaces 2023, 15, 59671–59680. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lim, H.; Kim, S.H.; Lee, K.N.; You, J.; Ryu, D.Y.; Kim, J. Recent developments of polymer-based encapsulants and backsheets for stable and high-performance silicon photovoltaic modules: Materials nanoarchitectonics and mechanisms. J. Mater. Chem. A 2024, 12, 7452–7469. [Google Scholar] [CrossRef]
- Abdulrhman, M.; Abdel-Aal, S.K.; Bain, C.A.; Raptis, D.; Bernal-Texca, F.; Wlodarczyk, K.L.; Hand, D.P.; Martorell, J.; Marques-Hueso, J. Nanoarchitectonics of lead-free 2D cobalt-based diammonium hybrid for perovskites solar cell applications. Appl. Phys. A 2024, 130, 426. [Google Scholar] [CrossRef]
- Koralkar, N.; Mehta, S.; Upadhyay, A.; Patel, G.; Deshmukh, K. MOF-based nanoarchitectonics for lithium-ion batteries: A comprehensive review. J. Inorg. Organomet. Polym. 2024, 34, 903–929. [Google Scholar] [CrossRef]
- Bahadur, R.; Singh, G.; Li, Z.; Singh, B.; Srivastava, R.; Sakamoto, Y.; Chang, S.; Murugavel, R.; Vinu, A. Hybrid nanoarchitectonics of ordered mesoporous C60–BCN with high surface area for supercapacitors and lithium-ion batteries. Carbon 2024, 216, 118568. [Google Scholar] [CrossRef]
- Kozhunova, E.Y.; Inozemtseva, A.I.; Nazarov, M.A.; Nikolenko, A.D.; Zhvanskaya, E.S.; Kiselyova, O.I.; Motyakin, M.V.; Kutyakov, S.V.; Pakhomov, A.A.; Itkis, D.M.; et al. Nanoarchitectonics and electrochemical properties of redox-active nanogels for redox flow battery electrolytes. Electrochim. Acta 2024, 475, 143534. [Google Scholar] [CrossRef]
- Yu, L.; Chang, M.; Zhang, M.; Yang, Y.; Chen, K.; Jiang, T.; Shi, D.; Zhang, Q.; You, J. Nanoarchitectonics of 3D-networked bio-based binders for silicon anodes in lithium-ion batteries based on dynamic hydrogen bonding. Sustain. Energy Fuels 2024, 8, 843–851. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Z.; Xie, J.; Lu, Y.; Liu, S.; Xu, X.; Tu, J.; Xu, B.; Zhao, X. Nanoarchitectonics for a long-life and robust Na-ion battery at low temperature with Prussian blue cathode and low-concentration electrolyte. J. Energy Storage 2024, 80, 110263. [Google Scholar] [CrossRef]
- Hsu, C.-C.; Yu, Y.Z.; Wu, C.-H.; Lee, P.-Y.; Chen, H.-M.; Husain, S.; Kongvarhodom, C.; Hsiao, Y.-C.; Lin, L.-Y. Metal ratio and bimetal nanoarchitectonics of ammonia-based fluoride complex induced nickel hydroxide and manganese oxide composites as active materials of an energy storage device. J. Energy Storage 2024, 80, 110316. [Google Scholar] [CrossRef]
- Jheng, Y.-S.; Lue, S.-J.J.; Cheng, K.-W. Nanoarchitectonics of ternary NixCo1−xSe2 electrocatalysts on Ni-foams combined with Pt-loaded carbon clothes as the air-cathodes in Zn-air energy storage systems. J. Taiwan Inst. Chem. Eng. 2024, 159, 105451. [Google Scholar] [CrossRef]
- Na, J.; Zheng, D.; Kim, J.; Gao, M.; Azhar, A.; Lin, J.; Yamauchi, Y. Material nanoarchitectonics of functional polymers and inorganic nanomaterials for smart supercapacitors. Small 2022, 18, 2102397. [Google Scholar] [CrossRef]
- Qi, P.; Su, Y.; Yang, L.; Wang, J.; Jiang, M.; Sun, X.; Zhang, P.; Xiong, Y. Nanoarchitectonics of hierarchical porous carbon based on carbonization of heavy fraction of bio-oil and its supercapacitor performance. J. Energy Storage 2023, 74, 109398. [Google Scholar] [CrossRef]
- Joseph, A.; Ramachandran, S.; Thomas, T. Ball milling nanoarchitectonics of nitrogen-doped Cr2O3 on thermally exfoliated. amorphous nanosheets for a high-performance supercapacitor. ChemistrySelect 2023, 8, e202300808. [Google Scholar] [CrossRef]
- Vivekanand; Balaji, S.S.; Nasrin, K.; Sathish, M. Unveiled supercapacitive performance of Se-doped graphene nanoarchitectonics prepared via supercritical fluid technique. ChemNanoMat 2023, 9, e202300209. [Google Scholar] [CrossRef]
- Dong, K.; Sun, Z.; Jing, G.; Wang, J.; Tang, B.; Zhao, N.; Kong, L.; Guo, F. Nanoarchitectonics of self-supporting porous carbon electrode with heteroatoms co-doped: For high-performance supercapacitors. J. Energy Storage 2024, 85, 111048. [Google Scholar] [CrossRef]
- Wang, H.; Shi, H.; Gao, Z.; Cui, X. Growing-fruits-type nanoarchitectonics of nickel-vanadium layered double hydroxide on branches of nitrogen-rich carbon nanotube for high performance supercapacitors. J. Energy Storage 2024, 89, 111745. [Google Scholar] [CrossRef]
- Salunkhe, T.T.; Gurugubelli, T.R.; Bathula, B.; Thirumal, V.; Kim, J.; Yoo, K. Energy storage nanoarchitectonics of La2W2O9 porous microspheres for advanced supercapacitive performance. Mater. Chem. Phys. 2024, 315, 128993. [Google Scholar] [CrossRef]
- Khan, A.H.; Ghosh, S.; Pradhan, B.; Dalui, A.; Shrestha, L.K.; Acharya, S.; Ariga, K. Two-dimensional (2D) nanomaterials towards electrochemical nanoarchitectonics in energy-related applications. Bull. Chem. Soc. Jpn. 2017, 90, 627–648. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J.H.; Ariga, K. Redox-active polymers for energy storage nanoarchitectonics. Joule 2017, 1, 739–768. [Google Scholar] [CrossRef]
- Feng, J.-C.; Xia, H. Application of nanoarchitectonics in moist-electric generation. Beilstein J. Nanotechnol. 2022, 13, 1185–1200. [Google Scholar] [CrossRef]
- Geng, X.; Singh, G.; Sathish, C.I.; Li, Z.; Bahadur, R.; Liu, Y.; Li, S.; Yu, X.; Breese, M.; Yi, J.; et al. Biomass derived nanoarchitectonics of porous carbon with tunable oxygen functionalities and hierarchical structures and their superior performance in CO2 adsorption and energy storage. Carbon 2023, 214, 118347. [Google Scholar] [CrossRef]
- Ali, S.M.; Kassim, H.; Alaizeri, Z.A.M.; Shahabuddin, M. Enhanced electrochemical performance of novel nanoarchitectonics tin selenide (SnSe/rGO) pseudocapacitive material for energy storage application. J. Energy Storage 2023, 73, 109163. [Google Scholar] [CrossRef]
- Gupta, P.; Jaidka, S.; Singh, D.P. Quenching induced modified nanoarchitectonics in the dielectric and energy storage behavior of poly (vinylidene fluoride)/Ba0.7Sr0.3TiO3 composites thick films. Appl. Phys. A 2024, 130, 279. [Google Scholar] [CrossRef]
- Chahal, S.; Bhushan, R.; Kumari, P.; Guan, X.; Lee, J.M.; Ray, S.J.; Thakur, A.K.; Vinu, A.; Kumar, P. Microwave nanoarchitectonics of black phosphorene for energy storage. Matter 2024, 7, 237–254. [Google Scholar] [CrossRef]
- Pham, T.-A.; Qamar, A.; Dinh, T.; Masud, N.K.; Rais-Zadeh, M.; Senesky, D.G.; Yamauchi, Y.; Nguyen, N.-T.; Phan, H.-P. Nanoarchitectonics for wide bandgap semiconductor nanowires: Toward the next generation of nanoelectromechanical systems for environmental monitoring. Adv. Sci. 2020, 7, 2001294. [Google Scholar] [CrossRef]
- Ali, N.; Funmilayo, O.R.; Khan, A.; Ali, F.; Bilal, M.; Yang, Y.; Akhter, M.S.; Zhou, C.; Wenjie, Y.; Iqbal, H.M.N. Nanoarchitectonics: Porous hydrogel as bio-sorbent for effective remediation of hazardous contaminants. J. Inorg. Organomet. Polym. 2022, 32, 3301–3320. [Google Scholar] [CrossRef]
- Nawaz, A.; Atif, M.; Naz, I.; Khan, A.; Naz, F.; Ali, N. Comparative robustness and sustainability of in-situ prepared antimony nanoarchitectonics in chitosan/synthesized carboxymethyl chitosan in environmental remediation perspective. Int. J. Biol. Macromol. 2023, 235, 123591. [Google Scholar] [CrossRef] [PubMed]
- Barreca, D.; Maccato, C. Nanoarchitectonics of metal oxide materials for sustainable technologies and environmental applications. CrystEngComm 2023, 25, 3968–3987. [Google Scholar] [CrossRef]
- Bhadra, B.N.; Shrestha, L.K.; Ariga, K. Porous carbon nanoarchitectonics for the environment: Detection and adsorption. CrystEngComm 2022, 24, 6804–6824. [Google Scholar] [CrossRef]
- Akamatsu, M. Inner and interfacial environmental nanoarchitectonics of supramolecular assemblies formed by amphiphiles: From emergence to application. J. Oleo Sci. 2023, 72, 105–116. [Google Scholar] [CrossRef]
- Kumar, A.; Choudhary, P.; Chhabra, T.; Kaur, H.; Kumar, A.; Qamar, M.; Krishnan, V. Frontier nanoarchitectonics of graphitic carbon nitride based plasmonic photocatalysts and photoelectrocatalysts for energy, environment and organic reactions. Mater. Chem. Front. 2023, 7, 1197–1247. [Google Scholar] [CrossRef]
- Molla, M.R.; Levkin, P.A. Combinatorial approach to nanoarchitectonics for nonviral delivery of nucleic acids. Adv. Mater. 2016, 28, 1159–1175. [Google Scholar] [CrossRef]
- Momekova, D.B.; Gugleva, V.E.; Petrov, P.D. Nanoarchitectonics of multifunctional niosomes for advanced drug delivery. ACS Omega 2021, 6, 33265–33273. [Google Scholar] [CrossRef] [PubMed]
- Ferhan, A.R.; Park, S.; Park, H.; Tae, H.; Jackman, J.A.; Cho, N.-J. Lipid nanoparticle technologies for nucleic acid delivery: A nanoarchitectonics perspective. Adv. Funct. Mater. 2022, 32, 2203669. [Google Scholar] [CrossRef]
- Mohanan, S.; Guan, X.; Liang, M.; Karakoti, A.; Vinu, A. Stimuli-responsive silica silanol conjugates: Strategic nanoarchitectonics in targeted drug delivery. Small 2023, 2301113. [Google Scholar] [CrossRef]
- Komiyama, M. Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems. Beilstein J. Nanotechnol. 2023, 14, 218–232. [Google Scholar] [CrossRef]
- Tian, W.; Wang, C.; Chu, R.; Ge, H.; Sun, X.; Li, M. Injectable hydrogel nanoarchitectonics with near-infrared controlled drug delivery for in situ photothermal/endocrine synergistic endometriosis therapy. Biomater. Res. 2023, 27, 100. [Google Scholar] [CrossRef] [PubMed]
- Reddy, Y.N.; De, A.; Paul, S.; Pujari, A.K.; Bhaumik, J. In Situ Nanoarchitectonics of a MOF hydrogel: A self-adhesive and pH-responsive smart platform for phototherapeutic delivery. Biomacromolecules 2023, 24, 1717–1730. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Shi, J.; Lv, W.; Jia, X.; Ariga, K. Regulation of stem cell fate and function by using bioactive materials with nanoarchitectonics for regenerative medicine. Sci. Technol. Adv. Mater. 2022, 23, 393–412. [Google Scholar] [CrossRef] [PubMed]
- Jang, T.-S.; Park, S.J.; Lee, J.E.; Yang, J.; Park, S.-H.; Jun, M.B.G.; Kim, Y.W.; Aranas, C.; Choi, J.P.; Zou, Y.; et al. Topography-supported nanoarchitectonics of hybrid scaffold for systematically modulated bone regeneration and remodeling. Adv. Funct. Mater. 2022, 32, 2206863. [Google Scholar] [CrossRef]
- Jia, X.; Chen, J.; Lv, W.; Li, H.; Ariga, K. Engineering dynamic and interactive biomaterials using material nanoarchitectonics for modulation of cellular behaviors. Cell Rep. Phys. Sci. 2023, 4, 101251. [Google Scholar] [CrossRef]
- Li, B.; Huang, Y.; Bao, J.; Xu, Z.; Yan, X.; Zou, Q. Supramolecular nanoarchitectonics based on antagonist peptide self-assembly for treatment of liver fibrosis. Small 2023, 19, 2304675. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, P.; Cao, S.; Liu, Y.; Gao, C. Nanoarchitectonics composite hydrogels with high toughness, mechanical strength, and self-healing capability for electrical actuators with programmable shape memory properties. Nanoscale 2023, 15, 18667–18677. [Google Scholar] [CrossRef] [PubMed]
- Mendes de Almeida Junior, A.; Ferreira, A.S.; Camacho, S.A.; Gontijo Moreira, L.; de Toledo, K.A.; Oliveira, O.N., Jr.; Aoki, P.H.B. Enhancing Phototoxicity in Human Colorectal Tumor Cells through Nanoarchitectonics for Synergistic Photothermal and Photodynamic Therapies. ACS Appl. Mater. Interfaces 2024, 16, 23742–23751. [Google Scholar] [CrossRef]
- Wang, Y.; Geng, Q.; Zhang, Y.; Adler-Abramovich, L.; Fan, X.; Mei, D.; Gazit, E.; Tao, K. Fmoc-diphenylalanine gelating nanoarchitectonics: A simplistic peptide self-assembly to meet complex applications. J. Colloid Interface Sci. 2023, 636, 113–133. [Google Scholar] [CrossRef]
- Kumbhar, P.; Kolekar, K.; Khot, C.; Dabhole, S.; Salawi, A.; Sabei, F.Y.; Mohite, A.; Kole, K.; Mhatre, S.; Jha, N.K.; et al. Co-crystal nanoarchitectonics as an emerging strategy in attenuating cancer: Fundamentals and applications. J. Control. Release 2023, 353, 1150–1170. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Kawakami, K.; Ariga, K. Nanoarchitectonics in combat against bacterial infection using molecular, interfacial, and material tools. Curr. Opin. Colloid Interface Sci. 2023, 65, 101702. [Google Scholar] [CrossRef]
- Sutrisno, L.; Ariga, K. Pore-engineered nanoarchitectonics for cancer therapy. NPG Asia Mater. 2023, 15, 21. [Google Scholar] [CrossRef]
- Duan, H.; Wang, F.; Xu, W.; Sheng, G.; Sun, Z.; Chu, H. Recentadvances in the nanoarchitectonics of metal–organic frameworks for light-activated tumor therapy. Dalton Trans. 2023, 52, 16085–16102. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Wang, Z.; Xu, H.; Huang, H.; Tao, X.; Hu, Y.; He, Y.; Zhang, Z.; Huang, X. Redox-activatable magnetic nanoarchitectonics for self-enhanced tumor imaging and synergistic photothermal-chemodynamic therapy. Small Methods 2023, 8, 2301099. [Google Scholar] [CrossRef] [PubMed]
- Meng, R.-Y.; Zhao, Y.; Xia, H.-Y.; Wang, S.-B.; Chen, A.-Z.; Kankala, R.K. 2D Architectures-transformed conformational nanoarchitectonics for light-augmented nanocatalytic chemodynamic and photothermal/photodynamic-based trimodal therapies. ACS Mater. Lett. 2024, 6, 1160–1177. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Wu, L.; Zhao, J. Molecular nanoarchitectonics of natural photosensitizers and their derivatives nanostructures for improved photodynamic therapy. ChemMedChem 2024, 19, e202300599. [Google Scholar] [CrossRef] [PubMed]
- Laughlin, R.B.; Pines, D. The theory of everything. Proc. Natl. Acad. Sci. USA 2000, 97, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Ariga, K.; Fakhrullin, R. Materials nanoarchitectonics from atom to living cell: A method for everything. Bull. Chem. Soc. Jpn. 2022, 95, 774–795. [Google Scholar] [CrossRef]
- Ariga, K. Nanoarchitectonics: Method for everything in material science. Bull. Chem. Soc. Jpn. 2024, 97, uoad001. [Google Scholar] [CrossRef]
- Ariga, K.; Kunitake, T. Molecular recognition at air−water and related interfaces: Complementary hydrogen bonding and multisite interaction. Acc. Chem. Res. 1998, 31, 371–378. [Google Scholar] [CrossRef]
- Kurihara, K. Surface forces measurement for materials science. Pure Appl. Chem. 2019, 91, 707–716. [Google Scholar] [CrossRef]
- Takada, K. Interfacial nanoarchitectonics for solid-state lithium batteries. Langmuir 2013, 29, 7538–7541. [Google Scholar] [CrossRef] [PubMed]
- Ariga, K. Materials nanoarchitectonics in a two-dimensional world within a nanoscale distance from the liquid phase. Nanoscale 2022, 14, 10610–10629. [Google Scholar] [CrossRef] [PubMed]
- Ariga, K. Don’t forget Langmuir–Blodgett films 2020: Interfacial nanoarchitectonics with molecules, materials, and living objects. Langmuir 2020, 36, 7158–7180. [Google Scholar] [CrossRef] [PubMed]
- Souza, A.L.; Osvaldo, N.; Oliveira, O.N. Dominant hydrophobic interactions with β-glucan in nanoarchitectonics with mixed Langmuir monolayers of cholesterol/dipalmitoyl phosphatidyl choline. Biointerphases 2022, 17, 031005. [Google Scholar] [CrossRef]
- Martins, B.A.; Deffune, E.; Oliveira, O.N., Jr.; de Moraes, M.L. Penicillin-binding proteins (PBPs) determine antibiotic action in Langmuir monolayers as nanoarchitectonics mimetic membranes of methicillin-resistant Staphylococcus aureus. Colloid Surf. B Biointerfaces 2022, 214, 112447. [Google Scholar] [CrossRef] [PubMed]
- Rydzek, G.; Ji, Q.; Li, M.; Schaaf, P.; Hill, J.P.; Boulmedais, F.; Ariga, K. Electrochemical nanoarchitectonics and layer-by-layer assembly: From basics to future. Nano Today 2015, 10, 138–167. [Google Scholar] [CrossRef]
- Ariga, K.; Lvov, Y.; Decher, G. There is still plenty of room for layer-by-layer assembly for constructing nanoarchitectonics-based materials and devices. Phys. Chem. Chem. Phys. 2022, 24, 4097–4115. [Google Scholar] [CrossRef]
- Ariga, K. Chemistry of materials nanoarchitectonics for two-dimensional films: Langmuir–Blodgett, layer-by-layer assembly, and newcomers. Chem. Mater. 2023, 35, 5233–5254. [Google Scholar] [CrossRef]
- Ariga, K.; Song, J.; Kawakami, K. Layer-by-layer designer nanoarchitectonics for physical and chemical communications in functional materials. Chem. Commun. 2024, 60, 2152–2167. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, K. Synthesis of fullerene nanowhiskers using the liquid–liquid interfacial precipitation method and their mechanical, electrical and superconducting properties. Sci. Technol. Adv. Mater. 2015, 16, 013502. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, K.; Kuwasaki, Y.; Obayashi, A.; Kuwabara, M. C60 nanowhiskers formed by the liquid–liquid interfacial precipitation method. J. Mater. Res. 2002, 17, 83–88. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Wu, C.-E.; Chen, S.-Y.; Cui, C.; Cheng, Y.-J.; Hsu, C.-S.; Wang, Y.-L.; Li, Y. Enhanced performance and stability of a polymer solar cell by incorporation of vertically aligned, cross-linked fullerene nanorods. Angew. Chem. Int. Ed. 2011, 50, 9386–9390. [Google Scholar] [CrossRef]
- Miyazawa, K.; Minato, J.; Yoshii, T.; Fujino, M.; Suga, T. Structural characterization of the fullerene nanotubes prepared by the liquid–liquid interfacial precipitation method. J. Mater. Res. 2005, 20, 688–695. [Google Scholar] [CrossRef]
- Chen, G.; Shrestha, L.K.; Ariga, K. Zero-to-two nanoarchitectonics: Fabrication of two-dimensional materials from zero-dimensional fullerene. Molecules 2021, 26, 4636. [Google Scholar] [CrossRef]
- Chen, G.; Bhadra, B.N.; Sutrisno, L.; Shrestha, L.K.; Ariga, K. Fullerene rosette: Two-dimensional interactive nanoarchitectonics and selective vapor sensing. Int. J. Mol. Sci. 2022, 23, 5454. [Google Scholar] [CrossRef]
- Park, C.; Yoon, E.; Kawano, M.; Joo, T.; Choi, H.C. Self-crystallization of C70 cubes and remarkable enhancement of photoluminescence. Angew. Chem. Int. Ed. 2010, 49, 9670–9675. [Google Scholar] [CrossRef]
- Bairi, P.; Minami, K.; Nakanishi, W.; Hill, J.; Ariga, K.; Shrestha, L. Hierarchically Structured Fullerene C70 Cube for Sensing Volatile Aromatic Solvent Vapors. ACS Nano 2016, 10, 6631–6637. [Google Scholar] [CrossRef]
- Bairi, P.; Minami, K.; Hill, J.P.; Ariga, K.; Shrestha, L.K. Intentional Closing/Opening of “Hole-in-Cube” Fullerene Crystals with Microscopic Recognition Properties. ACS Nano 2017, 11, 7790–7796. [Google Scholar] [CrossRef]
- Hsieh, C.-T.; Hsu, S.-h.; Maji, S.; Chahal, M.K.; Song, J.; Hill, J.P.; Ariga, K.; Shrestha, L.K. Post-assembly dimension-dependent face-selective etching of fullerene crystals. Mater. Horiz. 2020, 7, 787–795. [Google Scholar] [CrossRef]
- Bairi, P.; Minami, K.; Hill, J.P.; Nakanishi, W.; Shrestha, L.K.; Liu, C.; Harano, K.; Nakamura, E.; Ariga, K. Supramolecular differentiation for constructing anisotropic fullerene nanostructures by time-programmed control of interfacial growth. ACS Nano 2016, 10, 8796–8802. [Google Scholar] [CrossRef]
- Chen, G.; Sciortino, F.; Takeyasu, K.; Nakamura, J.; Hill, J.P.; Shrestha, L.K.; Ariga, K. Hollow spherical fullerene obtained by kinetically controlled liquid-liquid interfacial precipitation. Chem. Asian J. 2022, 17, e202200756. [Google Scholar] [CrossRef] [PubMed]
- Banya, S.; Kumagawa, Y.; Izumoto, D.; Tanaka, M.; Kanbe, K.; Oku, T.; Akiyama, T. Fabrication and photoelectric conversion of densely packed C60–ethylenediamine adduct microparticle films-modified electrode covered with electrochemically deposited polythiophene thin-films. RSC Adv. 2023, 13, 31244–31251. [Google Scholar] [CrossRef]
- Takase, S.; Aritsu, T.; Sakamoto, Y.; Sakuno, Y.; Shimizu, Y. Preparation of highly conductive phthalocyaninato-cobalt iodide at the interface between aqueous KI solution and organic solvent and catalytic properties for electrochemical reduction of CO2. Bull. Chem. Soc. Jpn. 2023, 96, 649–653. [Google Scholar] [CrossRef]
- Kaneko, M.; Nakayama, T.; Seki, H.; Yamamoto, S.; Uemura, T.; Inoue, K.; Hadano, S.; Watanabe, S.; Niko, Y. Lipophilic nitrile N-oxide for catalyst-free surface modification of nanoemulsions as light-harvesting nanoantennas. Bull. Chem. Soc. Jpn. 2022, 95, 1760–1768. [Google Scholar] [CrossRef]
- Sawayama, T.; Wang, Y.; Watanabe, T.; Takayanagi, M.; Yamamoto, T.; Hosono, N.; Uemura, T. Metal-organic frameworks for practical separation of cyclic and linear polymers. Angew. Chem. Int. Ed. 2021, 60, 11830–11834. [Google Scholar] [CrossRef] [PubMed]
- Kioka, K.; Mizutani, N.; Hosono, N.; Uemura, T. Mixed metal–organic framework stationary phases for liquid chromatography. ACS Nano 2022, 16, 6771–6780. [Google Scholar] [CrossRef] [PubMed]
- Ay, B.; Takano, R.; Ishida, T. Metal-organodiphosphonate chemistry: Hydrothermal syntheses and structures of two novel copper(II) coordination polymers with o-xylylenediphosphonic acid and 4,4′-bipyridine ligands. Bull. Chem. Soc. Jpn. 2023, 96, 1129–1138. [Google Scholar] [CrossRef]
- Xu, X.; Eguchi, M.; Asakura, Y.; Pan, L.; Yamauchi, Y. Metal–organic framework derivatives for promoted capacitive deionization of oxygenated saline water. Energy Environ. Sci. 2023, 16, 1815–1820. [Google Scholar] [CrossRef]
- Han, M.; Tashiro, S.; Shiraogawa, T.; Ehara, M.; Shionoya, M. Substrate-specific activation and long-range olefin migration catalysis at the Pd centers in a porous metal-macrocycle framework. Bull. Chem. Soc. Jpn. 2022, 95, 1303–1307. [Google Scholar] [CrossRef]
- Geng, K.; He, T.; Liu, R.; Dalapati, S.; Tan, K.T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Covalent organic frameworks: Design, synthesis, and functions. Chem. Rev. 2020, 120, 8814–8933. [Google Scholar] [CrossRef] [PubMed]
- Stähler, C.; Grunenberg, L.; Terban, M.W.; Browne, W.R.; Doellerer, D.; Kathan, M.; Etter, M.; Bettina, V.; Lotsch, B.V.; Feringa, B.L.; et al. Light-driven molecular motors embedded in covalent organic frameworks. Chem. Sci. 2022, 13, 8253–8264. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Tsutsui, Y.; Kawaguchi, T.; Matsuda, W.; Nagano, S.; Suzuki, K.; Kaji, H.; Seki, S. Band-like transport of charge carriers in oriented two-dimensional conjugated covalent organic frameworks. Chem. Mater. 2022, 34, 736–745. [Google Scholar] [CrossRef]
- Charles-Blin, Y.; Kondo, T.; Wu, Y.; Bandow, S.; Awaga, K. Salt-assisted pyrolysis of covalent organic framework for controlled active nitrogen functionalities for oxygen reduction reaction. Bull. Chem. Soc. Jpn. 2022, 95, 972–977. [Google Scholar] [CrossRef]
- Yang, M.; Hanayama, H.; Fang, L.; Addicoat, M.A.; Guo, Y.; Graf, R.; Harano, K.; Kikkawa, J.; Jin, E.; Narita, A.; et al. Saturated linkers in two-dimensional covalent organic frameworks boost their luminescence. J. Am. Chem. Soc. 2023, 145, 14417–14426. [Google Scholar] [CrossRef] [PubMed]
- Makiura, R.; Motoyama, S.; Umemura, Y.; Yamanaka, H.; Sakata, O.; Kitagawa, H. Surface nano-architecture of a metal–organic framework. Nat. Mater. 2010, 9, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Makiura, R. Creation of metal–organic framework nanosheets by the Langmuir-Blodgett technique. Coord. Chem. Rev. 2022, 469, 214650. [Google Scholar] [CrossRef]
- Ohata, T.; Tachimoto, K.; Takeno, K.J.; Nomoto, A.; Watanabe, T.; Hirosawa, I.; Makiura, R. Influence of the solvent on the assembly of Ni3(hexaiminotriphenylene)2 metal–organic framework nanosheets at the air/liquid interface. Bull. Chem. Soc. Jpn. 2023, 96, 274–282. [Google Scholar] [CrossRef]
- Moribe, S.; Takeda, Y.; Umehara, M.; Kikuta, H.; Ito, J.; Ma, J.; Yamada, Y.; Hirano, M. Spike current induction by photogenerated charge accumulation at the surface sites of porous porphyrinic zirconium metal-organic framework electrodes in photoelectrochemical cells. Bull. Chem. Soc. Jpn. 2023, 96, 321–327. [Google Scholar] [CrossRef]
- Hong, J.; Liu, M.; Liu, Y.; Shang, S.; Wang, X.; Du, C.; Gao, W.; Hua, C.; Xu, H.; You, Z.; et al. Solid-liquid interfacial engineered large-area two-dimensional covalent organic framework films. Angew. Chem. Int. Ed. 2024, 63, e202317876. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Li, Q.; Zhang, R.; Xiong, Z.; Li, B.; Wang, J.; Wang, R.; Fang, Q.; Yang, H. Amphiphilic Covalent Organic Framework Nanoparticles for Pickering Emulsion Catalysis with Size Selectivity. Angew. Chem. Int. Ed. 2024, 63, e202314650. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Sun, Q.; He, W.; Liu, L.; Song, Z.; Yao, A.; Ma, J.; Cao, D.; Hassan, S.U.; Guan, J.; et al. A 2D soft covalent organic framework membrane prepared via a molecular bridge. Adv. Mater. 2023, 35, 2300975. [Google Scholar] [CrossRef]
- Engler, A.J.; Sen, S.; Sweeney, H.L.; Discher, D.E. Matrix elasticity directs stem cell lineage specification. Cell 2006, 126, 677–689. [Google Scholar] [CrossRef] [PubMed]
- Soares, J.; Araujo, G.R.d.S.; Santana, C.; Matias, D.; Moura-Neto, V.; Farina, M.; Frases, S.; Viana, N.B.; Romão, L.; Nussenzveig, H.M.; et al. Membrane elastic properties during neural precursor cell differentiation. Cells 2020, 9, 1323. [Google Scholar] [CrossRef]
- Zhang, R.; Jo, J.-I.; Kanda, R.; Nishiura, A.; Hashimoto, Y.; Matsumoto, N. Bioactive polyetheretherketone with gelatin hydrogel leads to sustained release of bone morphogenetic protein-2 and promotes osteogenic differentiation. Int. J. Mol. Sci. 2023, 24, 12741. [Google Scholar] [CrossRef]
- Cazzanelli, P.; Wuertz-Kozak, K. MicroRNAs in intervertebral disc degeneration, apoptosis, inflammation, and mechanobiology. Int. J. Mol. Sci. 2020, 21, 3601. [Google Scholar] [CrossRef]
- Tuna, R.; Yi, W.; Crespo Cruz, E.; Romero, J.; Ren, Y.; Guan, J.; Li, Y.; Deng, Y.; Bluestein, D.; Liu, Z.L.; et al. Platelet biorheology and mechanobiology in thrombosis and hemostasis: Perspectives from multiscale computation. Int. J. Mol. Sci. 2024, 25, 4800. [Google Scholar] [CrossRef] [PubMed]
- Bryniarska-Kubiak, N.; Basta-Kaim, A.; Kubiak, A. Mechanobiology of dental pulp cells. Cells 2024, 13, 375. [Google Scholar] [CrossRef]
- Minami, K.; Mori, T.; Nakanishi, W.; Shigi, N.; Nakanishi, J.; Hill, J.P.; Komiyama, M.; Ariga, K. Suppression of myogenic differentiation of mammalian cells caused by fluidity of a liquid–liquid interface. ACS Appl. Mater. Interfaces 2017, 9, 30553–30560. [Google Scholar] [CrossRef]
- Jia, X.; Minami, K.; Uto, K.; Chang, A.C.; Hill, J.P.; Nakanishi, J.; Ariga, K. Adaptive liquid interfacially assembled protein nanosheets for guiding mesenchymal stem cell fate. Adv. Mater. 2020, 32, 1905942. [Google Scholar] [CrossRef]
- Jia, X.; Song, J.; Lv, W.; Hill, J.P.; Nakanishi, J.; Ariga, K. Adaptive liquid interfaces induce neuronal differentiation of mesenchymal stem cells through lipid raft assembly. Nat. Commun. 2022, 13, 3110. [Google Scholar] [CrossRef]
- Ueki, T.; Uto, K.; Yamamoto, S.; Tamate, R.; Kamiyama, Y.; Jia, X.; Noguchi, H.; Minami, K.; Ariga, K.; Wang, H.; et al. Ionic liquid interface as a cell scaffold. Adv. Mater. 2024, 36, 2310105. [Google Scholar] [CrossRef]
- Chrysanthou, A.; Kanso, H.; Zhong, W.; Shang, L.; Gautrot, J.E. Supercharged protein nanosheets for cell expansion on bioemulsions. ACS Appl. Mater. Interfaces 2023, 15, 2760–2770. [Google Scholar] [CrossRef]
- Peng, L.; Nadal, C.; Gautrot, J.E. Growth of mesenchymal stem cells at the surface of silicone, mineral and plant-based oils. Biomed. Mater. 2023, 18, 035005. [Google Scholar] [CrossRef] [PubMed]
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, S.; Zhang, L.; Huang, R.; Wang, R. The understanding and compact modeling of reliability in modern metal–oxide–semiconductor field-effect transistors: From single-mode to mixed-mode mechanisms. Micromachines 2024, 15, 127. [Google Scholar] [CrossRef]
- Fu, Y.; Liu, Z.; Yue, S.; Zhang, K.; Wang, R.; Zhang, Z. Optical second harmonic generation of low-dimensional semiconductor materials. Nanomaterials 2024, 14, 662. [Google Scholar] [CrossRef]
- Kasuya, N.; Tsurumi, J.; Okamoto, T.; Watanabe, S.; Takeya, J. Two-dimensional hole gas in organic semiconductors. Nat. Mater. 2021, 20, 1401–1406. [Google Scholar] [CrossRef]
- Kumagai, S.; Makita, T.; Watanabe, S.; Takeya, J. Scalable printing of two-dimensional single crystals of organic semiconductors towards high-end device applications. Appl. Phys. Express 2022, 15, 030101. [Google Scholar] [CrossRef]
- Murai, M.; Iba, S.; Hamao, S.; Kubozono, Y.; Ota, H.; Takai, K. Azulene-fused linearly π-extended polycyclic aromatic compounds: Synthesis, photophysical properties, and OFETs applications. Bull. Chem. Soc. Jpn. 2023, 96, 1077–1081. [Google Scholar] [CrossRef]
- Yamashita, Y.; Tsurumi, J.; Ohno, M.; Fujimoto, R.; Kumagai, S.; Kurosawa, T.; Okamoto, T.; Takeya, J.; Watanabe, S. Efficient molecular doping of polymeric semiconductors driven by anion exchange. Nature 2019, 572, 634–638. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, K.; Miura, N.; Taguchi, H.; Komatsu, T.; Nosaka, H.; Okamoto, T.; Yamashita, Y.; Watanabe, S.; Takeya, J. Improvement of contact resistance at carbon electrode/organic semiconductor interfaces through chemical doping. Appl. Phys. Express 2022, 15, 101005. [Google Scholar] [CrossRef]
- Yamashita, Y.; Kohno, S.; Longhi, E.; Jhulki, S.; Kumagai, S.; Barlow, S.; Marder, S.R.; Takeya, J.; Watanabe, S. N-type molecular doping of a semicrystalline conjugated polymer through cation exchange. Commun. Mater. 2024, 5, 79. [Google Scholar] [CrossRef]
- Ishii, M.; Yamashita, Y.; Watanabe, S.; Ariga, K.; Takeya, J. Doping of molecular semiconductors through proton-coupled electron transfer. Nature 2023, 622, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Ramprasad, R.; Batra, R.; Pilania, G.; Mannodi-Kanakkithodi, A.; Kim, C. Machine learning in materials informatics: Recent applications and prospects. npj Comput. Mater. 2017, 3, 54. [Google Scholar] [CrossRef]
- Liang, Y.; Jiao, C.; Zhou, P.; Li, W.; Zang, Y.; Liu, Y.; Yang, G.; Liu, L.; Cheng, J.; Liang, G.; et al. Highly efficient perovskite solar cells with light management of surface antireflection. Bull. Chem. Soc. Jpn. 2023, 96, 148–155. [Google Scholar] [CrossRef]
- Wang, Z.-L.; Funada, T.; Onda, T.; Chen, Z.-C. Knowledge extraction and performance improvement of Bi2Te3-based thermoelectric materials by machine learning. Mater. Today Phys. 2023, 31, 100971. [Google Scholar] [CrossRef]
- Saito, N.; Nawachi, A.; Kondo, Y.; Choi, J.; Morimoto, H.; Ohshima, T. Functionalgroup evaluation kit for digitalization of information on the functional group compatibility and chemoselectivity of organic reactions. Bull. Chem. Soc. Jpn. 2023, 96, 465–474. [Google Scholar] [CrossRef]
- Liao, T.; Xia, W.; Sakurai, M.; Wang, R.; Zhang, C.; Sun, H.; Ho, K.-M.; Wang, C.-Z.; Chelikowsky, J.R. Magnetic iron-cobalt silicides discovered using machine-learning. Phys. Rev. Mater. 2023, 7, 034410. [Google Scholar] [CrossRef]
- Chaikittisilp, W.; Yamauchi, Y.; Ariga, K. Material evolution with nanotechnology, nanoarchitectonics, and materials informatics: What will be the next paradigm shift in nanoporous materials? Adv. Mater. 2022, 34, 2107212. [Google Scholar] [CrossRef] [PubMed]
- Oviedo, L.R.; Oviedo, V.R.; Martins, M.O.; Fagan, S.B.; da Silva, W.L. Nanoarchitectonics: The role of artificial intelligence in the design and application of nanoarchitectures. J. Nanopart. Res. 2022, 24, 157. [Google Scholar] [CrossRef]
- Lombardo, D.; Kiselev, M.A.; Magazù, S.; Calandra, P. Amphiphiles self-assembly: Basic concepts and future perspectives of supramolecular approaches. Adv. Condens. Matter Phys. 2015, 2015, 151683. [Google Scholar] [CrossRef]
- Crupi, V.; Jannelli, M.P.; Magazu, S.; Maisano, G.; Majolino, D.; Migliardo, P.; Sirna, D. Rayleigh wing and Fourier transform infraredstudies of intermolecular and intramolecularhydrogen bonds in liquid ethylene glycol. Mol. Phys. 1995, 84, 645–652. [Google Scholar] [CrossRef]
- Caccamo, M.T.; Magazù, S. Thermal restraint on PEG-EG mixtures by FTIR investigations and wavelet cross-correlation analysis. Polym. Test. 2017, 62, 311–318. [Google Scholar] [CrossRef]
- Caccamo, M.T.; Mavilia, G.; Mavilia, L.; Lombardo, D.; Magazù, S. Self-assembly processes in hydrated montmorillonite by FTIR investigations. Materials 2020, 13, 1100. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Yang, X.-L.; Wu, G.-Y.; Cheng, L. Controlled self-assembly of metallacycle-bridged gold nanoparticles for surface-enhanced Raman scattering. Chem. Eur. J. 2020, 26, 11695–11700. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.-Y.; Liang, C.; Li, H.; Zhang, X.; Yao, G.; Zhu, F.-F.; Hu, Y.-X.; Yin, G.-Q.; Zheng, W.; Lu, Z. A multi-responsive supramolecular heparin-based biohybrid metallogel constructed by controlled self-assembly based on metal–ligand, host–guest and electrostatic interactions. Org. Chem. Front. 2021, 8, 4715–4722. [Google Scholar] [CrossRef]
- Wu, G.-Y.; Zheng, W.; Yang, X.-L.; Liu, Q.-J.; Cheng, L. Supramolecular metallacycle-assisted interfacial self-assembly: A promising method of fabricating goldnanoparticle monolayers with precise interparticlespacing for tunable SERS activity. Tetrahedron Lett. 2022, 94, 153716. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ariga, K. Liquid–Liquid and Liquid–Solid Interfacial Nanoarchitectonics. Molecules 2024, 29, 3168. https://doi.org/10.3390/molecules29133168
Ariga K. Liquid–Liquid and Liquid–Solid Interfacial Nanoarchitectonics. Molecules. 2024; 29(13):3168. https://doi.org/10.3390/molecules29133168
Chicago/Turabian StyleAriga, Katsuhiko. 2024. "Liquid–Liquid and Liquid–Solid Interfacial Nanoarchitectonics" Molecules 29, no. 13: 3168. https://doi.org/10.3390/molecules29133168
APA StyleAriga, K. (2024). Liquid–Liquid and Liquid–Solid Interfacial Nanoarchitectonics. Molecules, 29(13), 3168. https://doi.org/10.3390/molecules29133168