The Impact of Plant Additives on the Quality and Safety of Ostrich Meat Sausages
Abstract
:1. Introduction
2. Results and Discussion
2.1. Microbiological Analyses
2.2. Biogenic Amine Formation
2.3. Elemental Analysis
2.4. Thiobarbituric Acid Reactive Substances (TBARS)
2.5. Content of Bioactive Compounds
2.6. Antioxidative and Anti-Inflammatory Properties
2.7. Color
2.8. Sensory Quality
3. Materials and Methods
3.1. Research Material
3.2. Sausage Formulation, Processing, and Packaging
3.3. Microbiological Analyses
3.4. Chemical Analyses
3.4.1. Equipment and Chemicals
3.4.2. Sample Preparation
3.4.3. Biogenic Amines
3.4.4. Content of Selected Metals (Iron, Cadmium, and Lead)
3.4.5. Thiobarbituric Acid Reactive Substances (TBARS)
3.4.6. Capsaicinoids
3.4.7. Vitamin C
3.4.8. Carotenoids
3.4.9. Anthocyanins
3.4.10. Total Phenolic Content (TPC)
3.4.11. DPPH Scavenging
3.4.12. Hyaluronidase Inhibition
3.5. Other Analyses
3.5.1. Color
3.5.2. Sensory Evaluation
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dominguez, L.J.; Di Bella, G.; Veronese, N.; Barbagallo, M. Impact of Mediterranean Diet on Chronic Non-Communicable Diseases and Longevity. Nutrients 2021, 13, 2028. [Google Scholar] [CrossRef]
- Cena, H.; Calder, P.C. Defining a Healthy Diet: Evidence for the Role of Contemporary Dietary Patterns in Health and Disease. Nutrients 2020, 12, 334. [Google Scholar] [CrossRef]
- Maiuolo, J.; Gliozzi, M.; Carresi, C.; Musolino, V.; Oppedisano, F.; Scarano, F.; Nucera, S.; Scicchitano, M.; Bosco, F.; Macri, R.; et al. Nutraceuticals and Cancer: Potential for Natural Polyphenols. Nutrients 2021, 13, 3834. [Google Scholar] [CrossRef]
- Horbańczuk, O.K.; Jóźwik, A.; Wyrwisz, J.; Marchewka, J.; Wierzbicka, A. Physical Characteristics and Microbial Quality of Ostrich Meat in Relation to the Type of Packaging and Refrigerator Storage Time. Molecules 2021, 26, 3445. [Google Scholar] [CrossRef]
- Al-Khalifa, H.; Al-Naser, A. Ostrich Meat: Production, Quality Parameters, and Nutritional Comparison to Other Types of Meats. J. Appl. Poult. Res. 2014, 23, 784–790. [Google Scholar] [CrossRef]
- Poławska, E.; Marchewka, J.; Gordon Cooper, R.; Sartowska, K.; Pomianowski, J.; Jóźwik, A.; Strzałkowska, N.; Olav Horbańczuk, J. The Ostrich Meat-an Updated Review. II. Nutritive Value. Anim. Sci. Pap. Rep. 2011, 29, 89–97. [Google Scholar]
- Horbańczuk, O.K.; Moczkowska, M.; Marchewka, J.; Atanasov, A.G.; Kurek, M.A. The Composition of Fatty Acids in Ostrich Meat Influenced by the Type of Packaging and Refrigerated Storage. Molecules 2019, 24, 4128. [Google Scholar] [CrossRef]
- Santos-Buelga, C.; González-Paramás, A.M.; Oludemi, T.; Ayuda-Durán, B.; González-Manzano, S. Plant Phenolics as Functional Food Ingredients. Adv. Food Nutr. Res. 2019, 90, 183–257. [Google Scholar] [CrossRef]
- Veiga, M.; Costa, E.M.; Silva, S.; Pintado, M. Impact of Plant Extracts upon Human Health: A Review. Crit. Rev. Food Sci. Nutr. 2020, 60, 873–886. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.A.; Bosco, S.J.D.; Mir, S.A. Plant Extracts as Natural Antioxidants in Meat and Meat Products. Meat Sci. 2014, 98, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Munekata, P.E.S.; Rocchetti, G.; Pateiro, M.; Lucini, L.; Domínguez, R.; Lorenzo, J.M. Addition of Plant Extracts to Meat and Meat Products to Extend Shelf-Life and Health-Promoting Attributes: An Overview. Curr. Opin. Food Sci. 2020, 31, 81–87. [Google Scholar] [CrossRef]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyzowska, A. Plant Extracts Rich in Polyphenols: Antibacterial Agents and Natural Preservatives for Meat and Meat Products. Crit. Rev. Food Sci. Nutr. 2021, 61, 149–178. [Google Scholar] [CrossRef]
- Prakash, A.; Baskaran, R. Acerola, an Untapped Functional Superfruit: A Review on Latest Frontiers. J. Food Sci. Technol. 2018, 55, 3373–3384. [Google Scholar] [CrossRef] [PubMed]
- Villa-Rivera, M.G.; Ochoa-Alejo, N. Chili Pepper Carotenoids: Nutraceutical Properties and Mechanisms of Action. Molecules 2020, 25, 5573. [Google Scholar] [CrossRef] [PubMed]
- Waite, M.S.; Aubin, A.J. A Modular HPLC System for Routine Analysis of Capsaicin from Hot Sauces; Waters Corporation: Milford, MA, USA, 2008. [Google Scholar]
- Ma, C.; Yang, L.; Yang, F.; Wang, W.; Zhao, C.; Zu, Y. Content and Color Stability of Anthocyanins Isolated from Schisandra chinensis Fruit. Int. J. Mol. Sci. 2012, 13, 14294–14310. [Google Scholar] [CrossRef] [PubMed]
- Mathur, H.; Beresford, T.P.; Cotter, P.D. Health Benefits of Lactic Acid Bacteria (LAB) Fermentates. Nutrients 2020, 12, 1679. [Google Scholar] [CrossRef] [PubMed]
- Ayivi, R.D.; Gyawali, R.; Krastanov, A.; Aljaloud, S.O.; Worku, M.; Tahergorabi, R.; da Silva, R.C.; Ibrahim, S.A. Lactic Acid Bacteria: Food Safety and Human Health Applications. Dairy 2020, 1, 202–232. [Google Scholar] [CrossRef]
- Nowak, A.; Piotrowska, M. Biochemical Activities of Brochothrix thermosphacta. Meat Sci. 2012, 90, 410–413. [Google Scholar] [CrossRef] [PubMed]
- Casaburi, A.; De Filippis, F.; Villani, F.; Ercolini, D. Activities of Strains of Brochothrix thermosphacta in Vitro and in Meat. Food Res. Int. 2014, 62, 366–374. [Google Scholar] [CrossRef]
- Gribble, A.; Brightwell, G. Spoilage Characteristics of Brochothrix thermosphacta and Campestris in Chilled Vacuum Packaged Lamb, and Their Detection and Identification by Real Time PCR. Meat Sci. 2013, 94, 361–368. [Google Scholar] [CrossRef]
- Mladenović, K.G.; Grujović, M.; Kiš, M.; Furmeg, S.; Tkalec, V.J.; Stefanović, O.D.; Kocić-Tanackov, S.D. Enterobacteriaceae in Food Safety with an Emphasis on Raw Milk and Meat. Appl. Microbiol. Biotechnol. 2021, 105, 8615–8627. [Google Scholar] [CrossRef]
- Schirone, M.; Esposito, L.; D’onofrio, F.; Visciano, P.; Martuscelli, M.; Mastrocola, D.; Paparella, A. Biogenic Amines in Meat and Meat Products: A Review of the Science and Future Perspectives. Foods 2022, 11, 788. [Google Scholar] [CrossRef] [PubMed]
- Wójcik, W.; Łukasiewicz, M.; Puppel, K. Biogenic Amines: Formation, Action and Toxicity—A Review. J. Sci. Food Agric. 2021, 101, 2634–2640. [Google Scholar] [CrossRef] [PubMed]
- Omer, A.K.; Mohammed, R.R.; Mohammed Ameen, P.S.; Abas, Z.A.; Ekici, K. Presence of Biogenic Amines in Food and Their Public Health Implications: A Review. J. Food Prot. 2021, 84, 1539–1548. [Google Scholar] [CrossRef] [PubMed]
- Scientific Opinion on Risk Based Control of Biogenic Amine Formation in Fermented Foods. EFSA J. 2011, 9, 2393. [CrossRef]
- Regulation-2023/915-EN-EUR-Lex. Available online: https://eur-lex.europa.eu/eli/reg/2023/915/oj (accessed on 10 April 2024).
- Rajkowska, M.; Pokorska, K.; Protasowicki, M.; Żych, A. African Ostrich (Struthio camelus) Meat as a Source of Essential and Toxic Elements in a Human Diet. Acta Sci. Pol. Technol. Aliment. 2012, 11, 373–379. [Google Scholar]
- Raeeszadeh, M.; Gravandi, H.; Akbari, A. Determination of Some Heavy Metals Levels in the Meat of Animal Species (Sheep, Beef, Turkey, and Ostrich) and Carcinogenic Health Risk Assessment in Kurdistan Province in the West of Iran. Environ. Sci. Poll. Res. 2022, 29, 62248–62258. [Google Scholar] [CrossRef] [PubMed]
- Leygonie, C.; Britz, T.J.; Hoffman, L.C. Protein and Lipid Oxidative Stability of Fresh Ostrich M. iliofibularis Packaged under Different Modified Atmospheric Packaging Conditions. Food Chem. 2011, 127, 1659–1667. [Google Scholar] [CrossRef]
- Seydim, A.C.; Guzel-Seydim, Z.B.; Acton, J.C.; Dawson, P.L. Effects of Rosemary Extract and Sodium Lactate on Quality of Vacuum-Packaged Ground Ostrich Meat. J. Food Sci. 2006, 71, S71–S76. [Google Scholar] [CrossRef]
- Vera de Rosso, V.; Hillebrand, S.; Cuevas Montilla, E.; Bobbio, F.O.; Winterhalter, P.; Mercadante, A.Z. Determination of Anthocyanins from Acerola (Malpighia emarginata DC.) and Açai (Euterpe oleracea Mart.) by HPLC–PDA–MS/MS. J. Food Compos. Anal. 2008, 21, 291–299. [Google Scholar] [CrossRef]
- Brassó, L.D.; Szabó, V.; Komlósi, I.; Pusztahelyi, T.; Várszegi, Z. Preliminary Study of Slaughter Value and Meat Characteristics of 18 Months Ostrich Reared in Hungary. Agriculture 2021, 11, 885. [Google Scholar] [CrossRef]
- Porcu, O.M.; Rodriguez-Amaya, D.B. Variation in the Carotenoid Composition of Acerola and Its Processed Products. J. Sci. Food Agric. 2006, 86, 1916–1920. [Google Scholar] [CrossRef]
- Janiszewska-Turak, E.; Witrowa-Rajchert, D.; Rybak, K.; Rolof, J.; Pobiega, K.; Woźniak, Ł.; Gramza-Michałowska, A. The Influence of Lactic Acid Fermentation on Selected Properties of Pickled Red, Yellow, and Green Bell Peppers. Molecules 2022, 27, 8637. [Google Scholar] [CrossRef]
- ISO 4833-1:2013/Amd 1:2022; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms—Part 1: Colony Count at 30 °C by the Pour Plate Technique—Amendment 1: Clarification of Scope. ISO: Geneva, Switzerland, 2022. Available online: https://www.iso.org/standard/73329.html (accessed on 10 April 2024).
- ISO 15214:1998; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Mesophilic Lactic Acid Bacteria—Colony-Count Technique at 30 Degrees C. ISO: Geneva, Switzerland, 1998. Available online: https://www.iso.org/standard/26853.html (accessed on 10 April 2024).
- ISO 21528-2:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae—Part 2: Colony-Count Technique. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/63504.html (accessed on 10 April 2024).
- ISO 13720:2010; Meat and Meat Products—Enumeration of Presumptive Pseudomonas Spp. ISO: Geneva, Switzerland, 2010. Available online: https://www.iso.org/standard/45099.html (accessed on 10 April 2024).
- ISO 13722:2017; Microbiology of the Food Chain—Enumeration of Brochothrix spp.—Colony-Count Technique. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/69052.html (accessed on 10 April 2024).
- Świder, O.; Roszko, M.Ł.; Wójcicki, M.; Szymczyk, K. Biogenic Amines and Free Amino Acids in Traditional Fermented Vegetables-Dietary Risk Evaluation. J. Agric. Food Chem. 2020, 68, 856–868. [Google Scholar] [CrossRef]
- Maraschiello, C.; Sárraga, C.; García Regueiro, J.A. Glutathione Peroxidase Activity, TBARS, and α-Tocopherol in Meat from Chickens Fed Different Diets. J. Agric. Food Chem. 1999, 47, 867–872. [Google Scholar] [CrossRef]
- Odriozola-Serrano, I.; Hernández-Jover, T.; Martín-Belloso, O. Comparative Evaluation of UV-HPLC Methods and Reducing Agents to Determine Vitamin C in Fruits. Food Chem. 2007, 105, 1151–1158. [Google Scholar] [CrossRef]
- Schweiggert, U.; Kammerer, D.R.; Carle, R.; Schieber, A. Characterization of Carotenoids and Carotenoid Esters in Red Pepper Pods (Capsicum annuum L.) by High-Performance Liquid Chromatography/Atmospheric Pressure Chemical Ionization Mass Spectrometry. Rapid Commun. Mass. Spectrom. 2005, 19, 2617–2628. [Google Scholar] [CrossRef]
- Oszmiański, J. Stabilization and Application of Anthocyanin Chokeberry Dye to Colouring of Beverages. Acta Sci. Pol. Technol. Aliment. 2002, 1, 37–45. [Google Scholar]
- Gao, X.; Ohlander, M.; Jeppsson, N.; Björk, L.; Trajkovski, V. Changes in Antioxidant Effects and Their Relationship to Phytonutrients in Fruits of Sea Buckthorn (Hippophae rhamnoides L.) during Maturation. J. Agric. Food Chem. 2000, 48, 1485–1490. [Google Scholar] [CrossRef] [PubMed]
- Yen, G.C.; Chen, H.Y. Antioxidant Activity of Various Tea Extracts in Relation to Their Antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Osés, S.M.; Pascual-Maté, A.; Fernández-Muiño, M.A.; López-Díaz, T.M.; Sancho, M.T. Bioactive Properties of Honey with Propolis. Food Chem. 2016, 196, 1215–1223. [Google Scholar] [CrossRef]
- ISO/IEC 17025:2017; General Requirements for the Competence of Testing and Calibration Laboratories. ISO: Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/66912.html (accessed on 10 April 2024).
Day | C | E1 | E2 | E3 | E4 | |
---|---|---|---|---|---|---|
Total microbial count (TMC) | 1 | 6.88 ± 0.12 f | 7.67 ± 0.19 cd | 7.77 ± 0.13 bc | 7.48 ± 0.12 e | 7.60 ± 0.08 d |
11 | 6.93 ± 0.15 f | 7.60 ± 0.06 d | 7.78 ± 0.12 bc | 7.65 ± 0.04 cd | 7.58 ± 0.05 de | |
21 | 7.78 ± 0.08 bc | 7.90 ± 0.06 b | 7.73 ± 0.02 c | 8.00 ± 0.01 a | 8.00 ± 0.03 a | |
Lactic acid bacteria (LAB) | 1 | 6.70 ± 0.09 g | 7.59 ± 0.04 de | 7.82 ± 0.05 bc | 7.20 ± 0.12 f | 7.76 ± 0.15 bc |
11 | 6.61 ± 0.02 g | 7.59 ± 0.12 de | 7.86 ± 0.07 b | 7.53 ± 0.02 e | 7.70 ± 0.07 cd | |
21 | 7.62 ± 0.04 d | 7.80 ± 0.08 bc | 7.81 ± 0.07 bc | 8.04 ± 0.09 a | 7.88 ± 0.07 b | |
Enterobacteriaceae spp. | 1 | 5.32 ± 0.18 a | 3.32 ± 0.10 c | 2.83 ± 0.04 e | 2.58 ± 0.12 | 3.51 ± 0.12 c |
11 | 4.60 ± 0.11 b | 3.01 ± 0.08 d | 1.80 ± 0.12 g | 2.10 ± 0.03 f | 3.04 ± 0.12 d | |
21 | 4.41 ± 0.06 b | 2.85 ± 0.03 e | 1.85 ± 0.06 g | 2.20 ± 0.08 f | 2.99 ± 0.02 d | |
Pseudomonas spp. | 1 | 2.26 ± 0.27 a | <1.00 | <1.00 | <1.00 | <1.00 |
11 | 2.26 ± 0.03 a | <1.00 | <1.00 | <1.00 | <1.00 | |
21 | <1.00 | <1.00 | <1.00 | <1.00 | <1.00 | |
Brochotrix spp. | 1 | 4.58 ± 0.01 b | 4.08 ± 0.02 d | 2.96 ± 0.16 | 4.79 ± 0.14 a | 3.93 ± 0.10 e |
11 | 4.23 ± 0.12 c | 3.53 ± 0.12 g | 2.45 ± 0.11 i | 3.25 ± 0.19 h | 3.95 ± 0.10 e | |
21 | 4.18 ± 0.01 c | 3.70 ± 0.10 f | 2.60 ± 0.04 i | 3.40 ± 0.04 gh | 3.61 ± 0.05 g |
Fe | Cd | Pb | |
---|---|---|---|
C | 30.5 ± 1.5 a | 0.002 ± 0.001 a | 0.011 ± 0.001 d |
E1 | 29.5 ± 1.5 a | 0.003 ± 0.001 a | 0.013 ± 0.001 c |
E2 | 28.4 ± 1.4 a | 0.003 ± 0.001 a | 0.016 ± 0.001 ab |
E3 | 30.3 ± 1.5 a | 0.004 ± 0.001 a | 0.018 ± 0.001 a |
E4 | 31.0 ± 1.5 a | 0.003 ± 0.001 a | 0.015 ± 0.001 b |
TPC (μg Gallic Acid/g) | DPPH Scavenging (μmol Trolox/g) | Hyaluronidase Inhibition (%) | ||
---|---|---|---|---|
C | day 1 | 4 ± 2 i | 0.9 ± 0.2 e | 0.4 ± 0.2 c |
day 11 | 4 ± 1 i | 0.6 ± 0.2 e | 0.3 ± 0.3 c | |
day 21 | 4 ± 2 i | 0.7 ± 0.3 e | 0.3 ± 0.2 c | |
E1 | day 1 | 148 ± 8 fg | 7.0 ± 0.5 d | 4.2 ± 0.6 b |
day 11 | 133 ± 8 g | 6.3 ± 0.3 d | 3.6 ± 0.4 b | |
day 21 | 116 ± 9 h | 6.5 ± 0.3 d | 3.4 ± 0.6 b | |
E2 | day 1 | 966 ± 39 a | 22.3 ± 1.5 a | 11.5 ± 0.9 a |
day 11 | 903 ± 40 a | 19.7 ± 1.0 b | 10.6 ± 0.4 a | |
day 21 | 826 ± 17 b | 18.7 ± 1.0 b | 10.3 ± 0.8 a | |
E3 | day 1 | 289 ± 16 c | 13.0 ± 0.6 c | 4.4 ± 0.5 b |
day 11 | 243 ± 12 d | 12.6 ± 1.1 c | 3.9 ± 0.5 b | |
day 21 | 224 ± 14 d | 12.0 ± 0.7 c | 4.1 ± 0.3 b | |
E4 | day 1 | 188 ± 11 e | 6.8 ± 0.8 d | 4.0 ± 0.3 b |
day 11 | 165 ± 9 f | 6.6 ± 0.4 d | 3.8 ± 0.5 b | |
day 21 | 155 ± 9 f | 6.1 ± 0.3 d | 3.8 ± 0.5 b |
L* | a* | b* | ΔE | ||
---|---|---|---|---|---|
C | day 1 | 39.08 ± 1.62 | 11.35 ± 1.14 | 11.58 ± 1.15 | - |
day 11 | 41.09 ± 2.22 | 12.34 ± 0.69 | 12.85 ± 1.04 | 2.58 | |
day 21 | 43.93 ± 1.22 | 12.14 ± 0.85 | 13.83 ± 1.42 | 5.40 | |
E1 | day 1 | 35.90 ± 0.65 | 16.35 ± 1.26 | 13.09 ± 0.95 | - |
day 11 | 37.98 ± 1.43 | 15.90 ± 1.00 | 13.43 ± 1.65 | 2.16 | |
day 21 | 39.68 ± 2.04 | 15.80 ± 0.88 | 13.79 ± 1.50 | 3.88 | |
E2 | day 1 | 35.85 ± 0.85 | 17.55 ± 0.65 | 12.73 ± 0.96 | - |
day 11 | 37.09 ± 1.27 | 16.75 ± 0.49 | 13.01 ± 1.43 | 1.50 | |
day 21 | 38.68 ± 1.90 | 16.93 ± 1.13 | 13.09 ± 0.98 | 2.92 | |
E3 | day 1 | 36.85 ± 0.72 | 15.40 ± 1.43 | 12.78 ± 1.45 | - |
day 11 | 37.95 ± 1.70 | 14.66 ± 0.53 | 13.61 ± 1.15 | 1.56 | |
day 21 | 39.30 ± 1.52 | 14.81 ± 0.73 | 14.80 ± 1.25 | 3.23 | |
E4 | day 1 | 36.63 ± 1.15 | 16.03 ± 1.52 | 12.97 ± 1.18 | - |
day 11 | 37.98 ± 1.35 | 15.93 ± 0.65 | 13.58 ± 1.23 | 1.49 | |
day 21 | 39.08 ± 1.20 | 15.84 ± 0.67 | 14.31 ± 0.93 | 2.80 |
C | E1 | E2 | E3 | E4 | ||
---|---|---|---|---|---|---|
color | brightness | 6.3 a | 5.3 b | 5.2 b | 5.3 b | 5.3 b |
saturation | 4.2 b | 5.6 a | 5.7 a | 5.4 a | 5.6 a | |
homogeneity | 6.3 a | 6.1 a | 6.5 a | 6.2 a | 6.1 a | |
acceptability | 6.8 b | 8.2 a | 8.3 a | 8.3 a | 8.1 a | |
smell | meat | 7.0 a | 6.8 a | 7.1 a | 6.7 a | 6.9 a |
smoked | 6.1 a | 6.2 a | 5.8 a | 5.8 a | 5.9 a | |
spice | 1.1 c | 3.2 b | 3.1 b | 6.8 a | 3.3 b | |
rancid | 0.8 a | 0.4 b | 0.2 b | 0.3 b | 0.4 b | |
acceptability | 7.3 b | 8.2 a | 8.1 a | 8.5 a | 8.2 a | |
taste | sweet | 1.4 a | 1.5 a | 1.2 a | 1.3 a | 1.3 a |
salty | 3.2 a | 3.0 a | 3.3 a | 3.4 a | 3.4 a | |
sour | 2.1 c | 3.3 b | 5.2 a | 3.5 b | 3.3 b | |
bitter | 0.7 c | 1.2 bc | 1.1 bc | 2.1 a | 1.4 b | |
umami | 7.2 a | 7.1 a | 7.4 a | 7.1 a | 7.0 a | |
pungent | 1.4 c | 3.2 b | 3.1 b | 3.6 b | 9.2 a | |
acceptability | 6.4 b | 7.6 a | 7.3 a | 7.1 ab | 4.1 c | |
texture | homogeneity | 6.4 a | 6.3 a | 6.4 a | 6.2 a | 6.2 a |
juiciness | 3.9 a | 4.1 a | 4.1 a | 3.8 a | 4.2 a | |
chewiness | 8.1 a | 7.9 a | 8.2 a | 8.2 a | 8.2 a | |
hardness | 7.6 a | 7.4 a | 7.3 a | 7.4 a | 7.4 a | |
acceptability | 7.1 a | 7.2 a | 7.0 a | 7.2 a | 7.2 a |
Ingredients | C | E1 | E2 | E3 | E4 |
---|---|---|---|---|---|
cured meat and fat mixture | 5000 g | 5000 g | 5000 g | 5000 g | 5000 g |
Schisandra chinesis fruits | - | 10 g 0.2% | 10 g 0.2% | 50 g 1.0% | 10 g 0.2% |
acerola extract | - | 25 g 0.5% | 175 g 3.5% | 25 g 0.5% | 25 g 0.5% |
dried hot peppers | - | 10 g 0.2% | 10 g 0.2% | 10 g 0.2% | 75 g 1.5% |
Color | Smell | Taste | Texture |
---|---|---|---|
brightness | meat | sweet | homogeneity |
saturation | smoked | salty | juiciness |
homogeneity | spice | sour | chewiness |
overall acceptability | rancid | bitter | hardness |
overall acceptability | umami | overall acceptability | |
pungent | |||
overall acceptability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woźniak, Ł.; Porębska, I.; Świder, O.; Sokołowska, B.; Szczepańska-Stolarczyk, J.; Lendzion, K.; Marszałek, K. The Impact of Plant Additives on the Quality and Safety of Ostrich Meat Sausages. Molecules 2024, 29, 3171. https://doi.org/10.3390/molecules29133171
Woźniak Ł, Porębska I, Świder O, Sokołowska B, Szczepańska-Stolarczyk J, Lendzion K, Marszałek K. The Impact of Plant Additives on the Quality and Safety of Ostrich Meat Sausages. Molecules. 2024; 29(13):3171. https://doi.org/10.3390/molecules29133171
Chicago/Turabian StyleWoźniak, Łukasz, Izabela Porębska, Olga Świder, Barbara Sokołowska, Justyna Szczepańska-Stolarczyk, Krzysztof Lendzion, and Krystian Marszałek. 2024. "The Impact of Plant Additives on the Quality and Safety of Ostrich Meat Sausages" Molecules 29, no. 13: 3171. https://doi.org/10.3390/molecules29133171
APA StyleWoźniak, Ł., Porębska, I., Świder, O., Sokołowska, B., Szczepańska-Stolarczyk, J., Lendzion, K., & Marszałek, K. (2024). The Impact of Plant Additives on the Quality and Safety of Ostrich Meat Sausages. Molecules, 29(13), 3171. https://doi.org/10.3390/molecules29133171