Differential Effects of In Vitro Simulated Digestion on Antioxidant Activity and Bioaccessibility of Phenolic Compounds in Purple Rice Bran Extracts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antioxidant Activity
2.2. Phenolic Content
2.3. Qualitative and Quantitative Composition of Phenolic Compounds
2.4. Bioaccessibility of Phenolic Compounds
3. Materials and Methods
3.1. Rice Brans and Reagents
3.2. Extraction of Antioxidants from Rice Bran
3.3. In Vitro Simulated Digestions
3.4. Determination of Antioxidant Activity
3.5. Determination of Phytochemical Content
3.6. Identification and Quantification of Phenolic Compounds
3.7. Bioaccessibility Index
3.8. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Masenga, S.K.; Kabwe, L.S.; Chakulya, M.; Kirabo, A. Mechanisms of Oxidative Stress in Metabolic Syndrome. Int. J. Mol. Sci. 2023, 24, 7898. [Google Scholar] [CrossRef] [PubMed]
- Terpou, A.; Rai, A.K. Microbial transformation for improving food functionality. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2022; pp. 31–45. [Google Scholar]
- Yamuangmorn, S.; Prom-u-Thai, C. The potential of high-anthocyanin purple rice as a functional ingredient in human health. Antioxidants 2021, 10, 833. [Google Scholar] [CrossRef] [PubMed]
- Senakun, C.; Chunta, S.; Somboonwattanakul, I.; Yodsiri, S.; Kurukodt, J.; Senakun, A. Diversity, utilization and cultural significance of purple rice in northeastern Thailand. Int. J. Agric. Technol. 2018, 14, 1893–1904. [Google Scholar]
- Sadabpod, K.; Kangsadalampai, K.; Tongyonk, L. Antimutagenicity of black glutinous rice and Hom Nil Rice. J. Nat. Sci. 2014, 13, 553–558. [Google Scholar] [CrossRef]
- Thamnarathip, P.; Jangchud, K.; Jangchud, A.; Nitisinprasert, S.; Tadakittisarn, S.; Vardhanabhuti, B. Extraction and characterisation of R iceberry bran protein hydrolysate using enzymatic hydrolysis. Int. J. Food Sci. Technol. 2016, 51, 194–202. [Google Scholar] [CrossRef]
- Daiponmak, W.; Senakun, C.; Siriamornpun, S. Antiglycation capacity and antioxidant activities of different pigmented Thai rice. Int. J. Food Sci. Technol. 2014, 49, 1805–1810. [Google Scholar] [CrossRef]
- Peanparkdee, M.; Yamauchi, R.; Iwamoto, S. Characterization of antioxidants extracted from Thai riceberry bran using ultrasonic-assisted and conventional solvent extraction methods. Food Bioprocess. Technol. 2018, 11, 713–722. [Google Scholar] [CrossRef]
- Sun, D.; Huang, S.; Cai, S.; Cao, J.; Han, P. Digestion property and synergistic effect on biological activity of purple rice (Oryza sativa L.) anthocyanins subjected to a simulated gastrointestinal digestion in vitro. Food Res. Int. 2015, 78, 114–123. [Google Scholar]
- Ed Nignpense, B.; Latif, S.; Francis, N.; Blanchard, C.; Santhakumar, A.B. Bioaccessibility and antioxidant activity of polyphenols from pigmented barley and wheat. Foods 2022, 11, 3697. [Google Scholar] [CrossRef]
- Peanparkdee, M.; Patrawart, J.; Iwamoto, S. Physicochemical stability and in vitro bioaccessibility of phenolic compounds and anthocyanins from Thai rice bran extracts. Food Chem. 2020, 329, 127157. [Google Scholar] [CrossRef]
- Mackie, A.; Rigby, N. InfoGest consensus method. In The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Springer: Cham, Switzerland, 2015; pp. 13–22. [Google Scholar] [CrossRef]
- Tobias, A.; Sadiq, N.M. Physiology, gastrointestinal nervous control. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Friedman, M.; Jürgens, H.S. Effect of pH on the stability of plant phenolic compounds. J. Agric. Food Chem. 2000, 48, 2101–2110. [Google Scholar] [CrossRef]
- Müller, L.; Fröhlich, K.; Böhm, V. Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chem. 2011, 129, 139–148. [Google Scholar] [CrossRef]
- Ziolkiewicz, A.; Kasprzak-Drozd, K.; Wojtowicz, A.; Oniszczuk, T.; Gancarz, M.; Kowalska, I.; Moldoch, J.; Kondracka, A.; Oniszczuk, A. The Effect of In Vitro Digestion on Polyphenolic Compounds and Antioxidant Properties of Sorghum (Sorghum bicolor (L.) Moench) and Sorghum-Enriched Pasta. Molecules 2023, 28, 1706. [Google Scholar] [CrossRef]
- Kasprzak-Drozd, K.; Mołdoch, J.; Gancarz, M.; Wójtowicz, A.; Kowalska, I.; Oniszczuk, T.; Oniszczuk, A. In Vitro Digestion of Polyphenolic Compounds and the Antioxidant Activity of Acorn Flour and Pasta Enriched with Acorn Flour. Int. J. Mol. Sci. 2024, 25, 5404. [Google Scholar] [CrossRef] [PubMed]
- Jara-Palacios, M.J.; Gonçalves, S.; Hernanz, D.; Heredia, F.J.; Romano, A. Effects of in vitro gastrointestinal digestion on phenolic compounds and antioxidant activity of different white winemaking by-products extracts. Food Res. Int. 2018, 109, 433–439. [Google Scholar] [CrossRef]
- Elejalde, E.; Villarán, M.C.; Esquivel, A.; Alonso, R.M. Bioaccessibility and Antioxidant Capacity of Grape Seed and Grape Skin Phenolic Compounds After Simulated In Vitro Gastrointestinal Digestion. Plant Foods Hum. Nutr. 2024, 79, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Fraga, C.G.; Croft, K.D.; Kennedy, D.O.; Tomás-Barberán, F.A. The effects of polyphenols and other bioactives on human health. Food Funct. 2019, 10, 514–528. [Google Scholar] [CrossRef] [PubMed]
- Tenore, G.C.; Campiglia, P.; Giannetti, D.; Novellino, E. Simulated gastrointestinal digestion, intestinal permeation and plasma protein interaction of white, green, and black tea polyphenols. Food Chem. 2015, 169, 320–326. [Google Scholar] [CrossRef]
- Lucas-Gonzalez, R.; Navarro-Coves, S.; Pérez-Álvarez, J.A.; Fernández-López, J.; Muñoz, L.A.; Viuda-Martos, M. Assessment of polyphenolic profile stability and changes in the antioxidant potential of maqui berry (Aristotelia chilensis (Molina) Stuntz) during in vitro gastrointestinal digestion. Ind. Crops Prod. 2016, 94, 774–782. [Google Scholar]
- Tungmunnithum, D.; Drouet, S.; Lorenzo, J.M.; Hano, C. Effect of traditional cooking and in vitro gastrointestinal digestion of the ten most consumed beans from the fabaceae family in Thailand on their phytochemicals, antioxidant and anti-diabetic potentials. Plants 2021, 11, 67. [Google Scholar] [CrossRef]
- Barak, T.H.; Celep, E.; İnan, Y.; Yesilada, E. Influence of in vitro human digestion on the bioavailability of phenolic content and antioxidant activity of Viburnum opulus L. (European cranberry) fruit extracts. Ind. Crops Prod. 2019, 131, 62–69. [Google Scholar]
- Quan, W.; Tao, Y.; Lu, M.; Yuan, B.; Chen, J.; Zeng, M.; Qin, F.; Guo, F.; He, Z. Stability of the phenolic compounds and antioxidant capacity of five fruit (apple, orange, grape, pomelo and kiwi) juices during in vitro-simulated gastrointestinal digestion. Int. J. Food Sci. Technol. 2018, 53, 1131–1139. [Google Scholar] [CrossRef]
- Bouayed, J.; Hoffmann, L.; Bohn, T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chem. 2011, 128, 14–21. [Google Scholar] [CrossRef]
- Ng, Z.X.; See, A.N. Effect of in vitro digestion on the total polyphenol and flavonoid, antioxidant activity and carbohydrate hydrolyzing enzymes inhibitory potential of selected functional plant-based foods. J. Food Process Pres. 2019, 43, e13903. [Google Scholar] [CrossRef]
- Tagliazucchi, D.; Verzelloni, E.; Bertolini, D.; Conte, A. In vitro bio-accessibility and antioxidant activity of grape polyphenols. Food Chem. 2010, 120, 599–606. [Google Scholar] [CrossRef]
- Lila, M.A.; Burton-Freeman, B.; Grace, M.; Kalt, W. Unraveling anthocyanin bioavailability for human health. Annu. Rev. Food Sci. Technol. 2016, 7, 375–393. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, I.; Faria, A.; de Freitas, V.; Calhau, C.; Mateus, N. Multiple-approach studies to assess anthocyanin bioavailability. Phytochem. Rev. 2015, 14, 899–919. [Google Scholar] [CrossRef]
- Kamiloglu, S.; Capanoglu, E.; Bilen, F.D.; Gonzales, G.B.; Grootaert, C.; Van de Wiele, T.; Van Camp, J. Bioaccessibility of polyphenols from plant-processing by-products of black carrot (Daucus carota L.). J. Agric. Food Chem. 2016, 64, 2450–2458. [Google Scholar] [CrossRef] [PubMed]
- Terefe, N.S.; Netzel, G.A.; Netzel, M.E. Copigmentation with sinapic acid improves the stability of anthocyanins in high-pressure-processed strawberry purees. J. Chem. 2019, 2019, 3138608. [Google Scholar] [CrossRef]
- Bhatia, N.K.; Tomar, V.R.; Kishor, S.; Deep, S. Effect of pH and temperature on physicochemical properties, aggregation behaviour and degradation kinetics of quercetin and baicalein in nearly aqueous media. J. Mol. Liq. 2022, 366, 120236. [Google Scholar] [CrossRef]
- Pasquet, P.; Julien-David, D.; Zhao, M.; Villain-Gambier, M.; Trébouet, D. Stability and preservation of phenolic compounds and related antioxidant capacity from agro-food matrix: Effect of pH and atmosphere. Food Biosci. 2024, 57, 103586. [Google Scholar] [CrossRef]
- Gunathilake, K.; Ranaweera, K.; Rupasinghe, H. Change of phenolics, carotenoids, and antioxidant capacity following simulated gastrointestinal digestion and dialysis of selected edible green leaves. Food Chem. 2018, 245, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Pineda-Vadillo, C.; Nau, F.; Guerin-Dubiard, C.; Jardin, J.; Lechevalier, V.; Sanz-Buenhombre, M.; Guadarrama, A.; Tóth, T.; Csavajda, É.; Hingyi, H. The food matrix affects the anthocyanin profile of fortified egg and dairy matrices during processing and in vitro digestion. Food Chem. 2017, 214, 486–496. [Google Scholar] [CrossRef]
- Peanparkdee, M.; Patrawart, J.; Iwamoto, S. Effect of extraction conditions on phenolic content, anthocyanin content and antioxidant activity of bran extracts from Thai rice cultivars. J. Cereal Sci. 2019, 86, 86–91. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F. INFOGEST static in vitro simulation of gastrointestinal food digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Peanparkdee, M.; Borompichaichartkul, C.; Iwamoto, S. Bioaccessibility and antioxidant activity of phenolic acids, flavonoids, and anthocyanins of encapsulated Thai rice bran extracts during in vitro gastrointestinal digestion. Food Chem. 2021, 361, 130161. [Google Scholar] [CrossRef]
- Wanyo, P.; Kaewseejan, N.; Meeso, N.; Siriamornpun, S. Bioactive compounds and antioxidant properties of different solvent extracts derived from Thai rice by-products. Appl. Biol. Chem. 2016, 59, 373–384. [Google Scholar] [CrossRef]
- Buran, T.J.; Sandhu, A.K.; Li, Z.; Rock, C.R.; Yang, W.W.; Gu, L. Adsorption/desorption characteristics and separation of anthocyanins and polyphenols from blueberries using macroporous adsorbent resins. J. Food Eng. 2014, 128, 167–173. [Google Scholar] [CrossRef]
- Duangkhamchan, W.; Siriamornpun, S. Quality attributes and anthocyanin content of rice coated by purple-corn cob extract as affected by coating conditions. Food Bioprod. Process 2015, 96, 171–179. [Google Scholar] [CrossRef]
- Andrade, J.K.S.; Barros, R.G.C.; Pereira, U.C.; Nogueira, J.P.; Gualberto, N.C.; de Oliveira, C.S.; Shanmugam, S.; Narain, N. Bioaccessibility of bioactive compounds after in vitro gastrointestinal digestion and probiotics fermentation of Brazilian fruits residues with antioxidant and antidiabetic potential. LWT 2022, 153, 112469. [Google Scholar] [CrossRef]
Rice Samples | Phenolic Compounds | Concentration (mg/g) | |||
---|---|---|---|---|---|
Pre-Digest Phase | Oral Phase | Gastric Phase | Intestinal Phase | ||
Hom Nil | Phenolic acids | ||||
Gallic acid | 0.64 ± 0.02 a | 0.56 ± 0.01 bc | 0.54 ± 0.03 bcd | 0.57 ± 0.03 b | |
Protocatechuic acid | 1.47 ± 0.05 a | 1.18 ± 0.04 bc | 1.10 ± 0.07 c | 0.81 ± 0.05 d | |
Vanillic acid | 0.72 ± 0.03 ab | 0.63 ± 0.03 b | 0.61 ± 0.09 b | 0.63 ± 0.08 b | |
ρ-Coumaric acid | 0.29 ± 0.01 a | 0.26 ± 0.00 b | 0.13 ± 0.02 c | 0.13 ± 0.01 c | |
Ferulic acid | 0.32 ± 0.03 a | 0.16 ± 0.02 b | 0.18 ± 0.06 b | 0.21 ± 0.03 b | |
Sinapic acid | 0.52 ± 0.04 a | 0.51 ± 0.03 a | 0.44 ± 0.03 b | 0.52 ± 0.03 a | |
Total | 3.97 ± 0.11 a | 3.30 ± 0.09 b | 3.01 ± 0.08 cd | 2.88 ± 0.07 d | |
Flavonoids | |||||
Rutin | 0.55 ± 0.03 a | 0.42 ± 0.02 b | 0.39 ± 0.04 b | 0.25 ± 0.03 c | |
Myricetin | 2.23 ± 0.06 a | 1.63 ± 0.05 c | 1.78 ± 0.10 b | 1.45 ± 0.08 d | |
Quercetin | 1.53 ± 0.08 a | 1.38 ± 0.07 ab | 1.40 ± 0.10 ab | 1.45 ± 0.09 ab | |
Total | 4.31 ± 0.15 a | 3.42 ± 0.12 bc | 3.58 ± 0.13 b | 3.15 ± 0.12 c | |
Anthocyanins | |||||
Cyanidin-3-glucoside | 139.41 ± 3.51 b | 118.49 ± 3.93 c | 156.14 ± 1.99 a | 62.73 ± 2.28 d | |
Peonidin-3-glucoside | 17.96 ± 0.89 b | 17.60 ± 1.11 b | 22.45 ± 0.52 a | 8.62 ± 0.63 c | |
Malvidin-3-glucoside | 0.35 ± 0.03 b | 0.33 ± 0.04 b | 0.43 ± 0.02 a | 0.23 ± 0.03 c | |
Total | 157.72 ± 3.70 b | 136.43 ± 3.19 c | 179.02 ± 4.20 a | 71.58 ± 1.68 d | |
Riceberry | Phenolic acids | ||||
Gallic acid | 0.62 ± 0.01 a | 0.53 ± 0.01 bc | 0.52 ± 0.03 c | 0.54 ± 0.03 bc | |
Protocatechuic acid | 1.49 ± 0.04 a | 1.23 ± 0.03 b | 1.15 ± 0.06 bc | 0.85 ± 0.04 d | |
Vanillic acid | 0.77 ± 0.03 a | 0.68 ± 0.03 ab | 0.67 ± 0.08 ab | 0.67 ± 0.10 ab | |
ρ-Coumaric acid | 0.32 ± 0.01 a | 0.30 ± 0.00 ab | 0.18 ± 0.02 c | 0.17 ± 0.01 c | |
Ferulic acid | 0.40 ± 0.02 a | 0.21 ± 0.02 cd | 0.22 ± 0.03 cd | 0.27 ± 0.04 bc | |
Sinapic acid NS | 0.53 ± 0.04 | 0.53 ± 0.04 | 0.51 ± 0.03 | 0.54 ± 0.03 | |
Total | 4.14 ± 0.07 a | 3.47 ± 0.06 b | 3.25 ± 0.08 c | 3.04 ± 0.07 d | |
Flavonoids | |||||
Rutin | 0.54 ± 0.03 a | 0.40 ± 0.01 b | 0.38 ± 0.03 b | 0.25 ± 0.02 c | |
Myricetin | 2.03 ± 0.05 a | 1.52 ± 0.04 c | 1.67 ± 0.07 b | 1.26 ± 0.06 d | |
Quercetin | 1.40 ± 0.07 ab | 1.33 ± 0.08 b | 1.29 ± 0.09 b | 1.35 ± 0.10 b | |
Total | 3.97 ± 0.22 a | 3.25 ± 0.12 c | 3.34 ± 0.18 bc | 2.86 ± 0.16 d | |
Anthocyanins | |||||
Cyanidin-3-glucoside | 50.75 ± 2.98 b | 41.62 ± 1.58 c | 58.36 ± 1.63 a | 24.36 ± 0.95 d | |
Peonidin-3-glucoside | 8.97 ± 0.87 a | 8.88 ± 0.43 a | 10.95 ± 0.51 b | 4.67 ± 0.27 c | |
Malvidin-3-glucoside | 0.32 ± 0.03 b | 0.31 ± 0.02 b | 0.41 ± 0.02 a | 0.21 ± 0.01 c | |
Total | 60.05 ± 2.33 b | 50.81 ± 1.97 c | 69.72 ± 2.70 a | 29.23 ± 1.13 d |
Rice Samples | Phenolic Compounds | Bioaccessibility Index (%) | ||
---|---|---|---|---|
Oral Phase | Gastric Phase | Intestinal Phase | ||
Hom Nil | Phenolic acids | |||
Gallic acid NS | 87.06 ± 4.05 | 84.05 ± 3.48 | 89.05 ± 3.69 | |
Protocatechuic acid | 80.03 ± 2.68 a | 75.07 ± 4.03 a | 55.05 ± 2.96 b | |
Vanillic acid NS | 87.20 ± 7.26 | 85.15 ± 6.02 | 88.15 ± 6.23 | |
ρ-Coumaric acid | 90.03 ± 3.05 a | 45.05 ± 2.64 b | 45.05 ± 2.64 b | |
Ferulic acid NS | 50.63 ± 9.78 | 55.69 ± 10.76 | 65.82 ± 12.72 | |
Sinapic acid NS | 98.78 ± 15.18 | 85.49 ± 10.95 | 100.93 ± 13.24 | |
Total | 83.13 ± 3.01 a | 75.84 ± 3.83 b | 72.58 ± 3.73 b | |
Flavonoids | ||||
Rutin | 75.03 ± 2.63 a | 70.21 ± 6.62 a | 45.14 ± 4.25 b | |
Myricetin | 73.07 ± 3.93 a | 80.06 ± 3.78 a | 65.05 ± 3.07 b | |
Quercetin NS | 90.33 ± 9.50 | 92.27 ± 8.71 | 95.27 ± 8.99 | |
Total NS | 79.41 ± 5.61 | 83.07 ± 5.12 | 73.15 ± 4.56 | |
Anthocyanins | ||||
Cyanidin-3-glucoside | 85.07 ± 4.24 b | 112.07 ± 4.84 a | 45.03 ± 1.94 c | |
Peonidin-3-glucoside | 98.01 ± 1.96 b | 125.32 ± 11.01 a | 48.12 ± 4.23 c | |
Malvidin-3-glucoside | 95.94 ± 16.43 a | 122.88 ± 17.45 a | 65.47 ± 9.30 b | |
Total | 86.57 ± 4.02 b | 113.56 ± 4.51 a | 45.41 ± 1.81 c | |
Riceberry | Phenolic acids | |||
Gallic acid NS | 84.46 ± 2.27 | 83.22 ± 7.42 | 86.23 ± 7.69 | |
Protocatechuic acid | 82.17 ± 6.33 a | 77.16 ± 5.94 a | 57.12 ± 4.40 b | |
Vanillic acid NS | 89.24 ± 18.71 | 89.24 ± 18.71 | 89.24 ± 18.71 | |
ρ-Coumaric acid | 93.39 ± 10.34 a | 56.24 ± 6.22 b | 53.22 ± 5.89 b | |
Ferulic acid NS | 55.03 ± 12.40 | 56.05 ± 12.63 | 69.29 ± 15.61 | |
Sinapic acid NS | 99.33 ± 9.70 | 96.32 ± 9.41 | 101.33 ± 9.90 | |
Total | 83.87 ± 2.25 a | 78.66 ± 1.98 b | 73.55 ± 2.30 c | |
Flavonoids | ||||
Rutin | 74.36 ± 9.04 a | 71.34 ± 8.67 a | 47.23 ± 5.74 b | |
Myricetin | 75.19 ± 6.58 a | 82.21 ± 7.19 a | 62.16 ± 5.44 b | |
Quercetin NS | 95.05 ± 6.43 | 92.46 ± 11.24 | 96.48 ± 11.73 | |
Total NS | 82.06 ± 6.75 | 84.30 ± 8.20 | 72.21 ± 7.22 | |
Anthocyanins | ||||
Cyanidin-3-glucoside | 82.13 ± 5.52 b | 115.18 ± 7.98 a | 48.08 ± 3.33 c | |
Peonidin-3-glucoside | 99.33 ± 10.14 b | 122.39 ± 11.81 a | 52.17 ± 5.03 c | |
Malvidin-3-glucoside | 97.48 ± 11.81 b | 126.62 ± 15.34 a | 64.31 ± 7.79 c | |
Total | 84.75 ± 5.76 b | 116.28 ± 7.91 a | 48.76 ± 3.31 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wanyo, P.; Chamsai, T.; Toontom, N.; Nghiep, L.K.; Tudpor, K. Differential Effects of In Vitro Simulated Digestion on Antioxidant Activity and Bioaccessibility of Phenolic Compounds in Purple Rice Bran Extracts. Molecules 2024, 29, 2994. https://doi.org/10.3390/molecules29132994
Wanyo P, Chamsai T, Toontom N, Nghiep LK, Tudpor K. Differential Effects of In Vitro Simulated Digestion on Antioxidant Activity and Bioaccessibility of Phenolic Compounds in Purple Rice Bran Extracts. Molecules. 2024; 29(13):2994. https://doi.org/10.3390/molecules29132994
Chicago/Turabian StyleWanyo, Pitchaporn, Tossaporn Chamsai, Nitchara Toontom, Le Ke Nghiep, and Kukiat Tudpor. 2024. "Differential Effects of In Vitro Simulated Digestion on Antioxidant Activity and Bioaccessibility of Phenolic Compounds in Purple Rice Bran Extracts" Molecules 29, no. 13: 2994. https://doi.org/10.3390/molecules29132994
APA StyleWanyo, P., Chamsai, T., Toontom, N., Nghiep, L. K., & Tudpor, K. (2024). Differential Effects of In Vitro Simulated Digestion on Antioxidant Activity and Bioaccessibility of Phenolic Compounds in Purple Rice Bran Extracts. Molecules, 29(13), 2994. https://doi.org/10.3390/molecules29132994