Application of Nanomaterials and Related Drug Delivery Systems in Autophagy
Abstract
:1. Introduction
2. Nanomaterial-Based Probes for Monitoring Autophagy
3. Bioactive Nanomaterials for Autophagy Regulation
4. Nano Drug Delivery Systems (DDS) for Autophagy Regulation
4.1. Nano DDSs for Autophagy Induction
4.2. Nano DDS for Autophagy Inhibition
4.3. Tumor Vaccines for Autophagy Regulation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mizushima, N.; Komatsu, M. Autophagy: Renovation of Cells and Tissues. Cell 2011, 147, 728–741. [Google Scholar] [CrossRef] [PubMed]
- Rabinowitz, J.D.; White, E. Autophagy and Metabolism. Science 2010, 330, 1344–1348. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.X.; Wang, Y.; Wang, H. Recent Advances in Nanotechnology for Autophagy Detection. Small 2017, 13, 1700996. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Duan, Y. Crosstalk between Autophagy and Nanomaterials: Internalization, Activation, Termination. Adv. Biosyst. 2019, 3, e1800259. [Google Scholar] [CrossRef]
- Yang, L.; Chen, Y.; Yu, Z.; Pan, W.; Wang, H.; Li, N.; Tang, B. Dual-Ratiometric Fluorescent Nanoprobe for Visualizing the Dynamic Process of pH and Superoxide Anion Changes in Autophagy and Apoptosis. ACS Appl. Mater. 2017, 9, 27512–27521. [Google Scholar] [CrossRef]
- You, P.; Mayier, A.; Zhou, H.; Yang, A.; Fan, J.; Ma, S.; Liu, B.; Jiang, Y. Targeting and promoting atherosclerosis regression using hybrid membrane coated nanomaterials via alleviated inflammation and enhanced autophagy. Appl. Mater. 2022, 26, 101386. [Google Scholar]
- Klionsky, D.J.; Emr, S.D. Autophagy as a Regulated Pathway of Cellular Degradation. Science 2000, 290, 1717–1721. [Google Scholar] [CrossRef]
- Zhang, P.; Cheng, S.; Sheng, X.; Dai, H.; He, K.; Du, Y. The Role of Autophagy in Regulating Metabolism in the Tumor Microenvironment. Genes Dis. 2023, 10, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Yu, Z.; Xu, T.; Wang, L.; Meng, N.; Jin, H.; Xu, B. Novel Nano-Drug Delivery System for Brain Tumor Treatment. Cells 2022, 11, 3761. [Google Scholar] [CrossRef]
- Raza, A.; Hayat, U.; Rasheed, T.; Bilal, M.; Iqbal, H.M.N. Redox-Responsive Nano-Carriers as Tumor-Targeted Drug Delivery Systems. Eur. J. Med. Chem. 2018, 157, 705–715. [Google Scholar] [CrossRef]
- Shi, Y.; van der Meel, R.; Chen, X.; Lammers, T. The EPR Effect and beyond: Strategies to Improve Tumor Targeting and Cancer Nanomedicine Treatment Efficacy. Theranostics 2020, 10, 7921–7924. [Google Scholar] [CrossRef] [PubMed]
- Shekhar, S.; Chauhan, M.; Sonali; Yadav, B.; Dutt, R.; Hu, L.; Muthu, M.S.; Singh, R.P. Enhanced Permeability and Retention Effect-Focused Tumor-Targeted Nanomedicines: Latest Trends, Obstacles and Future Perspective. Nanomedicine 2022, 17, 1213–1216. [Google Scholar] [CrossRef] [PubMed]
- Lou, X.; Zhang, D.; Ling, H.; He, Z.; Sun, J.; Sun, M.; Liu, D. Pure Redox-Sensitive Paclitaxel–Maleimide Prodrug Nanoparticles: Endogenous Albumin-Induced Size Switching and Improved Antitumor Efficiency. Acta Pharm. Sin. B 2021, 11, 2048–2058. [Google Scholar] [CrossRef] [PubMed]
- El-Hamid, E.S.A.; Gamal-Eldeen, A.M.; Sharaf Eldeen, A.M. Liposome-Coated Nano Doxorubicin Induces Apoptosis on Oral Squamous Cell Carcinoma CAL-27 Cells. Arch. Oral Biol. 2019, 103, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Herrero, E.; Fernández-Medarde, A. Advanced Targeted Therapies in Cancer: Drug Nanocarriers, the Future of Chemotherapy. Eur. J. Pharm. Biopharm. 2015, 93, 52–79. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Popal, M.S.; Zhao, Y.; Liu, Y.; Chen, K.; Liu, Y. Interplay between Exosomes and Autophagy in Cardiovascular Diseases: Novel Promising Target for Diagnostic and Therapeutic Application. Aging Dis. 2019, 10, 1302. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.-L.; Wang, Z.-Q.; Tan, Z.-K.; Mao, G.-J.; Fei, J.; Li, C.-Y. A Dual-Response Fluorescent Probe for Simultaneously Monitoring Polarity and ATP during Autophagy. J. Mater. Chem. B 2022, 10, 4285–4292. [Google Scholar] [CrossRef] [PubMed]
- Xing, F.; Zhang, Q.; Gao, L.; Zheng, G. Fabrication of a Fluorescent Probe for In-Situ and Ratiometric Visualization of Autophagy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 237, 118428. [Google Scholar] [CrossRef] [PubMed]
- Fageria, L.; Pareek, V.; Dilip, R.V.; Bhargava, A.; Pasha, S.S.; Laskar, I.R.; Saini, H.; Dash, S.; Chowdhury, R.; Panwar, J. Biosynthesized Protein-Capped Silver Nanoparticles Induce ROS-Dependent Proapoptotic Signals and Prosurvival Autophagy in Cancer Cells. ACS Omega 2017, 2, 1489–1504. [Google Scholar] [CrossRef]
- Chen, Z.; Li, J.; Chen, X.; Cao, J.; Zhang, J.; Min, Q.; Zhu, J.-J. Single Gold@Silver Nanoprobes for Real-Time Tracing the Entire Autophagy Process at Single-Cell Level. J. Am. Chem. Soc. 2015, 137, 1903–1908. [Google Scholar] [CrossRef]
- Lyu, Y.; Chen, X.; Wang, Q.; Li, Q.; Wang, Q.; Li, X.; Zhu, Z.; Yan, C.; Zhao, X.; Zhu, W. Monitoring Autophagy with Atg4B Protease-Activated Aggregation-Induced Emission Probe. Adv. Funct. Mater. 2022, 32, 2108571. [Google Scholar] [CrossRef]
- Choi, K.-M.; Nam, H.Y.; Na, J.H.; Kim, S.W.; Kim, S.Y.; Kim, K.; Kwon, I.C.; Ahn, H.J. A Monitoring Method for Atg4 Activation in Living Cells Using Peptide-Conjugated Polymeric Nanoparticles. Autophagy 2011, 7, 1052–1062. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chen, X.; Ye, Q.-Z.; Vogt, A.; Yin, X.-M. A High-Throughput FRET-Based Assay for Determination of Atg4 Activity. Autophagy 2012, 8, 401–412. [Google Scholar] [CrossRef]
- Farokhzad, O.; Langer, R. Nanomedicine: Developing Smarter Therapeutic and Diagnostic Modalities. Adv. Drug Deliv. Rev. 2006, 58, 1456–1459. [Google Scholar] [CrossRef]
- Das, S.; Kapadia, A.; Pal, S.; Datta, A. Spatio-Temporal Autophagy Tracking with a Cell-Permeable, Water-Soluble, Peptide-Based, Autophagic Vesicle-Targeted Sensor. ACS Sens. 2021, 6, 2252–2260. [Google Scholar] [CrossRef]
- Ouyuan, J.; Sun, L.; Zeng, F.; Wu, S. Biomarker-activatable probes based on smart AIEgens for fluorescence and optoacoustic. Coord. Chem. Rev. 2022, 458, 214438. [Google Scholar]
- Ding, S.; Hong, Y. The Fluorescence Toolbox for Visualizing Autophagy. Chem. Soc. Rev. 2020, 49, 8354–8389. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.H.; Khatun, Z.; Wei, L.; Mekkaoui, C.; Patel, D.; Kim, S.J.W.; Boukhalfa, A.; Enoma, E.; Meng, L.; Chen, Y.I.; et al. A Nanoparticle Probe for the Imaging of Autophagic Flux in Live Mice via Magnetic Resonance and Near-Infrared Fluorescence. Nat. Biomed. Eng. 2022, 6, 1045–1056. [Google Scholar] [CrossRef]
- Paskeh, M.D.A.; Entezari, M.; Clark, C.; Zabolian, A.; Ranjbar, E.; Farahani, M.V.; Saleki, H.; Sharifzadeh, S.O.; Far, F.B.; Ashrafizadeh, M.; et al. Targeted Regulation of Autophagy Using Nanoparticles: New Insight into Cancer Therapy. Biochim. Biophys. Acta Mol. Basis Dis. 2022, 1868, 166326. [Google Scholar] [CrossRef]
- Hu, C.; Xu, X.; Zhang, X.; Li, Y.; Li, Y.; Gu, Z. Bioinspired Design of Stereospecific d-Protein Nanomimics for High-Efficiency Autophagy Induction. Chem. Mater. 2017, 29, 7658–7662. [Google Scholar] [CrossRef]
- Acar, N.V.; Özgül, R.K. The bridge between cell survival and cell death: Reactive oxygen species-mediated cellular stress. EXCLI J. 2023, 22, 520–555. [Google Scholar]
- Mohammadinejad, R.; Moosavi, M.A.; Tavakol, S.; Vardar, D.Ö.; Hosseini, A.; Rahmati, M.; Dini, L.; Hussain, S.; Mandegary, A.; Klionsky, D.J. Necrotic, Apoptotic and Autophagic Cell Fates Triggered by Nanoparticles. Autophagy 2019, 15, 4–33. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Hong, F.; Tian, Y.; Zhao, X.; Hong, J.; Ze, Y.; Wang, L. Nanoparticulate Titanium Dioxide-Inhibited Dendritic Development Is Involved in Apoptosis and Autophagy of Hippocampal Neurons in Offspring Mice. Toxicol. Res. 2017, 6, 889–901. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-N.; Yang, L.-X.; Shi, X.-Y.; Li, I.-C.; Biazik, J.M.; Ratinac, K.R.; Chen, D.-H.; Thordarson, P.; Shieh, D.-B.; Braet, F. The Selective Growth Inhibition of Oral Cancer by Iron Core-Gold Shell Nanoparticles through Mitochondria-Mediated Autophagy. Biomaterials 2011, 32, 4565–4573. [Google Scholar] [CrossRef] [PubMed]
- Park, E.-J.; Choi, D.-H.; Kim, Y.; Lee, E.-W.; Song, J.; Cho, M.-H.; Kim, J.-H.; Kim, S.-W. Magnetic Iron Oxide Nanoparticles Induce Autophagy Preceding Apoptosis through Mitochondrial Damage and ER Stress in RAW264.7 Cells. Toxicol. Vitr. 2014, 28, 1402–1412. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, G.; Schwarz, T.L. The Pathways of Mitophagy for Quality Control and Clearance of Mitochondria. Cell Death Differ. 2013, 20, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, F.; Wang, S.; Ma, J.; Xu, M.; Gao, M.; Liu, R.; Chen, W.; Liu, S. Reduction of Graphene Oxide Alters Its Cyto-Compatibility towards Primary and Immortalized Macrophages. Nanoscale 2018, 10, 14637–14650. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Gong, X.; Lin, H.; Chen, H.; Huang, D.; Li, D.; Shan, H.; Gao, J. Gold Nanoparticles Impair Autophagy Flux through Shape-Dependent Endocytosis and Lysosomal Dysfunction. J. Mater. Chem. B 2018, 6, 8127–8136. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, B.; Yao, M.; Dong, T.; Mao, Z.; Hang, B.; Han, X.; Lin, Z.; Bian, Q.; Li, M.; et al. Titanium Dioxide Nanoparticles Induce Proteostasis Disruption and Autophagy in Human Trophoblast Cells. Chem. Biol. Interact. 2018, 296, 124–133. [Google Scholar] [CrossRef]
- Mittal, S.; Sharma, P.K.; Tiwari, R.; Rayavarapu, R.G.; Shankar, J.; Chauhan, L.K.S.; Pandey, A.K. Impaired Lysosomal Activity Mediated Autophagic Flux Disruption by Graphite Carbon Nanofibers Induce Apoptosis in Human Lung Epithelial Cells through Oxidative Stress and Energetic Impairment. Part. Fibre Toxicol. 2017, 14, 15. [Google Scholar] [CrossRef]
- Huang, Q.; Shen, H.-M. To Die or to Live: The Dual Role of Poly(ADP-Ribose) Polymerase-1 in Autophagy and Necrosis under Oxidative Stress and DNA Damage. Autophagy 2009, 5, 273–276. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yin, H.; Li, Z.; Zhang, T.; Yang, Z. Nano-TiO2 Induces Autophagy to Protect against Cell Death through Antioxidative Mechanism in Podocytes. Cell Biol. Toxicol. 2016, 32, 513–527. [Google Scholar] [CrossRef] [PubMed]
- Marquardt, C.; Fritsch-Decker, S.; Al-Rawi, M.; Diabaté, S.; Weiss, C. Autophagy Induced by Silica Nanoparticles Protects RAW264.7 Macrophages from Cell Death. Toxicology 2017, 379, 40–47. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, H.; Zhang, X.; Wang, Y.; Song, Z.; Zhao, J.; Shi, H.; Li, R.; Wang, Y.; Zhang, L.W. The Protective Role of Autophagy in Nephrotoxicity Induced by Bismuth Nanoparticles through AMPK/MTOR Pathway. Nanotoxicology 2018, 12, 586–601. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.-K.; Lee, Y.-J.; Jeong, S.Y.; Jeong, S.; Lee, G.-W.; Park, S.-Y. Autophagic Flux Induced by Graphene Oxide Has a Neuroprotective Effect against Human Prion Protein Fragments. Int. J. Nanomed. 2017, 12, 8143–8158. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Peng, G.; Liu, H.; Wang, L.; Lu, R.; Li, L. Molecular Mechanisms of Secretory Autophagy and Its Potential Role in Diseases. Life Sci. 2024, 347, 122653. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, J.; Lin, A.; Zhang, T.; Liu, Y.; Zhang, C.; Yin, Y.; Guo, R.; Gao, J.; Li, Y.; et al. Immunomodulatory Poly(L-Lactic Acid) Nanofibrous Membranes Promote Diabetic Wound Healing by Inhibiting Inflammation, Oxidation and Bacterial Infection. Burns Trauma 2024, 12, tkae009. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wu, Y.; Jin, S.; Tian, Y.; Zhang, X.; Zhao, Y.; Yu, L.; Liang, X.-J. Gold Nanoparticles Induce Autophagosome Accumulation through Size-Dependent Nanoparticle Uptake and Lysosome Impairment. ACS Nano 2011, 5, 8629–8639. [Google Scholar] [CrossRef]
- Wei, M.; Fu, Z.; Wang, C.; Zheng, W.; Li, S.; Le, W. Graphene Oxide Nanocolloids Induce Autophagy-Lysosome Dysfunction in Mouse Embryonic Stem Cells. J. Biomed. Nanotechnol. 2019, 15, 340–351. [Google Scholar] [CrossRef]
- He, C.; Jiang, S.; Yao, H.; Zhang, L.; Yang, C.; Jiang, S.; Ruan, F.; Zhan, D.; Liu, G.; Lin, Z.; et al. High-Content Analysis for Mitophagy Response to Nanoparticles: A Potential Sensitive Biomarker for Nanosafety Assessment. Nanomedicine 2019, 15, 59–69. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, L.; Bai, R.; Zhang, T.; Chen, C. Silver Nanoparticles Impede Phorbol Myristate Acetate-Induced Monocyte–Macrophage Differentiation and Autophagy. Nanoscale 2015, 7, 16100–16109. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Duan, J.; Yang, M.; Yu, Y.; Feng, L.; Yang, X.; Zhou, X.; Zhao, Z.; Sun, Z. Silica Nanoparticles Induce Autophagosome Accumulation via Activation of the EIF2AK3 and ATF6 UPR Pathways in Hepatocytes. Autophagy 2018, 14, 1185–1200. [Google Scholar] [CrossRef] [PubMed]
- Wan, B.; Wang, Z.-X.; Lv, Q.-Y.; Dong, P.-X.; Zhao, L.-X.; Yang, Y.; Guo, L.-H. Single-Walled Carbon Nanotubes and Graphene Oxides Induce Autophagosome Accumulation and Lysosome Impairment in Primarily Cultured Murine Peritoneal Macrophages. Toxicol. Lett. 2013, 221, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Jin, P.; Wei, P.; Zhang, Y.; Lin, J.; Sha, R.; Hu, Y.; Zhang, J.; Zhou, W.; Yao, H.; Ren, L.; et al. Autophagy-Mediated Clearance of Ubiquitinated Mutant Huntingtin by Graphene Oxide. Nanoscale 2016, 8, 18740–18750. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Lin, S.; Li, Y.; Zhang, T.; Shao, X.; Tian, T.; Zhou, T.; Li, Q.; Lin, Y. Effects of Tetrahedral DNA Nanostructures on Autophagy in Chondrocytes. Chem. Commun. 2018, 54, 1327–1330. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yang, W.; Man, N.; Zheng, F.; Shen, Y.; Sun, K.; Li, Y.; Wen, L.-P. Autophagy-Mediated Chemosensitization in Cancer Cells by Fullerene C60 Nanocrystal. Autophagy 2009, 5, 1107–1117. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, N.; Su, Y.; He, Y.; Yin, M.; Wei, M.; Wang, L.; Huang, W.; Fan, C.; Huang, Q. Autophagy-Sensitized Cytotoxicity of Quantum Dots in PC12 Cells. Adv. Healthc. Mater. 2014, 3, 354–359. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, L. Autophagy Is a Double-edged Sword in the Therapy of Colorectal Cancer. Oncol. Lett. 2021, 21, 378. [Google Scholar] [CrossRef]
- Xu, L.; Wang, X.; Lin, Y.; Yang, G.; Falconer, R.J.; Zhao, C.X. Lipid Nanoparticles for Drug Delivery. Adv. NanoBiomed Res. 2022, 2, 2100109. [Google Scholar] [CrossRef]
- Beach, M.A.; Nayanathara, U.; Gao, Y.; Zhang, C.; Xiong, Y.; Wang, Y.; Such, G.K. Polymeric Nanoparticles for Drug Delivery. Chem. Rev. 2024, 124, 5505–5616. [Google Scholar] [CrossRef]
- Ojea-Jiménez, I.; Comenge, J.; García-Fernández, L.; Megson, Z.A.; Casals, E.; Puntes, V.F. Engineered inorganic nanoparticles for drug delivery applications. Curr. Drug Metab. 2013, 14, 518–530. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.-D.; Qin, Z.-H. Beclin 1, Bcl-2 and Autophagy. Adv. Exp. Med. Biol. 2019, 1206, 109–126. [Google Scholar] [PubMed]
- Zhou, Z.; Yan, Y.; Wang, L.; Zhang, Q.; Cheng, Y. Melanin-like Nanoparticles Decorated with an Autophagy-Inducing Peptide for Efficient Targeted Photothermal Therapy. Biomaterials 2019, 203, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lin, Y.; Qiao, Z.; An, H.; Qiao, S.; Wang, L.; Rajapaksha, R.P.Y.J.; Wang, H. Self-Assembled Autophagy-Inducing Polymeric Nanoparticles for Breast Cancer Interference In-Vivo. Adv. Mater. 2015, 27, 2627–2634. [Google Scholar] [CrossRef]
- Wang, X.; Li, M.; Ren, K.; Xia, C.; Li, J.; Yu, Q.; Qiu, Y.; Lu, Z.; Long, Y.; Zhang, Z.; et al. On-Demand Autophagy Cascade Amplification Nanoparticles Precisely Enhanced Oxaliplatin-Induced Cancer Immunotherapy. Adv. Mater. 2020, 32, e2002160. [Google Scholar] [CrossRef] [PubMed]
- Mei, D.; Chen, B.; He, B.; Liu, H.; Lin, Z.; Lin, J.; Zhang, X.; Sun, N.; Zhao, L.; Wang, X.; et al. Actively Priming Autophagic Cell Death with Novel Transferrin Receptor-Targeted Nanomedicine for Synergistic Chemotherapy against Breast Cancer. Acta Pharm. Sin. B 2019, 9, 1061–1077. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tai, X.; Zhang, L.; Liu, Y.; Gao, H.; Chen, J.; Shi, K.; Zhang, Q.; Zhang, Z.; He, Q. A Novel Antitumour Strategy Using Bidirectional Autophagic Vesicles Accumulation via Initiative Induction and the Terminal Restraint of Autophagic Flux. J. Control. Release 2015, 199, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yin, S.; Li, M.; Rao, J.; Wan, D.; Qiu, Y.; Yu, Q.; Chen, X.; Lu, Z.; Long, Y.; et al. Autophagy Inhibition Changes the Disposition of Non-Viral Gene Carriers during Blood-Brain Barrier Penetration and Enhances TRAIL-Induced Apoptosis in Brain Metastatic Tumor. J. Control. Release 2020, 321, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Qu, F.; Wang, P.; Zhang, K.; Shi, Y.; Li, Y.; Li, C.; Lu, J.; Liu, Q.; Wang, X. Manipulation of Mitophagy by “All-in-One” Nanosensitizer Augments Sonodynamic Glioma Therapy. Autophagy 2020, 16, 1413–1435. [Google Scholar] [CrossRef]
- He, W.; Xiao, W.; Zhang, X.; Sun, Y.; Chen, Y.; Chen, Q.; Fang, X.; Du, S.; Sha, X. Pulmonary-Affinity Paclitaxel Polymer Micelles in Response to Biological Functions of Ambroxol Enhance Therapeutic Effect on Lung Cancer. Int. J. Nanomed. 2020, 15, 779–793. [Google Scholar] [CrossRef]
- Saiyin, W.; Wang, D.; Li, L.; Zhu, L.; Liu, B.; Sheng, L.; Li, Y.; Zhu, B.; Mao, L.; Li, G.; et al. Sequential Release of Autophagy Inhibitor and Chemotherapeutic Drug with Polymeric Delivery System for Oral Squamous Cell Carcinoma Therapy. Mol. Pharm. 2014, 11, 1662–1675. [Google Scholar] [CrossRef]
- Yang, J.; Dai, D.; Zhang, X.; Teng, L.; Ma, L.; Yang, Y.-W. Multifunctional Metal-Organic Framework (MOF)-Based Nanoplatforms for Cancer Therapy: From Single to Combination Therapy. Theranostics 2023, 13, 295–323. [Google Scholar] [CrossRef]
- Chen, X.; Tong, R.; Shi, Z.; Yang, B.; Liu, H.; Ding, S.; Wang, X.; Lei, Q.; Wu, J.; Fang, W. MOF Nanoparticles with Encapsulated Autophagy Inhibitor in Controlled Drug Delivery System for Antitumor. ACS Appl. Mater. Interfaces 2018, 10, 2328–2337. [Google Scholar] [CrossRef]
- Pérez-Revuelta, B.I.; Hettich, M.M.; Ciociaro, A.; Rotermund, C.; Kahle, P.J.; Krauss, S.; Di Monte, D.A. Metformin lowers Ser-129 phosphorylated α-synuclein levels via mTOR-dependent protein phosphatase 2A activation. Cell Death Dis. 2014, 5, e1209. [Google Scholar] [CrossRef]
- Diwan, M.; Elamanchili, P.; Lane, H.; Gainer, A.; Samuel, J. Biodegradable Nanoparticle Mediated Antigen Delivery to Human Cord Blood Derived Dendritic Cells for Induction of Primary T Cell Responses. J. Drug Target. 2003, 11, 495–507. [Google Scholar] [CrossRef]
- Jiang, G.-M.; Tan, Y.; Wang, H.; Peng, L.; Chen, H.-T.; Meng, X.-J.; Li, L.-L.; Liu, Y.; Li, W.-F.; Shan, H. The Relationship between Autophagy and the Immune System and Its Applications for Tumor Immunotherapy. Mol. Cancer 2019, 18, 17. [Google Scholar] [CrossRef]
- English, L.; Chemali, M.; Duron, J.; Rondeau, C.; Laplante, A.; Gingras, D.; Alexander, D.; Leib, D.; Norbury, C.; Lippé, R.; et al. Autophagy Enhances the Presentation of Endogenous Viral Antigens on MHC Class I Molecules during HSV-1 Infection. Nat. Immunol. 2009, 10, 480–487. [Google Scholar] [CrossRef]
- Koustas, E.; Trifylli, E.-M.; Sarantis, P.; Papadopoulos, N.; Papanikolopoulos, K.; Aloizos, G.; Damaskos, C.; Garmpis, N.; Garmpi, A.; Matthaios, D.; et al. Exploiting Autophagy-Dependent Neoantigen Presentation in Tumor Microenvironment. Genes 2023, 14, 474. [Google Scholar] [CrossRef]
- van de Ven, R.; Hilton, T.L.; Hu, H.-M.; Dubay, C.J.; Haley, D.; Paustian, C.; Puri, S.; Urba, W.J.; Curti, B.D.; Aung, S.; et al. Autophagosome-Based Strategy to Monitor Apparent Tumor-Specific CD8 T Cells in Patients with Prostate Cancer. Oncoimmunology 2018, 7, e1466766. [Google Scholar] [CrossRef]
- Calvet, C.Y.; Famin, D.; André, F.M.; Mir, L.M. Electrochemotherapy with Bleomycin Induces Hallmarks of Immunogenic Cell Death in Murine Colon Cancer Cells. Oncoimmunology 2014, 3, e28131. [Google Scholar] [CrossRef]
- Verykiou, S.; Alexander, M.; Edwards, N.; Plummer, R.; Chaudhry, B.; Lovat, P.E.; Hill, D.S. Harnessing Autophagy to Overcome Mitogen-activated Protein Kinase Kinase Inhibitor-induced Resistance in Metastatic Melanoma. Br. J. Dermatol. 2019, 180, 346–356. [Google Scholar] [CrossRef]
- Li, J.; Cai, W.; Yu, J.; Zhou, S.; Li, X.; He, Z.; Ouyang, D.; Liu, H.; Wang, Y. Autophagy Inhibition Recovers Deficient ICD-Based Cancer Immunotherapy. Biomaterials 2022, 287, 121651. [Google Scholar] [CrossRef]
- Tu, N.; Shen, X.; Deng, S.; Xie, Y.; Liu, H.; Li, H.; Li, N.; Mei, L. Antitumor and Immunotherapy Sensitizing Effects of a Thermosensitive Liposome by Increasing Autophagosome Accumulation. ACS Appl. Nano Mater. 2023, 6, 23150–23162. [Google Scholar] [CrossRef]
- Mgrditchian, T.; Arakelian, T.; Paggetti, J.; Noman, M.Z.; Viry, E.; Moussay, E.; Van More, K.; Kreis, S.; Guerin, C.; Buart, S.; et al. Targeting autophagy inhibits melanoma growth by enhancing NK cells infiltration in a CCL5-dependent manner. Proc. Natl. Acad. Sci. USA 2017, 114, E9271–E9279. [Google Scholar] [CrossRef]
Effect on Autophagy Modulation | Nanomaterials | Cells and Models |
---|---|---|
Autophagy inhibition and lysosomal dysfunction | Gold nanoparticles [48] | NRK |
Graphene oxide nanocolloids [49] | Mouse embryonic stem cells | |
Graphene oxide QDs [50] | GC-2; TM4 | |
Silver nanoparticles [51] | Primary MEF; Hela; THP-1 monocytes | |
Silica nanoparticles [52] | L-02 | |
Autophagy induction and lysosomal activation | Single-walled carbon nanotubes [53] | Primary glia from CRND8 AD, murine |
Graphene oxide nanoparticles [54] | HeLa | |
Iron oxide nanoparticles [35] | A549; IMR-90 | |
Titanium dioxide nanoparticles [39] | HaCaT | |
Bismuth nanoparticles [44] | HEK293 | |
Tetrahedral DNA nanostructures [55] | Chondrocytes | |
Autophagy-mediated chemosensitization | Fullerene C60 [56] | HeLa; MEF; MCF-7 |
CdTe and CdTe/CdS/ZnS QDs [57] | PC12; HEK293 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, L.; Liao, K.; Chen, H.; Zhang, Y.; Zhang, Z.; Li, Q.; Li, M. Application of Nanomaterials and Related Drug Delivery Systems in Autophagy. Molecules 2024, 29, 3513. https://doi.org/10.3390/molecules29153513
Mei L, Liao K, Chen H, Zhang Y, Zhang Z, Li Q, Li M. Application of Nanomaterials and Related Drug Delivery Systems in Autophagy. Molecules. 2024; 29(15):3513. https://doi.org/10.3390/molecules29153513
Chicago/Turabian StyleMei, Ling, Kai Liao, Haiyan Chen, Yifan Zhang, Zihan Zhang, Qiangwei Li, and Man Li. 2024. "Application of Nanomaterials and Related Drug Delivery Systems in Autophagy" Molecules 29, no. 15: 3513. https://doi.org/10.3390/molecules29153513
APA StyleMei, L., Liao, K., Chen, H., Zhang, Y., Zhang, Z., Li, Q., & Li, M. (2024). Application of Nanomaterials and Related Drug Delivery Systems in Autophagy. Molecules, 29(15), 3513. https://doi.org/10.3390/molecules29153513