Complexes of Zinc-Coordinated Heteroaromatic N-Oxides with Pyrene: Lewis Acid Effects on the Multicenter Donor–Acceptor Bonding
Abstract
:1. Introduction
2. Results and Discussion
2.1. UV-Vis Measurements of Coordination of N-Oxides to Zinc(II) in Solutions
2.2. X-ray Structural Studies of the Associations of the Zn-Coordinated N-Oxides with Pyrene
2.3. Computational Analysis of Complexes of Pyrene with N-oxides
2.4. Origin of the Lewis Acid Effects on the Multicenter Donor–Acceptor Bonding
3. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Katritzky, A.R.; Lagowski, J.M. Chemistry of the Heterocyclic N-Oxides; Academic Press: Cambridge, MA, USA, 1971. [Google Scholar]
- Albini, A. Heterocyclic N-Oxides; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Wrzeszcz, Z.; Siedlecka, R. Heteroaromatic N-oxides in asymmetric catalysis: A review. Molecules 2020, 25, 330. [Google Scholar] [CrossRef] [PubMed]
- Andreev, V.P.; Ryzhakov, A.V.; Kalistratova, E.G. A new method for obtaining hydrohalides of 4-haloquinoline N-oxides from 4-nitroquinoline N-oxide. Chem. Heterocycl. Comp. 1996, 32, 516–518. [Google Scholar] [CrossRef]
- Nagao, M.; Sugimura, T. Molecular biology of the carcinogen, 4-nitroquinoline 1-oxide. Adv. Cancer Res. 1976, 23, 131–169. [Google Scholar] [PubMed]
- Nakahara, W.; Fukuoka, F.; Sugimura, T. Carcinogenic action of 4-nitroquinoline-N-oxide. Jpn. J. Cancer Res. 1957, 48, 129–137. [Google Scholar]
- Ochiai, E.; Ishikawa, M.; Sai, Z. Polarization of aromatic heterocyclic compounds XXIX. Nitration of quinoline 1-oxide. J. Pharm. Soc. Jpn. 1943, 63, 280. [Google Scholar]
- Nizhnik, Y.P.; Lu, J.; Rosokha, S.V.; Kochi, J.K. Lewis acid effects on donor-acceptor associations and redox reactions: Ternary complexes of heteroaromatic N-oxides with boron trifluoride and organic donors. New J. Chem. 2009, 33, 2317–2325. [Google Scholar] [CrossRef]
- Ryzhakov, A.V.; Andreev, V.P.; Rodina, L.L. Molecular complexes of heteroaromatic N-oxides and their reactions with nucleophiles. Heterocycles 2003, 60, 419–435. [Google Scholar] [CrossRef]
- Bailleul, B.; Daubersies, P.; Galiègue-Zouitina, S.; Loucheux-Lefebvre, M.H. Molecular basis of 4-nitroquinoline 1-oxide carcinogenesis. Jpn. J. Cancer Res. 1989, 80, 691–697. [Google Scholar] [CrossRef]
- Winkle, S.A.; Tinoco, I., Jr. Interactions of 4-nitroquinoline 1-oxide with deoxyribodinucleotides. Biochemistry 1979, 18, 3833–3839. [Google Scholar] [CrossRef]
- Lybrand, T.; Dearing, A.; Weiner, P.; Kollman, P. A molecular mechanical study of complexes formed between 4-nitroquinoline-N-oxide and dinucleoside phosphates. Nucleic Acids Res. 1981, 9, 6995–7011. [Google Scholar] [CrossRef]
- Puttreddy, R.; Rautiainen, J.M.; Mäkelä, T.; Rissanen, K. Strong N−X⋅⋅⋅O−N halogen bonds: A comprehensive study on N-halosaccharin pyridine N-oxide complexes. Angew. Chem. Int. Ed. 2019, 58, 18610–18618. [Google Scholar] [CrossRef] [PubMed]
- Borley, W.; Watson, B.; Nizhnik, Y.; Zeller, M.; Rosokha, S.V. Complexes of diiodine with heteroaromatic N-oxides: Effects of halogen-bond acceptors in halogen bonding. J. Phys. Chem. A 2019, 123, 7113–7123. [Google Scholar] [CrossRef]
- Galmes, B.; Franconetti, A.; Frontera, A. Nitropyridine-1-oxide as excellent π-hole donors: Interplay between σ-hole (halogen, hydrogen, triel, and coordination bonds) and π-hole inyteractions. Int. J. Mol. Sci. 2019, 20, 3440. [Google Scholar] [CrossRef] [PubMed]
- Ryzhakov, A.V.; Rodina, L.L. Activation of nucleophilic substitution reactions in the heteroaromatic series by tetracyanoethylene. Russ. J. Org. Chem. 1994, 30, 1417–1420. [Google Scholar]
- Ryzhakov, A.V.; Alekseeva, O.O.; Rodina, L.L. On the role of charge transfer complexes in nucleophilic substitution reactions in a series of aromatic N-oxides. Russ. J. Org. Chem. 1994, 30, 1411–1413. [Google Scholar]
- Ryzhakov, A.V.; Vapirov, V.V.; Rodina, L.L. Molecular complexes as intermediate products in nucleophilic substitution reactions in a series of aromatic heterocycles. Russ. J. Org. Chem. 1991, 27, 955–959. [Google Scholar]
- Andreev, V.P.; Nizhnik, Y.P. Reaction of 4-nitroquinoline N-oxide with aluminum chloride. Russ. J. Org. Chem. 2001, 37, 148–150. [Google Scholar]
- Desiraju, G.R. Crystal engineering: From molecule to crystal. J. Am. Chem. Soc. 2013, 135, 9952–9967. [Google Scholar] [CrossRef] [PubMed]
- Vishweshwar, P.; Mcmahon, J.A.; Bis, J.A.; Zaworotko, M.J. Pharmaceutical co-crystals. J. Pharm. Sci. 2006, 95, 499–516. [Google Scholar] [CrossRef]
- Dibella, S.; Fragala, I.; Ratner, M.; Marks, T. Electron-donor acceptor complexes as potential high-efficiency 2nd-order nonlinear optical-materials—a computational investigation. J. Am. Chem. Soc. 1993, 115, 682–686. [Google Scholar] [CrossRef]
- Goetz, K.P.; Vermeulen, D.; Payne, M.E.; Kloc, C.; McNeil, L.E.; Jurchescu, O.D. Charge-transfer complexes: New perspectives on an old class of compounds. J. Mater. Chem. C 2014, 2, 3065–3076. [Google Scholar] [CrossRef]
- Edwards, R.A.; Gladkikh, O.P.; Nieuwenhuyzen, M.; Wilkins, C.J. Molecular structures and packing in crystals of ZnX2L2 complexes, having L as a monodentate oxo-ligand. Z. Krist. Cryst. Mater. 1999, 214, 111. [Google Scholar] [CrossRef]
- Kidd, M.R.; Sager, R.S.; Watson, W.H. Properties of some copper(II) and zinc(II) N-oxide and β-diketone complexes. Inorg. Chem. 1967, 6, 946. [Google Scholar] [CrossRef]
- Padgett, C.W.; Lynch, W.E.; Groneck, E.N.; Raymundo, M.; Adams, D. Crystal structures of three zinc(II) halide coordination complexes with quinoline N-oxide. Acta Crystallogr. Sect. E Crystallogr. Commun. 2022, 78, 716. [Google Scholar] [CrossRef]
- Shi, J.M.; Zhang, F.X.; Wu, C.J.; Liu, L.D. Dibromobis(4-methoxypyridine N-oxide-κO)zinc(II). Acta Crystallogr. Sect. E Crystallogr. Commun. 2005, 61, m2262–m2263. [Google Scholar]
- Mo, X.-F.; Xiong, C.-F.; Chen, Z.-W.; Liu, C.; He, P.; Tong, H.-X.; Yi, X.-Y. Zinc complexes supported by pyridine-N-oxide ligands: Synthesis, structures and catalytic michael addition reactions. Dalton Trans. 2020, 49, 12365–12371. [Google Scholar] [CrossRef] [PubMed]
- Wasicki, J.; Jaskolski, M.; Pajak, Z.; Szafran, M.; Dega-Szafran, Z.; Adams, M.A.; Parker, S.F. Crystal structure and molecular motion in pyridine N-oxide semiperchlorate. J. Mol. Struct. 1999, 476, 81–95. [Google Scholar] [CrossRef]
- Hussain, M.S.; Schlemper, E.O. Crystal structure of hydrogenbis(pyridine N-oxide) tetrachloroaurate-(III), revealing a short hydrogen bond. J. Chem. Soc. Dalton Trans. 1982, 37, 751–755. [Google Scholar] [CrossRef]
- Romanov, V.V.; Nizhnik, Y.P.; Fofanov, A.D. Conformational and structural analysis of bis(4-chloroquinoline-N-oxide)hydrogen tribromide. Zh. Strukt. Khim. 2015, 56, 381. [Google Scholar] [CrossRef]
- Jaffé, H.H.; Doak, G.O. The basicities of substituted pyridines and their 1-oxides. J. Am. Chem. Soc. 1955, 77, 4441–4443. [Google Scholar] [CrossRef]
- Nizhnik, Y.P.; Sons, A.; Zeller, M.; Rosokha, S.V. effects of supramolecular architecture on halogen bonding between diiodine and heteroaromatic N-oxides. Cryst. Growth Des. 2018, 18, 1198–1207. [Google Scholar] [CrossRef]
- Nizhnik, Y.P.; Lu, J.; Rosokha, S.V.; Kochi, J.K. Trimorphism of a model carcinogen 4-nitroquinoline-N-oxide. Crystengcomm 2009, 11, 2400–2405. [Google Scholar] [CrossRef]
- Wang, Y.; Blessing, R.H.; Ross, F.K.; Coppens, P. Charge density studies below liquid nitrogen temperature: X-ray analysis of p-nitropyridine-N-oxide. Acta Crystallogr. Sect. E Crystallogr. Commun. 1976, 32, 572. [Google Scholar] [CrossRef]
- Bader, R.F.W. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91, 893–928. [Google Scholar] [CrossRef]
- Popelier, P.L.A. The QTAIM perspective of chemical bonding. In The Chemical Bond: Fundamental Aspects of Chemical Bonding; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014; pp. 271–308. [Google Scholar]
- Johnson, E.R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A.J.; Yang, W. Revealing noncovalent interactions. J. Am. Chem. Soc. 2010, 132, 6498–6506. [Google Scholar] [CrossRef] [PubMed]
- Mulliken, R.S.; Person, W.B. Molecular Complexes. A Lecture and Reprint Volume; Wiley: New York, NY, USA, 1969. [Google Scholar]
- Bauzá, A.; Mooibroek, T.J.; Frontera, A. The bright future of unconventional σ/π-hole interactions. ChemPhysChem 2015, 16, 2496–2517. [Google Scholar] [CrossRef] [PubMed]
- Baerends, E.J.; Ziegler, T.; Autschbach, J.; Bashford, D.; Berger, A.; Bérces, A.; Bickelhaupt, F.M.; Bo, C.; de Boeij, P.L.; Boerrigter, P.M.; et al. ADF2012.01; SCM: Amsterdam, The Netherlands, 2012. [Google Scholar]
- te Velde, G.; Bickelhaupt, F.M.; Baerends, E.J.; Fonseca Guerra, C.; van Gisbergen, S.J.A.; Snijders, J.G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931–967. [Google Scholar] [CrossRef]
- Bruker Apex3 v2016.9-0, SAINT V8.37A; Bruker AXS Inc.: Madison, WI, USA, 2016.
- SHELXTL Suite of Programs, Version 6.14; 2000–2003; Bruker AXS Inc.: Madison, WI, USA, 2003.
- Sheldrick, G. Crystal Structure Refinement with SHELXL. Acta Cryst. C 2015, 71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr A. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Hübschle, C.; Sheldrick, G.; Dittrich, B. ShelXle: A Qt Graphical User Interface for SHELXL. J. Appl. Crystallogr. 2011, 44, 1281. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Rev. C.01; Gaussian, Inc.: Wallingford CT, USA, 2009. [Google Scholar]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241. [Google Scholar]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999–3093. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD—Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef] [PubMed]
Co-Crystal | M-O a | N-O b | C-N c | C-C d |
---|---|---|---|---|
ZnCl2(NPO) (1) | 2.0025 (12) | 1.3360 (14) | 1.473 (2) | N/A |
2.348 (1) | ||||
[ZnCl2(NPO)2]2(pyrene)5 (2) | 2.0293 (9) | 1.3311 (13) | 1.4682 (18) | 3.3849 (17) |
1.9903 (9) | 1.3236 (12) | 1.4657 (13) | 3.3024 (16) | |
[(NQO)2ZnCl2]2(pyrene)3 (3) | 2.0186 (12) | 1.3158 (18) | 1.477 (2) | 3.1957 (19) |
2.0122 (13) | 1.3354 (19) | 1.479 (2) | 3.2439 (17) | |
[ZnCl2(THF)(NQO)]2(pyrene)3 (4) | 2.0214 (9) | 1.3302 (11) | 1.4773 (14 ) | 3.3448 (15) |
(I9−)(NPO-H+-NPO)(pyrene) (5) | N/A | 1.344 (4) | 1.473 (5) | 3.318 (6) |
[BF3-NQO](pyrene) e | 1.516 | 1.358 | 1.492 | 3.260 |
[BF3-NPO](pyrene) e | 1.518 | 1.375 | 1.483 | 3.351 |
N-Oxide | Vπhole, kcal/mol a | ELUMO, b eV | dN-O, c Å | ΔEb, d kcal/mol | ΔG, e kcal/mol | Δq, f e |
---|---|---|---|---|---|---|
NPO | 21.3/22.0 | −1.88 | 1.264 (1.266) | −11.1 | 1.69 | 0.008 |
NPO-H+ | 128.6/109.8 | −3.40 | 1.366 (1.366) | −16.4 | −3.20 | 0.053 |
NPO-BF3 | 48.9/48.3 | −2.66 | 1.340 (1.341) | −13.6 | −0.01 | 0.022 |
ZnCl2(NPO)2 | 42.0/42.0 | −2.44 | 1.314 (1.311) | −14.5 | 0.47 | 0.015 |
NQO | 16.3/20.7 | −2.06 | 1.264 (1.264) | −14.1 | −0.45 | 0.010 |
NQO-H | 116.7/105.4 | −3.47 | 1.367 (1.368) | −15.9 | −2.89 | 0.063 |
NQO-BF3 | 40.2/45.2 | −2.73 | 1.342 (1.333) | −14.2 | −0.35 | 0.024 |
ZnCl2(NQO)2 | 33.3/36.6 | −2.54 | 1.315 (1.312) | −15.3 | −1.69 | 0.023 |
Complex a | ΔEelstat | ΔEoi | ΔEdisp | ΔEPauli | ΔEint |
---|---|---|---|---|---|
NPO·pyrene | −11.3 | −5.1 | −17.1 | 23.2 | −10.3 |
BF3-NPO·pyrene | −15.8 | −7.2 | −18.3 | 26.1 | −15.2 |
ZnCl2(NPO)2·pyrene | −16.3 | −7.6 | −22.4 | 30.4 | −15.9 |
NQO·pyrene | −15.6 | −5.9 | −22.0 | 30.7 | −12.8 |
BF3-NQO·pyrene | −18.5 | −8.0 | −23.8 | 33.6 | −16.8 |
ZnCl2(NQO)2·pyrene | −16.6 | −7.1 | −25.8 | 32.8 | −16.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nizhnik, Y.P.; Hansen, E.; Howard, C.; Zeller, M.; Rosokha, S.V. Complexes of Zinc-Coordinated Heteroaromatic N-Oxides with Pyrene: Lewis Acid Effects on the Multicenter Donor–Acceptor Bonding. Molecules 2024, 29, 3305. https://doi.org/10.3390/molecules29143305
Nizhnik YP, Hansen E, Howard C, Zeller M, Rosokha SV. Complexes of Zinc-Coordinated Heteroaromatic N-Oxides with Pyrene: Lewis Acid Effects on the Multicenter Donor–Acceptor Bonding. Molecules. 2024; 29(14):3305. https://doi.org/10.3390/molecules29143305
Chicago/Turabian StyleNizhnik, Yakov P., Erin Hansen, Cayden Howard, Matthias Zeller, and Sergiy V. Rosokha. 2024. "Complexes of Zinc-Coordinated Heteroaromatic N-Oxides with Pyrene: Lewis Acid Effects on the Multicenter Donor–Acceptor Bonding" Molecules 29, no. 14: 3305. https://doi.org/10.3390/molecules29143305
APA StyleNizhnik, Y. P., Hansen, E., Howard, C., Zeller, M., & Rosokha, S. V. (2024). Complexes of Zinc-Coordinated Heteroaromatic N-Oxides with Pyrene: Lewis Acid Effects on the Multicenter Donor–Acceptor Bonding. Molecules, 29(14), 3305. https://doi.org/10.3390/molecules29143305