Reactivity of Resorcinol on Pt(511) Single-Crystal Surface and Its Effect on the Kinetics of Underpotentially Deposited Hydrogen and Hydrogen Evolution Reaction in 0.1 M NaOH Electrolyte
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of Cyclic Voltammetry, Tafel Polarization, and Charge-Transient Results
2.2. Analysis of ac. Impedance Results
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Singh, N.; Sanyal, U.; Fulton, J.L.; Gutierrez, O.Y.; Lercher, J.A.; Campbell, C.T. Quantifying adsorption of organic molecules on platinum in aqueous phase by hydrogen site blocking and in situ X-ray absorption spectroscopy. ACS Catal. 2019, 9, 6869–6881. [Google Scholar] [CrossRef]
- Sui, C.; Ma, X.Y.; Fu, W.H.; Zeng, S.P.; Xie, R.R.; Zhang, Z.P. Regulating Pt-based noble metal catalysts for the catalytic oxidation of volatile organic compounds: A mini review. Rev. Inorg. Chem. 2023, 43, 561–570. [Google Scholar] [CrossRef]
- Conway, B.E.; Pierozynski, B. Ac impedance behaviour of processes involving adsorption and reactivity of guanidonium-type cations at Pt(100) surface. J. Electroanal. Chem. 2008, 622, 10–14. [Google Scholar] [CrossRef]
- Conway, B.E.; Pierozynski, B. Influence of acetamidine on the electrosorption of UPD H at Pt single-crystal surfaces. J. Electroanal. Chem. 2008, 623, 102–108. [Google Scholar] [CrossRef]
- Pierozynski, B.; Kowalski, I.M. Electrochemical reactivity of formamidoxime on Pt(111) and (100) single-crystal surfaces in 0.1 M NaOH solution. J. Electroanal. Chem. 2011, 662, 432–436. [Google Scholar] [CrossRef]
- Pierozynski, B. Electrochemical behaviour of urea at Pt(111) single-crystal surface in 0.1 M NaOH. Electrocatalysis 2013, 4, 37–41. [Google Scholar] [CrossRef]
- Pierozynski, B. Electrochemical reactivity of urea at Pt(100) surface in 0.5 M H2SO4 by ac impedance spectroscopy. J. Solid State Electrochem. 2013, 17, 889–893. [Google Scholar] [CrossRef]
- Kuczyński, M.; Łuba, M.; Mikołajczyk, T.; Pierożyński, B. The effect of resorcinol on the kinetics of underpotentially deposited hydrogen and the oxygen evolution reaction, studied on polycrystalline Pt in a 0.5 M H2SO4 solution. Energies 2022, 15, 1092. [Google Scholar] [CrossRef]
- Kuczyński, M.; Łuba, M.; Mikołajczyk, T.; Pierożyński, B. The influence of resorcinol on the kinetics of underpotentially deposited hydrogen, cathodic hydrogen and anodic oxygen evolution reactions, examined at polycrystalline Pt electrode in 0.1 M NaOH solution. Int. J. Hydrogen Energy 2023, 48, 10755–10764. [Google Scholar] [CrossRef]
- Orts, J.M.; Feliu, J.M.; Aldaz, A.; Clavilier, J.; Rodes, A. Electrochemical behaviour of oxalic acid on platinum electrodes in acidic medium: Pt(100), Pt(111), Pt(110) and stepped surfaces. J. Electroanal. Chem. 1990, 281, 199–219. [Google Scholar] [CrossRef]
- Kita, H.; Ye, S.; Aramata, A.; Furuya, N. Adsorption of hydrogen on platinum single crystal electrodes in acid and alkali solutions. J. Electroanal. Chem. 1990, 295, 317–331. [Google Scholar] [CrossRef]
- Clavilier, J.; Rodes, A.; El Achi, K.; Zamakhchari, M.A. Electrochemistry at platinum single crystal surfaces in acidic media: Hydrogen and oxygen adsorption. J. Chim. Phys. 1991, 88, 1291–1337. [Google Scholar] [CrossRef]
- Morin, S.; Dumont, H.; Conway, B.E. Evaluation of the effect of two-dimensional geometry of Pt single-crystal faces on the kinetics of upd of H using impedance spectroscopy. J. Electroanal. Chem. 1996, 412, 39–52. [Google Scholar] [CrossRef]
- Jerkiewicz, G. Electrochemical hydrogen adsorption and absorption. Part 1: Under-potential deposition of hydrogen. Electrocatalysis 2010, 1, 179–199. [Google Scholar] [CrossRef]
- Łosiewicz, B.; Jurczakowski, R.; Lasia, A. Kinetics of hydrogen underpotential deposition at iridium in sulfuric and perchloric acids. Electrochim. Acta 2017, 225, 160–167. [Google Scholar] [CrossRef]
- Lynch, B.S.; Delzell, E.S.; Bechtel, D.H. Toxicology review and risk assessment of resorcinol: Thyroid effects. Regul. Toxicol. Pharm. 2002, 36, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, D.; Palanivelu, K.; Mohan, N. Electrochemical oxidation of resorcinol for wastewater treatment—A kinetic study. Indian J. Chem. Technol. 2003, 10, 396–401. [Google Scholar]
- Nady, H.; El-Rabieci, M.M.; Abd El-Hafez, G.M. Electrochemical oxidation behavior of some hazardous phenolic compounds in acidic solution. Egypt. J. Pet. 2017, 26, 669–678. [Google Scholar] [CrossRef]
- Yosaf, S.; Gnaifaid, H.; Mizda, A. Thermoeconomic assessment of green hydrogen production via PV&PEM electrolyzer: A case study for Al-Jufra region in Libya. Sol. Energy Sustain. Dev. 2024, 13, 57–70. [Google Scholar]
- Ngamchuea, K.; Tharat, B.; Hirunsit, P.; Suthirakun, S. Electrochemical oxidation of resorcinol: Mechanistic insights from experimental and computational studies. RCS Adv. 2020, 10, 28454–28463. [Google Scholar] [CrossRef]
- Yang, J.; Williams, C.L.; Ramasubramaniam, A.; Dauenhauer, P.J. Aqueous-phase hydrodeoxygenation of highly oxygenated aromatics on platinum. Green Chem. 2014, 16, 675–682. [Google Scholar] [CrossRef]
- Zhong, J.; Chen, J.; Chen, L. Selective hydrogenation of phenol and related derivatives. Catal. Sci. Technol. 2014, 4, 3555–3569. [Google Scholar] [CrossRef]
- Wei, Z.; Pan, R.; Hou, Y.; Yang, Y.; Liu, Y. Graphene-supported Pd catalyst for highly selective hydrogenation of resorcinol to 1,3-cyclohexanedione through giant π-conjugate interactions. Sci. Rep. 2015, 5, 15664. [Google Scholar] [CrossRef] [PubMed]
- Sheng, W.; Gasteiger, H.A.; Horn, Y.S. Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs alkaline electrolytes. J. Electrochem. Soc. 2010, 157, B1529–B1536. [Google Scholar] [CrossRef]
- Raveendran, A.; Chandran, M.; Dhanusuraman, R. A comprehensive review on the electrochemical parameters and recent material development of electrochemical water splitting electrocatalysts. RSC Adv. 2023, 13, 3843–3876. [Google Scholar] [CrossRef] [PubMed]
- Pajkossy, T. Impedance of rough capacitive electrodes. J. Electroanal. Chem. 1994, 364, 111–125. [Google Scholar] [CrossRef]
- Conway, B.E.; Barber, J.; Morin, S. Comparative evaluation of surface structure specificity of kinetics of UPD and OPD of H at single-crystal Pt electrodes. Electrochim. Acta 1998, 44, 1109–1125. [Google Scholar] [CrossRef]
- Barber, J.H.; Conway, B.E. Structural specificity of the kinetics of the hydrogen evolution reaction on the low-index surfaces of Pt single-crystal electrodes in 0.5 M dm−3 NaOH. J. Electroanal. Chem. 1999, 461, 80–89. [Google Scholar] [CrossRef]
- Hamelin, A. Modern Aspects of Electrochemistry; Conway, B.E., Bockris, J.O.M., White, R.E., Eds.; Plenum Press: New York, NY, USA, 1985; Volume 16, pp. 1–101. ISBN 0-306-42024-4. [Google Scholar]
- Macdonald, J.R. Impedance Spectroscopy, Emphasizing Solid Materials and Systems; John Wiley & Sons: New York, NY, USA, 1987; pp. 1–368. ISBN 0-471-83122-0. [Google Scholar]
E/mV | RH/Ω cm2 | Cdl/µF cm−2 | Rct/Ω cm2 | CpH/µF cm−2 |
---|---|---|---|---|
0.1 M NaOH | ||||
50 | 14.1 ± 0.2 | 69.8 ± 5.9 | - | 458 ± 7 |
100 | 25.2 ± 0.5 | 54.7 ± 3.6 | - | 291 ± 5 |
150 | 47.8 ± 0.8 | 53.6 ± 2.6 | - | 286 ± 5 |
200 | 71.5 ± 0.8 | 73.3 ± 2.0 | - | 446 ± 5 |
250 | 111.9 ± 1.5 | 85.7 ± 2.3 | - | 700 ± 13 |
300 | 149.8 ± 0.7 | 68.3 ± 0.7 | - | 731 ± 7 |
400 | - | 214.1 ± 2.6 | - | |
500 | - | 87.8 ± 2.8 | - | |
0.1 M NaOH + 1.5 × 10−3 M RC | ||||
50 | 3.6 ± 0.1 | 38.6 ± 1.8 | 1416 ± 92 | 500 ± 39 |
100 | 5.1 ± 0.2 | 28.3 ± 7.2 | - | 454 ± 10 |
150 | 6.5 ± 0.1 | 38.0 ± 4.4 | - | 390 ± 10 |
200 | 8.5 ± 0.2 | 47.5 ± 5.4 | - | 351 ± 6 |
250 | 12.1 ± 0.3 | 51.3 ± 5.8 | - | 321 ± 7 |
300 | 15.7 ± 0.6 | 81.5 ± 12.0 | - | 231 ± 11 |
RF/Ω cm2 | Cp/µF cm−2 | |||
400 | - | 93.1 ± 1.3 | 24,892 ± 2690 | 90 ± 13 |
500 | - | 70.3 ± 2.1 | 8454 ± 1502 | 73 ± 4 |
600 | - | 98.2 ± 1.2 | 9708 ± 1741 | 106 ± 13 |
0.1 M NaOH + 1.5 × 10−5 M RC | ||||
Rct/Ω cm2 | CpH/µF cm−2 | |||
50 | 9.2 ± 0.6 | 39.9 ± 3.9 | 667 ± 9 | 599 ± 28 |
100 | 12.3 ± 0.8 | 37.3 ± 3.7 | - | 361 ± 17 |
150 | 24.7 ± 1.6 | 33.0 ± 8.2 | - | 197 ± 9 |
200 | 20.5 ± 1.3 | 37.3 ± 3.7 | - | 231 ± 11 |
300 | 49.5 ± 3.2 | 186.8 ± 18.5 | - | 335 ± 16 |
RF/Ω cm2 | Cp/µF cm−2 | |||
400 | - | 91.3 ± 2.3 | 27,249 ± 165 | 123 ± 15 |
500 | - | 87.3 ± 5.5 | 4354 ± 58 | 89 ± 6 |
600 | - | 102.1 ± 3.8 | 5092 ± 68 | 211 ± 33 |
E/mV | ROPD H/Ω cm2 | COPD H/µF cm−2 | Rct/Ω cm2 | Cdl/µF cm−2 |
---|---|---|---|---|
0.1 M NaOH | ||||
−50 | 5.1 ± 0.2 | 401 ± 48 | 24.7 ± 0.3 | 33.8 ± 1.6 |
−100 | - | - | 17.4 ± 0.5 | 33.2 ± 3.3 |
−200 | - | - | 15.8 ± 1.0 | 41.5 ± 4.1 |
−300 | - | - | 10.4 ± 0.7 | 37.7 ± 3.7 |
0.1 M NaOH + 1.5 × 10−5 M RC | ||||
−50 | 3.2 ± 0.2 | 89 ± 4 | 14.2 ± 0.7 | 38.8 ± 1.7 |
−100 | - | - | 11.6 ± 0.2 | 48.0± 2.8 |
−200 | - | - | 9.9 ± 0.6 | 57.0± 4.7 |
−300 | - | - | 7.5 ± 0.5 | 47.3± 5.1 |
0.1 M NaOH + 1.5 × 10−3 M RC | ||||
−50 | 2.8 ± 0.1 | 419 ± 36 | 9.5 ± 0.5 | 42.2 ± 5.6 |
−100 | - | - | 8.9 ± 0.2 | 78.5 ± 3.7 |
−200 | - | - | 4.7 ± 0.1 | 41.7 ± 1.9 |
−300 | - | - | 6.5 ± 0.0 | 29.8 ± 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pierożyński, B.; Kuczyński, M.; Mikołajczyk, T.; Sołowiej, P. Reactivity of Resorcinol on Pt(511) Single-Crystal Surface and Its Effect on the Kinetics of Underpotentially Deposited Hydrogen and Hydrogen Evolution Reaction in 0.1 M NaOH Electrolyte. Molecules 2024, 29, 3220. https://doi.org/10.3390/molecules29133220
Pierożyński B, Kuczyński M, Mikołajczyk T, Sołowiej P. Reactivity of Resorcinol on Pt(511) Single-Crystal Surface and Its Effect on the Kinetics of Underpotentially Deposited Hydrogen and Hydrogen Evolution Reaction in 0.1 M NaOH Electrolyte. Molecules. 2024; 29(13):3220. https://doi.org/10.3390/molecules29133220
Chicago/Turabian StylePierożyński, Bogusław, Mateusz Kuczyński, Tomasz Mikołajczyk, and Piotr Sołowiej. 2024. "Reactivity of Resorcinol on Pt(511) Single-Crystal Surface and Its Effect on the Kinetics of Underpotentially Deposited Hydrogen and Hydrogen Evolution Reaction in 0.1 M NaOH Electrolyte" Molecules 29, no. 13: 3220. https://doi.org/10.3390/molecules29133220
APA StylePierożyński, B., Kuczyński, M., Mikołajczyk, T., & Sołowiej, P. (2024). Reactivity of Resorcinol on Pt(511) Single-Crystal Surface and Its Effect on the Kinetics of Underpotentially Deposited Hydrogen and Hydrogen Evolution Reaction in 0.1 M NaOH Electrolyte. Molecules, 29(13), 3220. https://doi.org/10.3390/molecules29133220