KF-Containing Interphase Formation Enables Better Potassium Ion Storage Capability
Abstract
:1. Introduction
2. Results and Discussions
3. Experimental Section
3.1. Materials Syntheses
3.2. Materials Characterizations
3.3. Electrode Preparation, Battery Assembly and Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, T.; He, X.; Zhou, M.; Ning, J.; Cao, S.; Chen, M.; Li, H.; Wang, W.; Wang, K.; Jiang, K. In Situ Ions Induced Formation of KxF-Rich SEI Layers toward Ultrastable Life of Potassium-Ion Batteries. Adv. Mater. 2024, 36, 2401943. [Google Scholar] [CrossRef]
- Cheng, L.; Qi, M.; Yu, J.; Zhang, X.; Wang, H.-G.; Cui, F.; Wang, Y. Conjugation and Topology Engineering of 2D π-d Conjugated Metal–Organic Frameworks for Robust Potassium Organic Batteries. Angew. Chem. Int. Ed. 2024, 63, e202405239. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, Z.; Zhang, H.; Liu, Y.; Wei, W.; Zhou, Y.; Xu, M. Uniformly Dispersed Sb-Nanodot Constructed by In Situ Confined Polymerization of Ionic Liquids for High-Performance Potassium-Ion Batteries. Molecules 2023, 28, 5212. [Google Scholar] [CrossRef]
- Shchurik, E.V.; Kraevaya, O.A.; Vasil’ev, S.G.; Zhidkov, I.S.; Kurmaev, E.Z.; Shestakov, A.F.; Troshin, P.A. Anthraquinone-Quinizarin Copolymer as a Promising Electrode Material for High-Performance Lithium and Potassium Batteries. Molecules 2023, 28, 5351. [Google Scholar] [CrossRef]
- Xu, Y.; Titirici, M.; Chen, J.; Cora, F.; Cullen, P.L.; Edge, J.S.; Fan, K.; Fan, L.; Feng, J.; Hosaka, T.; et al. 2023 roadmap for potassium-ion batteries. J. Phys. Energy 2023, 5, 021502. [Google Scholar] [CrossRef]
- Cai, P.; Wang, K.; Wang, T.; Li, H.; Zhou, M.; Wang, W.; Jiang, K. Comprehensive Insights into Potassium-Ion Capacitors: Mechanisms, Materials, Devices and Future Perspectives. Adv. Energy Mater. 2024, 14, 2401183. [Google Scholar] [CrossRef]
- Larhrib, B.; Larbi, L.; Madec, L. Nonaqueous potassium-ion full-cells: Mapping the progress and identifying missing puzzle pieces. J. Energy Chem. 2024, 93, 384–399. [Google Scholar] [CrossRef]
- Dhir, S.; Wheeler, S.; Capone, I.; Pasta, M. Outlook on K-Ion Batteries. Chem 2020, 6, 2442–2460. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, D.; Fu, H.; Li, J.; Yu, X.; Zhou, J.; Lu, B. Restructuring Electrolyte Solvation by a Partially and Weakly Solvating Cosolvent toward High-Performance Potassium-Ion Batteries. ACS Nano 2024, 18, 12512–12523. [Google Scholar] [CrossRef]
- Yi, X.; Fu, H.; Rao, A.M.; Zhang, Y.; Zhou, J.; Wang, C.; Lu, B. Safe electrolyte for long-cycling alkali-ion batteries. Nat. Sustain. 2024, 7, 326–337. [Google Scholar] [CrossRef]
- Tan, H.; Lin, X. Electrolyte Design Strategies for Non-Aqueous High-Voltage Potassium-Based Batteries. Molecules 2023, 28, 823. [Google Scholar] [CrossRef]
- Hu, Y.; Fu, H.; Geng, Y.; Yang, X.; Fan, L.; Zhou, J.; Lu, B. Chloro-Functionalized Ether-Based Electrolyte for High-Voltage and Stable Potassium-Ion Batteries. Angew. Chem. Int. Ed. 2024, 63, e202403269. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhu, L.; Xu, H.; Wu, Q.; Duan, H.; Chen, B.; He, H. Interlayer-Expanded MoS2 Enabled by Sandwiched Monolayer Carbon for High Performance Potassium Storage. Molecules 2023, 28, 2608. [Google Scholar] [CrossRef]
- Cheng, B.; Li, X.; Pan, L.; Xu, H.; Duan, H.; Wu, Q.; Yin, B.; He, H. Ultra-Thin Wrinkled Carbon Sheet as an Anode Material of High-Power-Density Potassium-Ion Batteries. Molecules 2022, 27, 2973. [Google Scholar] [CrossRef]
- Wang, B.; Shi, L.; Zhou, Y.; Wang, X.; Liu, X.; Shen, D.; Yang, Q.; Xiao, S.; Zhang, J.; Li, Y. 3D Dense Encapsulated Architecture of 2D Bi Nanosheets Enabling Potassium-Ion Storage with Superior Volumetric and Areal Capacities. Small 2024, 20, 2310736. [Google Scholar] [CrossRef]
- Zhang, J.; Kim, G.; Park, M.; Zhang, J.; Lee, S.; Cui, Y.; Zhang, K.; Zou, F.; Kang, Y.-M. Nanostructuring-Promoted Non-Equilibrium Phase Transformation of Bi Anodes Toward Diffusion-Controlled Reaction for K-Ion Batteries. Adv. Energy Mater. 2022, 12, 2202446. [Google Scholar] [CrossRef]
- Ababaikeri, R.; Sun, Y.; Wang, X.; Li, X.; Li, M.; Zhang, F.; Li, Y.; Wang, P.; Guo, J.; Cao, Y. Scalable fabrication of Bi@N-doped carbon as anodes for sodium/potassium-ion batteries with enhanced electrochemical performances. J. Alloys Compd. 2023, 935, 168207. [Google Scholar] [CrossRef]
- Jia, J.H.; Lu, X.F.; Yang, C.C.; Jiang, Q. Advances in bismuth-based anodes for potassium-ion batteries. J. Mater. Chem. A 2024, 12, 1359–1391. [Google Scholar] [CrossRef]
- Wang, A.; Hong, W.; Yang, L.; Tian, Y.; Qiu, X.; Zou, G.; Hou, H.; Ji, X. Bi-Based Electrode Materials for Alkali Metal-Ion Batteries. Small 2020, 16, 2004022. [Google Scholar] [CrossRef]
- Feng, Y.; Lv, Y.; Fu, H.; Parekh, M.; Rao, A.M.; Wang, H.; Tai, X.; Yi, X.; Lin, Y.; Zhou, J.; et al. Co-activation for enhanced K-ion storage in battery anodes. Nat. Sci. Rev. 2023, 10, nwad118. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, P.; Zhou, S.; Tian, X.; Soomro, R.A.; Liu, H.; Du, H.; Xu, B. Encapsulating Bi Nanoparticles in Reduced Graphene Oxide with Strong Interfacial Bonding toward Advanced Potassium Storage. Small 2024, 20, 2306541. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Lu, Q.; Qu, J.; Feng, W.; Thomas, A.; Li, Y.; Martinez, I.G.G.; Pan, C.; Mikhailova, D. Operando Studies of Bismuth Nanoparticles Embedded in N, O-Doped Porous Carbon for High-Performance Potassium-Ion Hybrid Capacitor. Small 2024, 20, 2311253. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wei, Y.; Zhou, S.; Soomro, R.A.; Jiang, M.; Xu, B. A metal-organic framework derived approach to fabricate in-situ carbon encapsulated Bi/Bi2O3 heterostructures as high-performance anodes for potassium ion batteries. J. Colloid Interface Sci. 2023, 630, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, D.; Wang, C.; Zhu, H.; Yu, F.; Yin, J. Bismuth Nanoparticles Encapsulated in Mesoporous Carbon Nanofibers for Efficient Potassium-Ion Storage. ACS Appl. Nano Mater. 2022, 5, 13171–13179. [Google Scholar] [CrossRef]
- Li, W.; Gao, N.; Li, H.; Sun, R.; Liu, Q.; Huang, B.; Chen, Q. Bi@Bi2O3 anchored on porous graphene prepared by solvothermal method as a high-performance anode material for potassium-ion batteries. J. Alloys Compd. 2023, 939, 168766. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Zhang, K.; Liu, J.; Zhou, Z.; Li, Z.; Li, G.; Cui, G.; Zhang, Z. Ion recognition enables fast Mg–Cl bond dissociation kinetics and better Mg plating/stripping reversibility. J. Magnes. Alloy. 2023, in press. [CrossRef]
- Yu, X.; Sun, J.; Zhao, W.; Zhao, S.; Chen, H.; Tao, K.; Hu, Y.; Han, L. MOF-derived Bi2O3@C microrods as negative electrodes for advanced asymmetric supercapacitors. RSC Adv. 2020, 10, 14107–14112. [Google Scholar] [CrossRef] [PubMed]
- Horner, J.S.; Whang, G.; Ashby, D.S.; Kolesnichenko, I.V.; Lambert, T.N.; Dunn, B.S.; Talin, A.A.; Roberts, S.A. Electrochemical Modeling of GITT Measurements for Improved Solid-State Diffusion Coefficient Evaluation. ACS Appl. Energy Mater. 2021, 4, 11460–11469. [Google Scholar] [CrossRef]
- Zhang, Q.; Mao, J.; Pang, W.K.; Zheng, T.; Sencadas, V.; Chen, Y.; Liu, Y.; Guo, Z. Boosting the Potassium Storage Performance of Alloy-Based Anode Materials via Electrolyte Salt Chemistry. Adv. Energy Mater. 2018, 8, 1703288. [Google Scholar] [CrossRef]
- Wang, D.; Li, L.; Zhang, Z.; Liu, J.; Guo, X.; Mao, C.; Peng, H.; Li, Z.; Li, G. Mechanistic Insights into the Intercalation and Interfacial Chemistry of Mesocarbon Microbeads Anode for Potassium Ion Batteries. Small 2021, 17, 2103557. [Google Scholar] [CrossRef]
- Zhang, F.; Shen, Y.; Xu, H.; Zhao, X. Bismuth Nanoparticle-Embedded Carbon Microrod for High-Rate Electrochemical Magnesium Storage. ACS Appl. Mater. Interfaces 2023, 15, 23353–23360. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Tang, Y.; Xu, Y.; Su, S.; Chen, S.; Zheng, S.; Hu, C.; Li, X.; Dai, K.; Zhang, R. In Situ Structural Self-Optimization and Oxygen Vacancy Creation to Boost the Stability of Bi-MOF Derived Bi2O3@C and BiOCl@C Anodes. ACS Appl. Energy Mater. 2024, 7, 1411–1420. [Google Scholar] [CrossRef]
C | N | O | Bi | |
---|---|---|---|---|
Element ratio (%) | 45 | 2 | 9 | 45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Yuan, N.; Li, Z.; Chao, K.; Zhang, Z.; Li, G. KF-Containing Interphase Formation Enables Better Potassium Ion Storage Capability. Molecules 2024, 29, 2996. https://doi.org/10.3390/molecules29132996
Zhang T, Yuan N, Li Z, Chao K, Zhang Z, Li G. KF-Containing Interphase Formation Enables Better Potassium Ion Storage Capability. Molecules. 2024; 29(13):2996. https://doi.org/10.3390/molecules29132996
Chicago/Turabian StyleZhang, Tianyi, Ning Yuan, Zijie Li, Kun Chao, Zhonghua Zhang, and Guicun Li. 2024. "KF-Containing Interphase Formation Enables Better Potassium Ion Storage Capability" Molecules 29, no. 13: 2996. https://doi.org/10.3390/molecules29132996
APA StyleZhang, T., Yuan, N., Li, Z., Chao, K., Zhang, Z., & Li, G. (2024). KF-Containing Interphase Formation Enables Better Potassium Ion Storage Capability. Molecules, 29(13), 2996. https://doi.org/10.3390/molecules29132996