Thermal Stability and Heat Transfer of Polyurethanes for Joints Applications of Wooden Structures
Abstract
:1. Introduction
2. Materials and Methods
- F&R PS, which is a solvent-free, elastic, two-component, polyurethane-based adhesive. It is used to join structural parts together and to prepare protective coatings.
- F&R PM, which is solvent-free, flexible, and of high-quality recovery. It is a two-component polyurethane-based adhesive.
- λ—thermal conductivity (W∙m−1∙K−1)
- a—thermal diffusivity (m2∙s−1)
- vol cp—volume heat capacity (J∙m−3∙K−1)
3. Results and Discussion
3.1. Thermal Stability of Polyurethane Adhesives
- PU foam degradation to regenerated polyol + OH Species, CO2, and H2O;
- Regenerated polyol decomposes to char + OH species, H2CO, CH4, CO, CO2, and H2O;
- Char in reaction with oxygen gives OH species, H2CO, CH4, CO, CO2, and H2O products.
3.2. Heat Transport Properties of Polyurethane Adhesives
3.2.1. Thermal Expansion of Polyurethane Adhesives
3.2.2. Thermal Diffusivity and Thermal Conductivity of Polyurethane Adhesives
4. Conclusions
- The new PSTF-S/W samples appeared to have good thermal stability temperatures of even 230 °C. These adhesives also have low mass change rates, which is important in case of a fire event.
- The mass change rate DTG analysis showed that this parameter is very important when it comes to the selection of an adequate adhesive that would work in a place where a fire event may appear because of the ventilation of the surroundings.
- The lowest thermal expansion was found for the PM adhesive with the lowest thermal diffusivity in the whole working temperature range.
- For most of the manufactured polyurethane adhesives, the mean thermal expansion coefficient was between 140 and 160∙10−6 K−1.
- The lowest decrease in thermal diffusivity was recorded for the PM material.
- For most of the investigated polyurethanes, thermal diffusivity was around 0.14 mm2∙s−1 at room temperature. The highest one was recorded in the case of the PSTF-S one.
- The measurement with the LFA method indicated that the thermal diffusivity drops quickly by 20% to a value below 0.15 mm2∙s−1 at 150 °C for PU adhesives with high thermal diffusivity at room temperature.
- Considering the good thermal stability, satisfactory thermal conductivity, and thermal expansion, these new polyurethanes, which have not been tested so far regarding the thermal characteristics, will be an excellent alternative to the commonly used adhesives for joining wooden structures.
- It has been proven that the Isomet 2114 apparatus can be used to determine thermal diffusivity and thermal conductivity for large samples of rigid and flexible PU above 20 mm thickness and 70 mm diameter. As demonstrated, such a method will be more precise when samples are not very uniform in small size, and the test is not performed at temperatures higher than 70 °C.
- For higher temperatures, the laser flash analysis method is better. It can give results for high-temperature applications. However, there are two disadvantages: the difficulty of small-size material preparation and statistical selection and the need to measure lots of samples to obtain statistically good results in the case of nonuniform materials on a small scale. The good thing about this method is that it can possibly measure contact resistance between PU and wood, but direction and wood layer should be well selected for future results.
- The LFA measurement will be helpful in our future tests concerning PU thermal analysis of 2–3 mm thick samples taken directly from wooden joints. Such thin samples cannot be measured by Isomet 2114. Still, the LFA can give results for thin samples obtained under various connection pressures and can provide results of thermal contact resistance for specific direction wood joints. PU joints obtained under pressure will be more homogeneous for our future test with the LFA method.
- The DSC-TG data can be used to determine the degradation temperature of PU, which is very important for fire test applications and for setting the measurement range for various analyses.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aicher, S.; Höfflin, L.; Behrens, W. A Study on Tension Strength of Finger Joints in Beech Wood Laminations. Otto-Graf-J. 2001, 36, 169–186. [Google Scholar]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate Change Impacts, Adaptive Capacity, and Vulnerability of European Forest Ecosystems. For Ecol Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Luedtke, J.; Amen, C.; van Ofen, A.; Lehringer, C. 1C-PUR-Bonded Hardwoods for Engineered Wood Products: Influence of Selected Processing Parameters. Eur. J. Wood Wood Prod. 2015, 73, 167–178. [Google Scholar] [CrossRef]
- Vallée, T.; Tannert, T.; Fecht, S. Adhesively Bonded Connections in the Context of Timber Engineering—A Review. J. Adhes 2017, 93, 257–287. [Google Scholar] [CrossRef]
- Kuka, E.; Andersone, I.; Kurnosova, N.; Cirule, D.; Andersons, B.; Danieks, M. The Potential of Improving Wood Preservative Penetration into Glued Wood Products Bonded with One-Component Polyurethane by Discontinuous Adhesive Bondline Design. Eur. J. Wood Wood Prod. 2022, 80, 223–234. [Google Scholar] [CrossRef]
- Bockel, S.; Harling, S.; Konnerth, J.; Niemz, P.; Weiland, G.; Hogger, E.; Pichelin, F. Modifying Elastic Modulus of Two-Component Polyurethane Adhesive for Structural Hardwood Bonding. J. Wood Sci. 2020, 66, 69. [Google Scholar] [CrossRef]
- Loginova, S.E.; Averchenko, E.B.; Kurilova, E.A.; Nikonova, N.V.; Gladkikh, S.N. Polyurethane Adhesives for Structural Parts of Means of Transport with Enhanced Processing Properties and Performance. Polym. Sci. Series D 2019, 12, 351–356. [Google Scholar] [CrossRef]
- Somdee, P.; Lassú-Kuknyó, T.; Kónya, C.; Szabó, T.; Marossy, K. Thermal Analysis of Polyurethane Elastomers Matrix with Different Chain Extender Contents for Thermal Conductive Application. J. Therm. Anal. Calorim 2019, 138, 1003–1010. [Google Scholar] [CrossRef]
- Liszkowska, J.; Czupryński, B. Thermal Properties of Polyurethane-Polyisocyanurate (PUR-PIR) Foams Modified with Tris(5-Hydroxypenthyl) Citrate. J. Adv. Chem. Eng. 2016, 06, 1–8. [Google Scholar] [CrossRef]
- Hong, W.; Meng, M.; Xie, J.; Gao, D.; Xian, M.; Wen, S.; Huang, S.; Kang, C. Properties and Thermal Analysis Study of Modified Polyvinyl Acetate (PVA) Adhesive. J. Adhes Sci. Technol. 2018, 32, 2180–2194. [Google Scholar] [CrossRef]
- Balkova, R.; Vanerek, J.; Smak, M.; Drochytka, R. Time-Temperature Resistance of Transverse Stressed Lap Joints of Glued Spruce and Thermal Analysis of Adhesives. Int J. Adhes Adhes 2021, 104, 102760. [Google Scholar] [CrossRef]
- Kwiecień, K.; Kwiecień, A.; Stryszewska, T.; Szumera, M.; Dudek, M. Durability of PS-Polyurethane Dedicated for Composite Strengthening Applications in Masonry and Concrete Structures. Polymers 2020, 12, 2830. [Google Scholar] [CrossRef] [PubMed]
- Prociak, A.; Pielichowski, J.; Sterzynski, T. Thermal Diffusivity of Rigid Polyurethane Foams Blown with Different Hydrocarbons. Polym. Test. 2000, 19, 705–712. [Google Scholar] [CrossRef]
- Tibério Cardoso, G.; Claro Neto, S.; Vecchia, F. Rigid Foam Polyurethane (PU) Derived from Castor Oil (Ricinus Communis) for Thermal Insulation in Roof Systems. Front. Archit. Res. 2012, 1, 348–356. [Google Scholar] [CrossRef]
- da Silva, L.F.M.; Adams, R.D. Stress-Free Temperature in a Mixed-Adhesive Joint. J. Adhes Sci. Technol. 2006, 20, 1705–1726. [Google Scholar] [CrossRef]
- Jennrich, R.; Lion, A.; Johlitz, M.; Ernst, S.; Dilger, K.; Stammen, E. Thermomechanical Characterization and Modeling of Fast-Curing Polyurethane Adhesives. Contin. Mech. Thermodyn. 2020, 32, 421–432. [Google Scholar] [CrossRef]
- Bogusław, Z.; Arkadiusz, K. Thermal Compatibility of Rigid and Flexible Adhesives to Substrates of Historical Structures. In Structural Analysis of Historical Constructions; RILEM Bookseries; RILEM: La Serena, Chile, 2019; Volume 18, pp. 1868–1877. [Google Scholar]
- Ciesielski, R.; Kwiecień, A. Method for Making Repair Joints in Concrete and Brickwork Building Structures. Patent PL214295 (B1), 2013. [Google Scholar]
- Applied Precision Measurement and Test Solution, Thermal Properties Analyzer. ISOMET 2114 User’s Guide, Version 1.59; 2023. Available online: https://www.appliedp.com/download/catalog/AP_Company_Profile.pdf (accessed on 10 June 2024).
- de Oliveira Fernandes, P.M. Thermal Characterization Of Glass Fibre Reinforced Polymer (GFRP) Sandwich Panels; University of Lisbon: Lisbon, Portugal, 2014; pp. 1–13. [Google Scholar]
- Stejskalová, K.; Bujdoš, D.; Procházka, L.; Smetana, B.; Zlá, S.; Teslík, J. Mechanical, Thermal, and Fire Properties of Composite Materials Based on Gypsum and PCM. Materials 2022, 15, 1253. [Google Scholar] [CrossRef] [PubMed]
- Cape, J.A.; Lehman, G.W. Temperature and Finite Pulse-Time Effects in the Flash Method for Measuring Thermal Diffusivity. J. Appl. Phys. 1963, 34, 1909–1913. [Google Scholar] [CrossRef]
- Cowan, R.D. Pulse Method of Measuring Thermal Diffusivity at High Temperatures. J. Appl Phys. 1963, 34, 926–927. [Google Scholar] [CrossRef]
- Maminski, M.; Jaskolowski, W.; Parzuchowski, P. Thermal Stability of Novel Polyurethane Adhesives Investigated by TGA. Mediterr. J. Chem. 2014, 3, 877–882. [Google Scholar] [CrossRef]
- Liu, S.; Lin, H.; Hao, P.; Bao, L. Preparation and Properties of Advanced Materials for Bi-Component Polyurethane Adhesives Containing Siloxane. In Proceedings of the 2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture, Manchester, UK, 23 October 2021; ACM: New York, NY, USA; pp. 276–281. [Google Scholar]
- Jiao, L.; Xiao, H.; Wang, Q.; Sun, J. Thermal Degradation Characteristics of Rigid Polyurethane Foam and the Volatile Products Analysis with TG-FTIR-MS. Polym. Degrad. Stab. 2013, 98, 2687–2696. [Google Scholar] [CrossRef]
- Pau, D.S.W.; Fleischmann, C.M.; Delichatsios, M.A. Thermal Decomposition of Flexible Polyurethane Foams in Air. Fire Saf. J. 2020, 111, 102925. [Google Scholar] [CrossRef]
- Preimesberger, C.; Solt-Rindler, A.; Hansmann, C.; Pfeifer, C. Influence of Size and Temperature on the Auto-Ignition Characteristics of Solid Beech and Spruce Wood. Fuel 2023, 337, 127140. [Google Scholar] [CrossRef]
- Preimesberger, C.; Wondrak, M.; Solt-Rindler, A.; Pfeifer, C.; Hansmann, C. Size- and Temperature-Dependent Oxidative Pyrolysis and Auto-Ignition of Spherical Beech and Spruce Wood. Biomass. Convers. Biorefin. 2023. [Google Scholar] [CrossRef]
- Chun, B.H.; Li, X.; IM, E.J.; Lee, K.-H.; Kim, S.H. Comparison of Pyrolysis Kinetics Between Rigid and Flexible Polyurethanes. J. Ind. Eng. Chem. 2007, 13, 1188–1194. [Google Scholar]
- Chen, G.; Liu, T.; Luan, P.; Li, N.; Sun, Y.; Tao, J.; Yan, B.; Cheng, Z. Distribution, Migration, and Removal of N-Containing Products during Polyurethane Pyrolysis: A Review. J. Hazard. Mater. 2023, 453, 131406. [Google Scholar] [CrossRef] [PubMed]
- He, J.-J.; Jiang, L.; Sun, J.-H.; Lo, S. Thermal Degradation Study of Pure Rigid Polyurethane in Oxidative and Non-Oxidative Atmospheres. J. Anal. Appl. Pyrolysis 2016, 120, 269–283. [Google Scholar] [CrossRef]
- Goli, G.; Becherini, F.; Di Tuccio, M.C.; Bernardi, A.; Fioravanti, M. Thermal Expansion of Wood at Different Equilibrium Moisture Contents. J. Wood Sci. 2019, 65, 4. [Google Scholar] [CrossRef]
- Custódio, J.; Cruz, H.; Negrão, J.; Broughton, J. Thermal Stability of Epoxy and Polyurethane Adhesives and Bonded Joints Used in the Rehabilitation of Timber Structures. In Proceedings of the III Jornadas Chilenas de Estructuras de Madera y I Congreso Latino Americano de Estructuras de Madera, Concepción, Chile, 3–6 November 2009. [Google Scholar]
- Czajkowski, Ł.; Olek, W.; Weres, J. Effects of Heat Treatment on Thermal Properties of European Beech Wood. European J. Wood Wood Prod. 2020, 78, 425–431. [Google Scholar] [CrossRef]
- Chang, S.J.; Wi, S.; Kim, S. Thermal Bridging Analysis of Connections in Cross-Laminated Timber Buildings Based on ISO 10211. Constr. Build. Mater. 2019, 213, 709–722. [Google Scholar] [CrossRef]
- Raftopoulos, K.N.; Pagacz, J.; Ozimek, J.; Koutsoumpis, S.; Michałowski, S.; Hebda, E.; Pielichowski, J.; Pielichowski, K. Molecular Dynamics in Polyurethane Foams Chemically Reinforced with POSS. Polym. Bull. 2019, 76, 2887–2898. [Google Scholar] [CrossRef]
- Njuguna, J.K.; Muchiri, P.; Mwema, F.M.; Karuri, N.W.; Herzog, M.; Dimitrov, K. Determination of Thermo-Mechanical Properties of Recycled Polyurethane from Glycolysis Polyol. Sci. Afr. 2021, 12, e00755. [Google Scholar] [CrossRef]
- Priester, R.D.; Turner, R.B. The Morphology of Flexible Polyurethane Matrix Polymers. In Low Density Cellular Plastics; Hilyard, N.C., Cunningham, A., Eds.; Springer: Dordrecht, The Netherland, 1994; pp. 78–103. [Google Scholar]
Material Code | Density g∙cm−3 | Description |
---|---|---|
PS | 1.4 | Solvent-free, two-component, polyurethane-based adhesive. Flexible adhesive designed for making flexible joints and for coatings. A:B (100:11) |
PST | 1.0 | Two-component adhesive material based on polyurethanes. Flexible adhesive designed for making flexible for making protective coatings. A:B (100:15) |
PT | 1.1 | Solvent-free, two-component adhesive material based on polyurethanes after hardening. Hard-elastic adhesive, designed for making flexible joints for making protective coatings. A:B (100:52) |
PTS | 0.9 | Two-component adhesive material based on polyurethanes. Permanently elastic adhesive intended for making flexible joints and for making protective coatings. A:B (100:15) |
PM | 0.9 | Two-component adhesive material based on polyurethanes. High-resilience adhesive intended for making flexible joints and for making protective coatings. A:B (100:15) |
PXBM | 1.4 | One-component polyurethane with accelerator, fast-setting while exposed to moisture polyurethane adhesive. Flexible adhesive designed to make flexible joints for the production of protective coatings. |
PSTF-W | 1.2 | Two-component polyurethane construction adhesive that cures at room temperature. It is intended for making flexible joints. A:B (100:100) |
PSTF-S | 1.21 | A two-component polyurethane construction adhesive that cures at room temperature. It is intended for making flexible joints. A:B (100:100) |
Material | PS | PST | PT | PTS | PM | PXBM | PSTF-W | PSTF-S |
---|---|---|---|---|---|---|---|---|
Thermal stability (°C) | 200 | 190 | 210 | 200 | 190 | 160 | 200 | 230 |
TG 1 (%) | −40.43 200–365 °C | −66.41 190–340 °C | −22.97 210–320 °C | −70.05 200–400 °C | −24.69 190–337 °C | −50.92 160–330 °C | −20.06 200–330 °C | −35.25 230–350 °C |
TG 2 (%) | −12.06 365–600 °C | −13.36 340–600 °C | −13.29 320–350 °C | −10.59 400–600 °C | −16.71 337–360 °C | −7.94 330–450 °C | −40.17 330–430 °C | −15.97 350–415 °C |
TG 3 (%) | - | - | −22.28 350–430 °C | - | −17.40 360–420 °C | −4.24 450–600 °C | −22.09 430–600 °C | −27.18 415–600 °C |
TG 4 (%) | - | - | −28.59 430–600 °C | - | −9.31 420–600 °C | - | - | - |
Total TG (%) | −54.24 | −78.22 | −88.15 | −81.72 | −69.54 | −63.72 | −83.77 | −79.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rutkowski, P.; Kwiecień, K.; Berezicka, A.; Sułowska, J.; Kwiecień, A.; Śliwa-Wieczorek, K.; Azinovic, B.; Schwarzkopf, M.; Pondelak, A.; Pečnik, J.G.; et al. Thermal Stability and Heat Transfer of Polyurethanes for Joints Applications of Wooden Structures. Molecules 2024, 29, 3337. https://doi.org/10.3390/molecules29143337
Rutkowski P, Kwiecień K, Berezicka A, Sułowska J, Kwiecień A, Śliwa-Wieczorek K, Azinovic B, Schwarzkopf M, Pondelak A, Pečnik JG, et al. Thermal Stability and Heat Transfer of Polyurethanes for Joints Applications of Wooden Structures. Molecules. 2024; 29(14):3337. https://doi.org/10.3390/molecules29143337
Chicago/Turabian StyleRutkowski, Paweł, Konrad Kwiecień, Anna Berezicka, Justyna Sułowska, Arkadiusz Kwiecień, Klaudia Śliwa-Wieczorek, Boris Azinovic, Matthew Schwarzkopf, Andreja Pondelak, Jaka Gašper Pečnik, and et al. 2024. "Thermal Stability and Heat Transfer of Polyurethanes for Joints Applications of Wooden Structures" Molecules 29, no. 14: 3337. https://doi.org/10.3390/molecules29143337
APA StyleRutkowski, P., Kwiecień, K., Berezicka, A., Sułowska, J., Kwiecień, A., Śliwa-Wieczorek, K., Azinovic, B., Schwarzkopf, M., Pondelak, A., Pečnik, J. G., & Szumera, M. (2024). Thermal Stability and Heat Transfer of Polyurethanes for Joints Applications of Wooden Structures. Molecules, 29(14), 3337. https://doi.org/10.3390/molecules29143337