Automation of Copper-Mediated 18F-Fluorination of Aryl Pinacol Boronates Using 4-Dimethylaminopyridinium Triflate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Radiofluorination of Model ArylBPin Substrates Using DMAPOTf as the PTC
2.2. Radiosynthesis of 6-L-[18F]FDOPA Using DMAPOTf as the PTC
2.2.1. Radiolabeling Approach
2.2.2. Optimization of the Radiofluorination Step
2.2.3. Automated Synthesis of 6-L-[18F]FDOPA
2.2.4. Purification and Quality Control of 6-L-[18F]FDOPA
3. Experimental Section
3.1. Materials and Methods
3.2. Production of [18F]Fluoride
3.3. Radiolabeling of Model arylBPin Substrates 1–7
3.4. Synthesis of 6-L-[18F]FDOPA under Remote-Controlled Operation
3.5. Automated Synthesis of 6-L-[18F]FDOPA
3.6. Semipreparative Purification of 6-L-[18F]FDOPA
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Phelps, M.E. Positron emission tomography provides molecular imaging of biological processes. Proc. Natl. Acad. Sci. USA 2000, 97, 9226–9233. [Google Scholar] [CrossRef] [PubMed]
- Schwenck, J.; Sonanini, D.; Cotton, J.M.; Rammensee, H.G.; la Fougère, C.; Zender, L.; Pichler, B.J. Advances in PET imaging of cancer. Nat. Rev. Cancers 2023, 23, 474–490. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.A.; Salerno, M. Clinical Utility and Future Applications of PET/CT and PET/CMR in Cardiology. Diagnostics 2016, 6, 32. [Google Scholar] [CrossRef] [PubMed]
- Kreisl, W.C.; Kim, M.J.; Coughlin, J.M.; Henter, I.D.; Owen, D.R.; Innis, R.B. PET imaging of neuroinflammation in neurological disorders. Lancet Neurol. 2020, 19, 940–950. [Google Scholar] [CrossRef] [PubMed]
- Suridjan, I.; Comley, R.A.; Rabiner, E.A. The application of positron emission tomography (PET) imaging in CNS drug development. Brain Imaging Behav. 2019, 13, 354–365. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Lu, S.-Y.; Pike, V.W. Chemistry With [18F]Fluoride Ion. Eur. J. Org. Chem. 2008, 17, 2853–2873. [Google Scholar] [CrossRef]
- Coenen, H.H.; Ermert, J. 18F-labelling innovations and their potential for clinical application. Clin. Trans. Imaging 2018, 6, 169–193. [Google Scholar] [CrossRef]
- Deng, X.; Rong, J.; Wang, L.; Vasdev, N.; Zhang, L.; Josephson, L.; Liang, S.H. Chemistry for Positron Emission Tomography: Recent Advances in 11C-, 18F-, 13N-, and 15O-Labeling Reactions. Angew. Chem. Int. Ed. Engl. 2019, 58, 2580–2605. [Google Scholar] [CrossRef] [PubMed]
- Barnes, C.; Nair, M.; Aboagye, E.O.; Archibald, S.J.; Allott, L. A practical guide to automating fluorine-18 PET radiochemistry using commercially available cassette-based platforms. React. Chem. Eng. 2022, 7, 2265–2279. [Google Scholar] [CrossRef]
- Brooks, A.F.; Topczewski, J.J.; Ichiishi, N.; Sanford, M.S.; Scott, P. Late-Stage [18F]fluorination: New Solutions to Old Problems. Chem. Sci. 2014, 5, 4545–4553. [Google Scholar] [CrossRef]
- Kamlet, A.S.; Neumann, C.N.; Lee, E.; Carlin, S.M.; Moseley, C.K.; Stephenson, N.; Hooker, J.M.; Ritter, T. Application of palladium-mediated (18)F-fluorination to PET radiotracer development: Overcoming hurdles to translation. PLoS ONE 2013, 8, e59187. [Google Scholar] [CrossRef] [PubMed]
- Preshlock, S.; Tredwell, M.; Gouverneur, V. 18F-Labeling of Arenes and Heteroarenes for Applications in Positron Emission Tomography. Chem. Rev. 2016, 116, 719–766. [Google Scholar] [CrossRef] [PubMed]
- Rong, J.; Haider, A.; Jeppesen, T.E.; Josephson, L.; Liang, S.H. Radiochemistry for positron emission tomography. Nat. Commun. 2023, 14, 3257. [Google Scholar] [CrossRef] [PubMed]
- Tredwell, M.; Preshlock, S.M.; Taylor, N.J.; Gruber, S.; Huiban, M.; Passchier, J.; Mercier, J.; Génicot, C.; Gouverneur, V. A General Copper-Mediated Nucleophilic 18F Fluorination of Arenes. Angew. Chem. Int. Ed. 2014, 126, 7885–7889. [Google Scholar] [CrossRef]
- Ye, Y.; Schimler, S.D.; Hanley, P.S.; Sanford, M.S. Cu(OTf)2-Mediated Fluorination of Aryltrifluoroborates with Potassium Fluoride. J. Am. Chem. Soc. 2013, 135, 16292–16295. [Google Scholar] [CrossRef] [PubMed]
- Preshlock, S.; Calderwood, S.; Verhoog, S.; Tredwell, M.; Huiban, M.; Hienzsch, A.; Gruber, S.; Wilson, T.C.; Taylor, N.J.; Cailly, T.; et al. Enhanced copper-mediated 18F-fluorination of aryl boronic esters provides eight radiotracers for PET applications. Chem. Commun. 2016, 52, 8361–8364. [Google Scholar] [CrossRef] [PubMed]
- Zarganes-Tzitzikas, T.; Clemente, G.S.; Elsinga, P.H.; Dömling, A. MCR Scaffolds Get Hotter With 18F-Labeling. Molecules 2019, 24, 1327. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.S.; Kaur, T.; Preshlock, S.; Tanzey, S.S.; Winton, W.P.; Sharninghausen, L.S.; Wiesner, N.; Brooks, A.F.; Sanford, M.S.; Scott, P. Copper-Mediated Late-Stage Radiofluorination: Five Years of Impact on Preclinical and Clinical PET Imaging. Clin. Transl. Imaging 2020, 8, 167–207. [Google Scholar] [CrossRef]
- Mossine, A.V.; Brooks, A.F.; Makaravage, K.J.; Miller, J.M.; Ichiishi, N.; Sanford, M.S.; Scott, P.J.H. Synthesis of [18F]Arenes via the Copper-Mediated [18F]Fluorination of Boronic Acids. Org. Lett. 2015, 17, 5780–5783. [Google Scholar] [CrossRef]
- Makaravage, K.J.; Brooks, A.F.; Mossine, A.V.; Sanford, M.S.; Scott, P.J.H. Copper-Mediated Radiofluorination of Arylstannanes with [18F]KF. Org. Lett. 2016, 18, 5440–5443. [Google Scholar] [CrossRef]
- Mossine, A.V.; Brooks, A.F.; Ichiishi, N.; Makaravage, K.J.; Sanford, M.S.; Scott, P.J. Development of Customized [18F]Fluoride Elution Techniques for the Enhancement of Copper-Mediated Late-Stage Radiofuorination. Sci. Rep. 2017, 7, 233. [Google Scholar] [CrossRef] [PubMed]
- Zlatopolskiy, B.D.; Zischler, J.; Krapf, P.; Zarrad, F.; Urusova, E.A.; Kordys, E.; Endepols, H.; Neumaier, B. Copper-mediated aromatic radiofluorination revisited: Efficient production of PET tracers on a preparative scale. Chem. Eur. J. 2015, 21, 5972–5979. [Google Scholar] [CrossRef] [PubMed]
- Zischler, J.; Kolks, N.; Modemann, D.; Neumaier, B.; Zlatopolskiy, B.D. Alcohol-Enhanced Cu-Mediated Radiofluorination. Chem. A Eur. J. 2017, 23, 3251–3256. [Google Scholar] [CrossRef] [PubMed]
- Orlovskaya, V.; Fedorova, O.; Kuznetsova, O.; Krasikova, R. Cu-Mediated Radiofluorination of Aryl Pinacolboronate Esters: Alcohols as Solvents with Application to 6-L-[18F]FDOPA Synthesis. Eur. J. Org. Chem. 2020, 45, 7079–7086. [Google Scholar] [CrossRef]
- Zlatopolskiy, B.D.; Zischler, J.; Schäfer, D.; Urusova, E.A.; Guliyev, M.; Bannykh, O.; Endepols, H.; Neumaier, B. Discovery of 7-[18F]Fluorotryptophan as a Novel Positron Emission Tomography (PET) Probe for the Visualization of Tryptophan Metabolism in Vivo. Med. Chem. 2018, 61, 189–206. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.; Kolks, N.; Urusova, E.A.; Zischler, J.; Brugger, M.; Endepols, H.; Neumaier, B.; Zlatopolskiy, B.D. Preparation of labeled aromatic amino acids via late-stage 18F-fluorination of chiral nickel and copper complexes. Chem. Commun. 2020, 56, 9505–9508. [Google Scholar] [CrossRef] [PubMed]
- Orlovskaya, V.V.; Craig, A.S.; Fedorova, O.S.; Kuznetsova, O.F.; Neumaier, B.; Krasikova, R.N.; Zlatopolskiy, B.D. Production of 6-L-[18F]Fluoro-m-tyrosine in an Automated Synthesis Module for 11C-Labeling. Molecules 2021, 26, 5550. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.; Shoup, T.M.; Moon, S.H.; Brownell, A.L. A concise method for fully automated radiosyntheses of [18F]JNJ-46356479 and [18F]FITM via Cu-mediated 18F-fluorination of organoboranes. RSC Adv. 2020, 10, 25223–25227. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, C.; Kolks, N.; Smets, D.; Haseloer, A.; Gröner, B.; Urusova, E.A.; Endepols, H.; Neumaier, F.; Ruschewitz, U.; Klein, A.; et al. Next Generation Copper Mediators for the Efficient Production of 18 F-Labeled Aromatics. Chemistry 2023, 29, e202202965. [Google Scholar] [CrossRef] [PubMed]
- Antuganov, D.; Zykov, M.; Timofeev, V.; Timofeeva, K.; Antuganova, Y.; Fedorova, O.; Orlovskaya, V.; Krasikova, R. Copper-mediated radiofluorination of aryl pinacolboronate esters: A straightforward protocol using pyridinium sulfonates. Eur. J. Org. Chem. 2019, 2019, 918–922. [Google Scholar] [CrossRef]
- Wenzel, B.; Fritzsche, S.R.; Toussaint, M.; Briel, D.; Kopka, K.; Brust, P.; Scheunemann, M.; Deuther-Conrad, W. Radiosynthesis and Preclinical Evaluation of an 18F-Labeled Triazolopyridopyrazine-Based Inhibitor for Neuroimaging of the Phosphodiesterase 2A (PDE2A). Pharmaceuticals 2022, 15, 1272. [Google Scholar] [CrossRef] [PubMed]
- Lai, T.H.; Wenzel, B.; Dukić-Stefanović, S.; Teodoro, R.; Arnaud, L.; Maisonial-Besset, A.; Weber, V.; Moldovan, R.P.; Meister, S.; Pietzsch, J.; et al. Radiosynthesis and biological evaluation of [18F]AG-120 for PET imaging of the mutant isocitrate dehydrogenase 1 in glioma. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 1085–1096. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Basuli, F.; Swenson, R.E. An azeotropic drying-free approach for copper-mediated radiofluorination without addition of base. J. Label. Comp. Radiopharm. 2019, 62, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Kanthan, M.; Cumming, P.; Hooker, J.M.; Vasdev, N. Classics in Neuroimaging: Imaging the Dopaminergic Pathway with PET. ACS Chem. Neurosci. 2017, 8, 1817–1819. [Google Scholar] [CrossRef] [PubMed]
- Taïeb, D.; Imperiale, A.; Pacak, K. 18F-DOPA: The versatile radiopharmaceutical. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 1187–1189. [Google Scholar] [CrossRef]
- Bell, C.; Dowson, N.; Puttick, S.; Gal, Y.; Thomas, P.; Fay, M.; Smith, J.; Rose, S. Increasing feasibility and utility of (18)F-FDOPA PET for the management of glioma. Nucl. Med. Biol. 2015, 42, 788–795. [Google Scholar] [CrossRef] [PubMed]
- Jager, P.L.; Chirakal, R.; Marriott, C.J.; Brouwers, A.H.; Koopmans, K.P.; Gulenchyn, K.Y. 6-L-18F-fluorodihydroxyphenylalanine PET in neuroendocrine tumors: Basic aspects and emerging clinical applications. J. Nucl. Med. 2008, 49, 573–586. [Google Scholar] [CrossRef] [PubMed]
- Bratteby, K.; Shalgunov, V.; Battisti, U.M.; Petersen, I.N.; Broek, S.L.; Ohlsson, T.; Gillings, N.; Erlandsson, M.; Herth, M. Insights into Elution of Anion Exchange Cartridges: Opening the Path towards Aliphatic 18F-Radiolabeling of Base-Sensitive Tracers. ACS Pharmacol. Transl. Sci. 2021, 4, 1556–1566. [Google Scholar] [CrossRef]
- Inkster, J.A.H.; Akurathi, V.; Sromek, A.W.; Chen, Y.; Neumeyer, J.L.; Packard, A.B. A non-anhydrous, minimally basic protocol for the simplification of nucleophilic 18F-fluorination chemistry. Sci. Rep. 2020, 10, 6818. [Google Scholar] [CrossRef]
- Krasikova, R.N.; Orlovskaya, V.V. Phase Transfer Catalysts and Role of Reaction Environment in Nucleophilc Radiofluorinations in Automated Synthesizers. Appl. Sci. 2022, 12, 321. [Google Scholar] [CrossRef]
- Haveman, L.Y.F.; Vugts, D.J.; Windhorst, A.D. State of the art procedures towards reactive [18F]fluoride in PET tracer synthesis. EJNMMI Radiopharm. Chem. 2023, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Krasikova, R.N. Nucleophilic Synthesis of 6-L-[18F]FDOPA. Is Copper-Mediated Radiofluorination the Answer? Molecules 2020, 25, 4365. [Google Scholar] [CrossRef] [PubMed]
- Mossine, A.V.; Tanzey, S.S.; Brooks, A.F.; Makaravage, K.J.; Ichiishi, N.; Miller, J.M.; Henderson, B.D.; Skaddan, M.B.; Sanford, M.S.; Scott, P.J.H. One-pot synthesis of high molar activity 6-[18F]fluoro-l-DOPA by Cu-mediated fluorination of a BPin precursor. Org. Biomol. Chem. 2019, 17, 8701–8705. [Google Scholar] [CrossRef] [PubMed]
- Orlovskaya, V.V.; Modemann, D.J.; Kuznetsova, O.F.; Fedorova, O.S.; Urusova, E.A.; Kolks, N.; Neumaier, B.; Krasikova, R.N.; Zlatopolskiy, B.D. Alcohol-Supported Cu-Mediated 18F-Fluorination of Iodonium Salts under “Minimalist” Conditions. Molecules 2019, 24, 3197. [Google Scholar] [CrossRef] [PubMed]
- Orlovskaya, V.V.; Fedorova, O.S.; Viktorov, N.B.; Vaulina, D.D.; Krasikova, R.N. One-Pot Radiosynthesis of [18F]Anle138b—5-(3-Bromophenyl)-3-(6-[18F]fluorobenzo[d][1,3]dioxol-5-yl)-1H-pyrazole—A Potential PET Radiotracer Targeting α-Synuclein Aggregates. Molecules 2023, 28, 2732. [Google Scholar] [CrossRef]
- CH Guideline of Elemental Impurities Q3D. Available online: https://database.ich.org/sites/default/files/Q3D-R1EWG_Document_Step4_Guideline_2019_0322.pdf (accessed on 30 May 2024).
- ICH Q3C (R9) Guideline on Impurities: Guideline for Residual Solvents. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/ich-q3c-r9-guideline-impurities-guideline-residual-solvents-step-5_en.pdf (accessed on 27 June 2024).
- Antuganov, D.; Antuganova, Y.; Zykova, T.; Krasikova, R. Use of capillary electrophoresis for the determination of impurities in preparations of fluorine-18 labelled PET radiopharmaceuticals. J. Pharm. Biomed. Anal. 2019, 173, 68–74. [Google Scholar] [CrossRef]
Entry | Rinsing Solvent | EE ± SD, % (n = 3) | RCC ± SD, % (n = 3) |
---|---|---|---|
1 | 2-Propanol | 73 ± 1 | 13 ± 1 |
2 | Acetone | 68 ± 1 | 43 ± 2 |
3 | Acetonitrile | 75 ± 6 | 36 ± 13 |
4 | n-Butanol | 78 ± 2 | 47 ± 4 |
5 | Methanol | 76 ± 8 | 63 ± 5 |
Entry | Precursor 1, μmol | Catalyst, μmol | RCC ± SD, % (n = 3) |
---|---|---|---|
1 | 5 | 5 | 26 ± 6 |
2 | 10 | 10 | 63 ± 5 |
3 | 10 | 20 | 61 ± 4 |
4 | 20 | 10 | 45 ± 9 |
5 | 20 | 20 | 75 ± 3 |
6 | 20 | 30 | 58 ± 1 |
Entry | Eluting Solvent | Reaction Solvent * | EE ± SD, % (n = 3) | RCC ± SD, % (n = 3) |
---|---|---|---|---|
1 | DMA | DMA | 78 ± 5 | 75 ± 3 |
2 | DMF | DMF | 85 ± 1 | 7 ± 1 |
3 | PC | PC | 29 ± 3 | 33 ± 2 |
4 | NMP | NMP | 68 ± 2 | 53 ± 8 |
5 | DMI | DMI | 58 ± 1 | 92 ± 1 |
6 | DMSO | DMSO | 68 ± 2 | 0 |
7 | DMA | DMI | 78 ± 5 | 81 ± 2 |
8 | DMA/DMI 1/1 | DMI | 75 ± 4 | 89 ± 2 |
Entry | Precursor, Μmol | Fluorination Solvent * | Reaction T, °C/ Time, min | RCC [%] RadioTLC (n = 1) | Module |
---|---|---|---|---|---|
1 | 10 | DMI | 110/20 | 7 | FX FE |
2 | 20 | DMI | 110/20 | 18 | FX FE |
3 | 20 | DMI/2-PrOH 1/1 | 110/20 | 32 | FX FE |
4 | 20 | DMI/2-PrOH 1/1 | 110/20 | 38 | FX FE |
5 | 20 | DMI/2-PrOH 1/1 | 65/10 110/10 | 77 | Remote-controlled |
6 | 18 | DMI/2-PrOH 1/1 | 65/10 110/10 | 70 | Remote-controlled |
7 ** | 18 | DMI/2-PrOH 1/1 | 65/10 110/10 | 65 | Remote-controlled |
Entry | Process | Activated Path/Function |
---|---|---|
1 | Loading of [18F]fluoride onto the Wax1cc cartridge | V21-V30-Wax1cc-V31-waste bottle |
2 | Washing of Wax1cc cartridge with MeOH (2 mL) | V16-V21-V30-Wax1cc-V31-waste bottle |
3 | Elution of [18F]fluoride from the cartridge into the RV | V16-V1-V31-Wax1cc-V30-reactor |
4 | Radiofluorination, RV, 110 °C, 20 min stirring | - |
5 | Addition of 80% EtOH (2ml) | V16-V2-RV |
6 | Sampling | V16-V2-RV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadporojskii, M.A.; Orlovskaya, V.V.; Fedorova, O.S.; Sysoev, D.S.; Krasikova, R.N. Automation of Copper-Mediated 18F-Fluorination of Aryl Pinacol Boronates Using 4-Dimethylaminopyridinium Triflate. Molecules 2024, 29, 3342. https://doi.org/10.3390/molecules29143342
Nadporojskii MA, Orlovskaya VV, Fedorova OS, Sysoev DS, Krasikova RN. Automation of Copper-Mediated 18F-Fluorination of Aryl Pinacol Boronates Using 4-Dimethylaminopyridinium Triflate. Molecules. 2024; 29(14):3342. https://doi.org/10.3390/molecules29143342
Chicago/Turabian StyleNadporojskii, Mikhail A., Viktoriya V. Orlovskaya, Olga S. Fedorova, Dmitry S. Sysoev, and Raisa N. Krasikova. 2024. "Automation of Copper-Mediated 18F-Fluorination of Aryl Pinacol Boronates Using 4-Dimethylaminopyridinium Triflate" Molecules 29, no. 14: 3342. https://doi.org/10.3390/molecules29143342
APA StyleNadporojskii, M. A., Orlovskaya, V. V., Fedorova, O. S., Sysoev, D. S., & Krasikova, R. N. (2024). Automation of Copper-Mediated 18F-Fluorination of Aryl Pinacol Boronates Using 4-Dimethylaminopyridinium Triflate. Molecules, 29(14), 3342. https://doi.org/10.3390/molecules29143342