Alkaloid-Based Isoxazolylureas: Synthesis and Effect in Combination with Anticancer Drugs on C6 Rat Glioma Model Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Evaluation of Antitumor Activity
2.3. Quantum Chemical Modeling
2.4. Docking Studies
3. Materials and Methods
3.1. General Chemistry Section
General Procedure for the Synthesis of Anabasine and Cytisine Ureas 1-3
3.2. In Vitro Biological Assays
3.3. Quantum Chemical Methods
3.4. Molecular Docking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duarte, D.; Vale, N. Evaluation of synergism in drug combinations and reference models for future orientations in oncology. Curr. Res. Pharmacol. Drug Discov. 2022, 3, 100110. [Google Scholar] [CrossRef] [PubMed]
- Cheon, C.; Ko, S.G. Synergistic effects of natural products in combination with anticancer agents in prostate cancer: A scoping review. Front. Pharmacol. 2022, 13, 963317. [Google Scholar] [CrossRef] [PubMed]
- Gaston, T.E.; Mendrick, D.L.; Paine, M.F.; Roe, A.L.; Yeung, C.K. Natural is not synonymous with “Safe”: Toxicity of natural products alone and in combination with pharmaceutical agents. Regul. Toxicol. Pharmacol. 2020, 113, 104642. [Google Scholar] [CrossRef] [PubMed]
- Hackman, G.L.; Collins, M.; Lu, X.; Lodi, A.; DiGiovanni, J.; Tiziani, S. Predicting and Quantifying Antagonistic Effects of Natural Compounds Given with Chemotherapeutic Agents: Applications for High-Throughput Screening. Cancers 2020, 12, 3714. [Google Scholar] [CrossRef] [PubMed]
- Eid, A.M.; Hawash, M.; Amer, J.; Jarrar, A.; Qadri, S.; Alnimer, I.; Sharaf, A.; Zalmoot, R.; Hammoudie, O.; Hameedi, S.; et al. Synthesis and Biological Evaluation of Novel Isoxazole-Amide Analogues as Anticancer and Antioxidant Agents. Biomed. Res. Int. 2021, 2021, 6633297. [Google Scholar] [CrossRef] [PubMed]
- Arya, G.C.; Kaur, K.; Jaitak, V. Isoxazole derivatives as anticancer agent: A review on synthetic strategies, mechanism of action and SAR studies. Eur. J. Med. Chem. 2021, 221, 113511. [Google Scholar] [CrossRef]
- Gupta, S.; Park, S.E.; Mozaffari, S.; El-Aarag, B.; Parang, K.; Tiwari, R.K. Design, Synthesis, and Antiproliferative Activity of Benzopyran-4-One-Isoxazole Hybrid Compounds. Molecules 2023, 28, 4220. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Mo, J.; Lin, H.; Chen, Y.; Sun, H. The recent progress of isoxazole in medicinal chemistry. Bioorganic Med. Chem. 2018, 26, 3065. [Google Scholar] [CrossRef] [PubMed]
- Kolesnik, I.A.; Kletskov, A.V.; Potkin, V.I.; Knizhnikov, V.A.; Zvereva, T.D.; Kurman, P.V.; Tokalchik, Y.P.; Kulchitsky, V.A. Glycylglycine and Its Morpholide Derivatives Containing 5-(p-Tolyl)isoxazole and 4,5-Dichloroisothiazole Moieties. Russ. J. Org. Chem. 2021, 57, 1584. [Google Scholar] [CrossRef]
- Kletskov, A.V.; Potkin, V.I.; Kolesnik, I.A.; Petkevich, S.K.; Kvachonak, A.V.; Dosina, M.O.; Loiko, D.O.; Larchenko, M.V.; Pashkevich, S.G.; Kulchitsky, V.A. Synthesis and Biological Activity of Novel Comenic Acid Derivatives Containing Isoxazole and Isothiazole Moieties. Nat. Prod. Commun. 2018, 13, 1507. [Google Scholar] [CrossRef]
- Potkin, V.I.; Petkevich, S.K.; Kletskov, A.V.; Zubenko, Y.S.; Kurman, P.V.; Pashkevich, S.G.; Kulchitskiy, V.A. The synthesis of isoxazolyl- and isothiazolylcarbamides exhibiting antitumor activity. Russ. J. Org. Chem. 2014, 50, 1667. [Google Scholar] [CrossRef]
- Potkin, V.; Pushkarchuk, A.; Zamaro, A.; Zhou, H.; Kilin, S.; Petkevich, S.; Kolesnik, I.; Michels, D.L.; Lyakhov, D.A.; Kulchitsky, V.A. Effect of the isotiazole adjuvants in combination with cisplatin in chemotherapy of neuroepithelial tumors: Experimental results and modeling. Sci. Rep. 2023, 13, 13624. [Google Scholar] [CrossRef] [PubMed]
- Kulchitsky, V.A.; Potkin, V.I.; Zubenko, Y.S.; Chernov, A.N.; Talabaev, M.V.; Demidchik, Y.E.; Petkevich, S.K.; Kazbanov, V.V.; Gurinovich, T.A.; Roeva, M.O.; et al. Cytotoxic effects of chemotherapeutic drugs and heterocyclic compounds at application on the cells of primary culture of neuroepithelium tumors. Med. Chem. 2012, 8, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Giakoumettis, D.; Kritis, A.; Foroglou, N. C6 cell line: The gold standard in glioma research. Hippokratia 2018, 22, 105. [Google Scholar] [PubMed]
- Richards, R.; Schwartz, H.R.; Honeywell, M.E.; Stewart, M.S.; Cruz-Gordillo, P.; Joyce, A.J.; Landry, B.D.; Lee, M.J. Drug antagonism and single-agent dominance result from differences in death kinetics. Nat. Chem. Biol. 2020, 16, 791. [Google Scholar] [CrossRef] [PubMed]
- Geerlings, P.; De Proft, F.; Langenaeker, W. Conceptual Density Functional Theory. Chem. Rev. 2003, 103, 1793. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functionaldispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Hansen, A.; Brandenburg, J.G.; Bannwarth, C. Dispersion-Corrected Mean-Field Electronic Structure Methods. Chem. Rev. 2016, 116, 5105. [Google Scholar] [CrossRef]
- Goerigk, L.; Hansen, A.; Bauer, C.; Ehrlich, S.; Najibi, A.; Grimme, S. A look at the density functional theory zoo withthe advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys. Chem. Chem. Phys. 2017, 19, 32184. [Google Scholar] [CrossRef]
- Raju, R.K.; Bengali, A.A.; Brothers, E.N. A unified set of experimental organometallic data used to evaluate modern theoretical methods. Dalton Trans. 2016, 45, 13766. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785. [Google Scholar] [CrossRef] [PubMed]
- Makrlik, E.; Toman, P.; Vanura, P. A combined experimental and DFT study on the complexation of Mg2+ with beauvericin E. Struct. Chem. 2012, 23, 765. [Google Scholar] [CrossRef]
- Fang, J.L.; Li, W.Z.; Zhou, J.; Chen, J.; Xia, C. Novel guanidinium zwitterion and derived ionic liquids: Physicochemical properties and DFT theoretical studies. Struct. Chem. 2011, 22, 1119. [Google Scholar]
- Kendall, R.A.; Dunning, T.H., Jr.; Harrison, R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796. [Google Scholar] [CrossRef]
- Dunning, T.H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007. [Google Scholar] [CrossRef]
- Papajak, E.; Truhlar, D.G. Efficient Diffuse Basis Sets for Density Functional Theory. J. Chem. Theory Comput. 2010, 6, 597. [Google Scholar] [CrossRef]
- Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999. [Google Scholar] [CrossRef]
Decrease in Viable C6 Rat Glioma Cell Concentration, % | Compound, c = 200 µM (0.2% DMSO) | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | Drug, c = 50 µM | ||||||
Drug. c = 5 µM | 18.7 ± 5.8 | 24.7 ± 5.8 | 8.2 ± 5.9 | ||||||
CP | 26.6 ± 4.1 | 41.0 ± 3.2 | Σ 45.3 | 22.2 ± 1.5 | Σ 51.3 | 19.3 ± 3.1 | Σ 34.8 | CP | 33.2 ± 3.7 |
FU | 7.2 ± 8.2 | 24.0 ± 6.1 | Σ 25.9 | 10.2 ± 9.6 | Σ 31.9 | 23.2 ± 3.3 | Σ 15.4 | FU | 42.3 ± 4.1 |
ET | 28.20 ± 4.1 | 45.0 ± 2.3 | Σ 46.9 | 20.9 ± 4.8 | Σ 52.9 | 34.8 ± 2.2 | Σ 36.4 | ET | 44.2 ± 3.5 |
CPt | 25.3 ± 5.9 | 47.4 ± 5.8 | Σ 44.0 | 65.0 ± 2.8 | Σ 50.0 | 45.5 ± 10.1 | Σ 33.5 | CPt | 93.0 ± 0.3 |
RM | 3.2 ± 10.3 | 33.9 ± 1.9 | Σ 21.9 | 57.6 ± 2.1 | Σ 27.9 | 21.3 ± 9.6 | Σ 11.4 | RM | 35.7 ± 1.3 |
Conjugate | ∆Ef, a.e. | ∆Ef, kcal/mol |
---|---|---|
1+FU | −0.009871226 | −6.19 |
2+FU | −0.026896256 | −16.88 |
3+FU | −0.018223976 | −11.44 |
1+CPt | −0.03977506 | −24.96 |
2+CPt | −0.02215013 | −13.90 |
3+CPt | −0.03375495 | −21.18 |
EHOMO, eV | ELUMO, eV | ∆E, eV | μ (eV) | χ (eV) | η (eV) | S (eV−1) | ω (eV) | D, Db | |
---|---|---|---|---|---|---|---|---|---|
1 | −5.7689 | −1.5192 | 4.2496 | −3.6441 | 3.6441 | 2.1248 | 0.2353 | 3.1248 | 10.24 |
2 | −5.9797 | −1.4343 | 4.5454 | −3.7070 | 3.7070 | 2.2727 | 0.2200 | 3.0232 | 5.24 |
3 | −6.2992 | −1.5160 | 4.7833 | −3.9076 | 3.9076 | 2.3917 | 0.2091 | 3.1922 | 6.94 |
FU | −6.6562 | −1.2798 | 5.3765 | −3.9680 | 3.9680 | 2.6883 | 0.1860 | 2.9281 | 5.13 |
1+FU | −5.7653 | −1.5241 | 4.2412 | −3.6447 | 3.6447 | 2.1206 | 0.2358 | 3.1321 | 8.23 |
2+FU | −5.9923 | −1.5347 | 4.4575 | −3.7635 | 3.7635 | 2.2288 | 0.2243 | 3.1775 | 3.57 |
3+FU | −6.3055 | −1.5206 | 4.7849 | −3.9131 | 3.9131 | 2.3925 | 0.2090 | 3.2000 | 2.01 |
CPt | −6.5305 | −1.7475 | 4.7830 | −4.1390 | 4.1390 | 2.3915 | 0.2091 | 3.5817 | 15.94 |
1+CPt | −5.9642 | −1.6504 | 4.3139 | −3.8073 | 3.8073 | 2.1570 | 0.2318 | 3.3601 | 9.44 |
2+CPt | −5.9931 | −1.6784 | 4.3147 | −3.8358 | 3.8358 | 2.1574 | 0.2318 | 3.4100 | 19.75 |
3+CPt | −6.1966 | −1.5720 | 4.6246 | −3.8843 | 3.8843 | 2.3123 | 0.2162 | 3.2625 | 7.77 |
Binding Energy, ΔG (kcal/mol) | Residues Interactions | ||||
---|---|---|---|---|---|
Hydrogen Bond | Electrostatic Interactions | Hydrophobic Bond | Pi-Sulfur | ||
1 | −9.3 | 0 | 0 | 6 (LEU215, PHE74, PHE219, ILE102, TRP103) | 0 |
2 | −9.9 | 3 (ASP212, HIS250) | 0 | 7 (PHE74, ILE102, LEU215, MET305, LEU186, CYS189) | 1 (CYS189) |
3 | −10.0 | 2 (ASP212, GLY216) | 3 (ARG44, GLU81, ASP212) | 6 (ARG169, LEU186, MET305, TRP103, ILE102) | 1 (CYS189) |
FU | −5.1 | 8 (ASP212, GLN208, ASN220, GLY211, HIS190, CYS189) | 40 | 0 | 1 (CYS189) |
FdUMP | −9.5 | 15 (ASN220, ASP212, GLN208, GLN211, CYS189, SER210, ARG44, ARG169, ARG170, ARG209, TYR252) | 8 (ARG44, ARG169, ARG209, ARG107) | 0 | 1 (CYS189) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukusheva, G.K.; Jalmakhanbetova, R.I.; Shaibek, A.Z.; Nurmaganbetova, M.S.; Zhasymbekova, A.R.; Nurkenov, O.A.; Akishina, E.A.; Kolesnik, I.A.; Dikusar, E.A.; Terpinskaya, T.I.; et al. Alkaloid-Based Isoxazolylureas: Synthesis and Effect in Combination with Anticancer Drugs on C6 Rat Glioma Model Cells. Molecules 2024, 29, 3246. https://doi.org/10.3390/molecules29143246
Mukusheva GK, Jalmakhanbetova RI, Shaibek AZ, Nurmaganbetova MS, Zhasymbekova AR, Nurkenov OA, Akishina EA, Kolesnik IA, Dikusar EA, Terpinskaya TI, et al. Alkaloid-Based Isoxazolylureas: Synthesis and Effect in Combination with Anticancer Drugs on C6 Rat Glioma Model Cells. Molecules. 2024; 29(14):3246. https://doi.org/10.3390/molecules29143246
Chicago/Turabian StyleMukusheva, Gulim K., Roza I. Jalmakhanbetova, Altynay Zh. Shaibek, Manshuk S. Nurmaganbetova, Aigerym R. Zhasymbekova, Oralgazy A. Nurkenov, Ekaterina A. Akishina, Irina A. Kolesnik, Evgenij A. Dikusar, Tatiana I. Terpinskaya, and et al. 2024. "Alkaloid-Based Isoxazolylureas: Synthesis and Effect in Combination with Anticancer Drugs on C6 Rat Glioma Model Cells" Molecules 29, no. 14: 3246. https://doi.org/10.3390/molecules29143246
APA StyleMukusheva, G. K., Jalmakhanbetova, R. I., Shaibek, A. Z., Nurmaganbetova, M. S., Zhasymbekova, A. R., Nurkenov, O. A., Akishina, E. A., Kolesnik, I. A., Dikusar, E. A., Terpinskaya, T. I., Kulchitsky, V. A., Potkin, V. I., Pushkarchuk, A. L., Lyakhov, D. A., & Michels, D. L. (2024). Alkaloid-Based Isoxazolylureas: Synthesis and Effect in Combination with Anticancer Drugs on C6 Rat Glioma Model Cells. Molecules, 29(14), 3246. https://doi.org/10.3390/molecules29143246